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Figure 1: Left: Real-time simulation of 105 deformable solids consisting of 356k tetrahedral elements (without collision handling). Right:
Large scene with 320 solids consisting of 1.42 million tetrahedral elements are colliding with each other as they are falling through a funnel
after they have been shot through the air. The simulation of the deformation required only 140ms per step on a standard CPU.

Abstract
In this paper we present a novel operator splitting approach for corotated FEM simulations. The deformation energy of the coro-
tated linear material model consists of two additive terms. The first term models stretching in the individual spatial directions
and the second term describes resistance to volume changes. By formulating the backward Euler time integration scheme as an
optimization problem, we show that the first term is invariant to rotations. This allows us to use an operator splitting approach
and to solve both terms individually with different numerical methods. The stretching part is solved accurately with an opti-
mization integrator, which can be done very efficiently because the system matrix is constant over time such that its Cholesky
factorization can be precomputed. The volume term is solved approximately by using the compliant constraints method and
Gauss-Seidel iterations. Further, we introduce the analytic polar decomposition which allows us to speed up the extraction of
the rotational part of the deformation gradient and to recover inverted elements. Finally, this results in an extremely fast and
robust simulation method with high visual quality that outperforms standard corotated FEMs by more than two orders of mag-
nitude and even the fast but inaccurate PBD and shape matching methods by more than one order of magnitude without having
their typical drawbacks. This enables a very efficient simulation of complex scenes containing more than a million elements.

CCS Concepts
•Computing methodologies → Physical simulation;

1. Introduction

The interactive physically-based simulation of deformable solids
that undergo large deformations is an important research topic in
computer graphics with many applications like games, VR, and
medical training simulators. The main challenge is that realistic de-

formations are non-linear, volumetric effects. Many approaches use
a continuum mechanical formulation in combination with a finite
element method (FEM) to obtain realistic results. This enables the
simulation of a wide range of effects like elastic and plastic defor-
mation, lateral contraction, cutting, and fracture.
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In recent years a lot of research focused on increasing the per-
formance of FEM solvers so that they can be used interactively.
However, an accurate spatial discretization of a deforming solid
requires a large number of degrees of freedom which results in a
large number of non-linear equations that have to be solved in each
time step when using a stable, implicit time integration scheme.
The corotated FEM considers the non-linearity by extracting per-
element rotations. Therefore, only a linear system has to be solved
in each step which increases the performance. However, so far only
relatively small scenes with a few thousand tetrahedrons can be
simulated at interactive frame rates on a standard CPU.

The main computational costs of corotated FEM arise from three
parts of the algorithm, which have to be executed in every time step
of the simulation. The first one is extracting the rotational part of
the deformation gradient for each element by computing the polar
decomposition. The second one is updating the stiffness matrix by
applying the rotations to the matrix blocks that belong to each ele-
ment which requires a large number of 3×3 matrix products. And
the third one is solving the linear system for the implicit time in-
tegration. To drastically increase the computational performance of
corotated FEM, it is necessary to make all three parts faster because
their computation times lie within the same order of magnitude.

Contributions: In this paper we address these three performance
bottlenecks of the corotated FEM. We formulate the implicit Euler
method as an optimization problem and show that one of the two
terms in the corotated deformation energy, which models stretch-
ing resistance, does not depend on the rotation. We use an opera-
tor splitting approach which allows us to perform the time integra-
tion of both terms in the deformation energy independently with
different numerical methods. The equation for the stretching part
is solved accurately with an optimization integrator. This can be
done very efficiently because the Cholesky factorization of the sys-
tem matrix can be precomputed once and does not change during
the simulation. Afterwards, we approximate the contribution of the
second term, which models resistance to volume change, by us-
ing a compliant constraint formulation. Overall, this results in large
speedups because the Cholesky solves are extremely fast and up-
dates of the stiffness matrix are omitted completely.

As a second contribution, we introduce the analytic polar de-
composition (APD) to compute the rotational part of the deforma-
tion gradient. It can be easily computed by solving an optimiza-
tion problem on SO(3), exploits the temporal coherence of the sim-
ulation, is robust under single precision floating point arithmetic
and does not require trigonometric or square root functions. Fur-
ther, it robustly handles inverted elements without the need for spe-
cial treatment and can be computed in a few lines of code without
branching so that it can be easily vectorized and parallelized.

In summary, this results in stable simulations that nearly reach
the visual quality of corotated FEM, but can be computed more
than 100 times faster as demonstrated in several comparisons and
benchmarks. Our method even outperforms geometrically moti-
vated approaches like shape matching and position based dynam-
ics (PBD) by more than one order of magnitude while avoiding
their typical problem that the stiffness depends on the temporal and
spatial discretization. Using our approach large scenes with 356k
tetrahedrons can be simulated in real-time and it also efficiently

handles complex collision scenarios with 1.42 million tetrahedrons
(see Figure 1).

2. Related Work

Many approaches for the simulation of deformable solids have
been developed in the past decades. These methods can be loosely
categorized into physical models, i.e. mass-spring models and
continuum-based approaches, and geometrically motivated meth-
ods. Therefore, this section is organized as follows.

Physics-Based Models Many early approaches for the physically-
based simulation of deformable objects employ discrete particle
models that are coupled using linear springs or more general elastic
potentials, e.g. [HH98,THMG04]. While these discrete systems are
simple and robust, choosing the constitutive parameters to model
a certain material is non-trivial. Moreover, these models can not
guarantee convergence under spatial refinement (cf. [NMK∗06]).
Due to these issues, more and more attention has been paid to
continuum-based models in recent years. Following the continuum
approach, the dynamic behavior of a deformable object is math-
ematically described by a partial differential equation (PDE) that
has to be discretized for numerical solving. Although many differ-
ent techniques for spatial discretization exist, e.g. finite difference
schemes [TPBF87], the boundary element method [JP99], or the fi-
nite volume method [TBHF03], the FEM has become increasingly
popular due to its ability to solve PDEs on complex domains us-
ing irregular meshes. However, in order to simulate large deforma-
tions in deformable solids, non-linear material models have to be
employed resulting in non-linear equation systems that have to be
solved during runtime.

In order to alleviate the non-linearity, Müller et al. [MDM∗02]
introduced the concept of corotational elasticity to the computer
graphics community using per vertex rotations. The main idea of
the corotational approach is to rotate deformed finite elements back
into their unrotated reference frame and to measure the deforma-
tion using a linear strain measure in this unrotated frame. However,
since the per vertex rotation matrices are ambiguous due to the de-
pendency on the vertex’ adjacent vertices, the method introduces
ghost forces. Therefore, Etzmuß et al. [EKS03], Müller and Gross
[MG04], and Hauth and Strasser [HS04] extended the approach
to element-wise corotations for the simulation of cloth and three-
dimensional deformables without the presence of ghost forces.
Please note that all of the mentioned corotational approaches only
compute an approximation to the exact stiffness matrix as pointed
out by Barbič [Bar12]. Computing the exact stiffness matrix im-
proves stability and robustness, but the additional terms are often
dropped in interactive and real-time applications to improve the
computational performance. Because we are aiming for fast simula-
tions in this work, we also employ the approximate stiffness matrix.

The corotational approach was later adopted in many works. A
method for the simulation of Kirchhoff-Love shells using corota-
tional subdivision finite elements was proposed by Thomaszewski
et al. [TWS06]. Kaufmann et al. [KMBG08] introduced a dis-
continuous Galerkin discretization based on a corotational mate-
rial model in order to support non-conforming shape functions on
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general polyhedral elements. A method for the art-directable an-
imation of solid objects based on a corotational model was pre-
sented by Schumacher et al. [STC∗12]. Instead of choosing a lin-
ear finite element basis, Bargteil and Cohen [BC14] presented
a method that discretizes the corotational model using quadratic
Bézier polynomials. In order to improve the computational per-
formance, multigrid solvers were employed in several works, e.g.
[GW08, DGW11, MZS∗11]. Another way to improve the runtime
performance of finite element simulations is to reduce the num-
ber of degrees of freedom using model order reduction techniques,
e.g. [BJ05, AKJ08, KJ11, PBH15, XB16]. However, the reduction
process is computationally intensive and inextricably linked with a
loss of high-frequent features in the deformation. Another method
to improve the simulation performance was proposed by Hecht et
al. [HLSO12]. They exploit the fact that the stiffness matrix is con-
stant as long as the rotation of the underlying finite elements re-
mains constant. After computing an initial Cholesky factorization,
they incrementally perform rank updates only for entries associ-
ated with elements that are subjected to substantial rotations. Simi-
larly, we use a Cholesky factorization for solving. However, in our
novel formulation, the system matrix remains constant as long as
the mesh topology, the rest configuration, and the material param-
eters do not change, even in the case of large rotations. This means
that the Cholesky factorization can be precomputed once and the
linear solve in each time step can be computed very efficiently.

Most of the discussed corotational methods employ a linearized
backward Euler time integrator which requires to solve a linear
equation system during each time step. In order to speed up the
simulation, faster and more robust solvers for time integration were
developed. Gast et al. [GSS∗15] reformulate the backward Euler
time integration scheme as an optimization problem for simulat-
ing a variety of materials, including solids based on corotational
formulations. The method is moreover able to handle hard con-
straints. Bouaziz et al. [BML∗14] follow a similar strategy using an
optimization-based integrator but suggest to use an efficient block
coordinate descent solver to improve efficiency. It was later shown
by Narain et al. [NOB16] that the approach of Bouaziz et al. is
a special case of the alternating direction method of multipliers.
Using this generalization they are able to handle a wider range of
nonlinear constitutive models. An alternative approach to gener-
alize and improve the method of Bouaziz et al. was proposed by
Liu et al. [LBK17]. The generalization to arbitrary material mod-
els is achieved by reinterpreting the approach as a quasi-Newton
method. They further show that the method can be accelerated us-
ing L-BFGS updates. We also use the optimization formulation of
the backward Euler method. In the case of corotated finite elements,
it leads to a linear least squares problem and it reveals the fact that
one of the terms in the corotated deformation energy is invariant to
rotation, which is the basis of our method.

Another important part of corotated FEM is the extraction of
the rotational part of the deformation gradient. This can be done
by using the polar decomposition (PD) as proposed by Müller and
Gross [MG04]. A problem with this method is that the orthogonal
factor of the PD contains a reflection in the case of inverted ele-
ments. As a result the element is forced towards the reflected rest
pose, which can lead to inversions in adjacent elements and in the
worst case destroy the entire mesh. Therefore, Irving et al. [ITF04]

proposed a heuristic approach, which robustly handles inverted ele-
ments by using the singular value decomposition (SVD) instead of
the PD. A more detailed discussion of invertible FEM can be found
in Section 4. This approach was further improved by Schmedding
and Teschner [ST08], who used geometric properties of the inverted
element to ensure that it recovers along the shortest possible path.
Another inversion handling method was proposed by Civit-Flores
and Susin [CFS14], who ensure a temporally consistent recovery
from inverted states. The previously discussed methods have the
disadvantage, that they contain several special cases which intro-
duce branching and prevent efficient SIMD parallelism. To over-
come this issue, Müller et al. [MBCM16] proposed to compute the
polar decomposition as an optimization problem, which allows for
robust inversion handling and can be solved without branching. Our
analytic polar decomposition is closely related to their algorithm,
but we use a more efficient optimization algorithm which converges
much faster.

Geometrically Motivated Methods In comparison to physics-
based models, geometrically motivated methods are often compu-
tationally more efficient, robust, and simple. Most of these meth-
ods share the concept of unconstrained particle advection followed
by a constraint solver that aims to maintain the undeformed shape.
A concept called Shape Matching was introduced by Müller et
al. [MHTG05], where a particle cloud is partitioned into overlap-
ping clusters. After the unconstrained advection, a goal position
for each particle based on a cluster’s deformation is computed in
order to restore the initial shape. The computational efficiency of
the method was later improved by fast summation methods for
structured grids [RJ07] and unstructured meshes [DBB11]. Müller
et al. [MHHR07] proposed a similar concept entitled – Position
Based Dynamics (PBD) – for the simulation of cloth and cloth
balloons where distance and bending constraints are enforced us-
ing Gauss-Seidel or Jacobi iterations. In the following years the
PBD framework was broadly generalized to handle arbitrary posi-
tion constraints and to model a wide range of physical phenomena
in a visually plausible fashion. For a general review of position
based approaches we would like to refer the reader to the work
of Bender et al. [BMM14, BMM17]. Although these geometrically
motivated approaches have proven to be very robust and efficient,
they often appear less realistic than physics-based methods and are
not convergent under neither temporal nor spatial refinement. Re-
cently, it was shown by Macklin et al. [MMC16] and Tournier et
al. [TNGF15] that PBD is closely related to optimization integra-
tors. Based on this insight Macklin et al. modified PBD by using
a compliant constraint formulation, such that the convergence un-
der spatial and temporal refinement is restored while maintaining
stability and robustness. We also employ the compliant constraints
method to integrate the part of the corotated deformation energy
that models resistance to volume changes. Due to the fact that we
use the accurate solution of the optimization integrator as an initial
guess, our method delivers visually plausible results with a small
number of Gauss-Seidel iterations.

3. Method

Our method consists of three main components: the corotated op-
timization integrator, the volume conservation constraint, and the
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analytic polar decomposition which will be discussed in detail in
the following subsections.

3.1. Corotated Optimization Integrator

First, we will introduce the optimization formulation of the implicit
Euler scheme and an operator splitting approach which allows us to
solve the two terms of the corotated elastic energy separately. Then
we show that the first term, that models stretching along the indi-
vidual spatial directions, can be formulated as a linear least-squares
problem. The optimum can be found by solving a single linear sys-
tem. This optimization formulation has the advantage that the sys-
tem matrix is constant for all time steps, as long as the rest-pose
mesh and the material parameters do not change. This means that
the Cholesky factorization can be precomputed in an initialization
step and the linear solves during the simulation are extremely fast.
Further, the linear system can be decomposed into three indepen-
dent systems for the x-, y- and z-coordinates of the positions, which
can be solved in parallel.

The optimization formulation of the backward Euler method has
the time stepping scheme (cf. [MTGG11, GSS∗15, NOB16]):

x(t +∆t) = argmin
x

1
2∆t2 ‖M

1
2 (x− x̃) ‖2 +E(x) (1)

v(t +∆t) =
x(t +∆t)−x(t)

∆t
, (2)

where x = (xT
1 , ...,x

T
np)

T is the vector that contains all positions
of the np nodes, v contains all velocities in the same way and
E(x) is a potential energy which models internal forces. The vector
x̃ = x(t)+v(t)∆t +M−1fext∆t2 contains the predicted state, which
is computed using a forward Euler step without considering the in-
ternal forces/potentials. Here, M is the (lumped) mass matrix, fext
is the vector that contains all external forces like gravity and ∆t is
the time step size.

We are especially interested in the corotated linear deformation
energy density [SB12]

Ψ = µ ‖ F−R ‖2
F +

λ

2
tr
(

RT F−1
)2

, (3)

where F is the deformation gradient, R is the rotational part of F
which can be computed via polar decomposition or SVD, 1 is the
identity matrix and µ and λ are the Lamé parameters. The first term
models stretching and compression resistance for the individual
spatial directions and the second term describes resistance to vol-
ume change. As noted by Smith et al. [SDGK17] the volume term is
a linearization of the non-linear volume term of the Neo-Hookean
model (log(det(F)))2 ≈ tr(RT F−1)2 at the rest pose. This means
that volume change is poorly approximated for large deformations
which we are interested in. The consequences are not only high
numerical errors, but also severe visual artifacts like inversion of
tetrahedral elements as noted by Stomakhin et al. [SHST12] and
Smith et al. [SDGK17].

To overcome this issue Stomakhin et al. proposed a "fixed coro-
tated" model in which they replaced the linearized volume term by
the non-linear one λ/2(det(F)− 1)2. This helps to avoid the arti-
facts but introduces non-linearity so that a non-linear system has to
be solved in each time step instead of a linear one, which comes

along with high computational costs. Because we aim for inter-
active performance in large scenes with hundreds of deformable
bodies, it is not an option to accurately solve the non-linear equa-
tions that arise from the fixed corotated or the Neo-Hookean en-
ergy. Instead, we will use an operator splitting approach to solve
the linear equations, which result from the first term in Eq. (3),
accurately with a direct solver. Afterwards, we approximate the
effect of the fixed corotated volume term by using the compliant
constraints formulation and applying Gauss-Seidel iterations. This
provides a good trade-off between realistic volumetric compression
resistance, computational costs, and numerical robustness. We will
discuss volume preservation in more detail in Section 3.2.

Next, we will discuss how to discretize the stretching energy
density and how to solve the optimization problem for backward
Euler without considering the volume term. If we use tetrahedrons
with linear shape functions, the deformation gradient is

F = DsD−1
m = DsB (4)

Ds =
(
x1−x0 x2−x0 x3−x0

)
, (5)

Dm = B−1 =
(
X1−X0 X2−X0 X3−X0

)
, (6)

where xi denote the vertex positions of the tetrahedron in the de-
formed pose and Xi are the vertex positions in the rest pose. The
discrete corotated deformation energy of tetrahedron t becomes

Et(x) = µVt ‖ Ft −Rt ‖2
F= µVt ‖ vec(Ft)−vec(Rt) ‖2 (7)

= µVt ‖ Dtx−vec(Rt) ‖2, (8)

where Vt is the rest pose volume of the tetrahedron t, vec(Ft) and
vec(Rt) are defined by stacking the columns into a single 9d vector,
and Dt is a 9× 3np matrix that relates the vertex positions to the
vectorized deformation gradient Dtx = vec(Ft). If we consider a
single tetrahedron, this takes the form

vec(Ft) =

−∑i Bi,01 B0,01 B1,01 B2,01

−∑i Bi,11 B0,11 B1,11 B2,11

−∑i Bi,21 B0,21 B1,21 B2,21


︸ ︷︷ ︸

Dt


x0
x1
x2
x3

 . (9)

The matrix Dt only depends on the rest shape matrix Dm of the
tetrahedron and is constant as long as the rest pose does not change.
To obtain the total energy we have to take the sum over all tetrahe-
drons which can be written in vector-matrix notation as

E(x) = ∑
t

Et(x) =‖K1/2(Dx− r) ‖2, (10)

where K = diag(µV119×9, · · · ,µVnt19×9) contains the material pa-
rameters and volumes, the 9nt × 3np matrix D is a stack of the
Dt matrices of all nt tetrahedrons and the 9nt dimensional vector
r = (vec(R1)

T , ...,vec(Rnt )
T )T contains the vectorized rotations

of all tetrahedrons. Details on the computation of these matrices
can be found in Algorithm 1. Plugging the potential energy into (1)
results in the weighted, linear least squares problem

x(t +∆t) = argmin
x

1
2∆t2 ‖M

1
2 (x− x̃) ‖2 + ‖K1/2(Dx− r) ‖2 .

It is easy to see that the objective function is convex (we assume
that r is constant during one time step), meaning that we can find
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Algorithm 1 Initialization
1: for all tetrahedrons t do
2: compute Dm using Eq. (6)
3: Vt ← 1

6 det(Dm)
4: for i ∈ {0, ...,8} do . Init matrix K
5: K(9t + i,9t + i)← µV
6: for all Vertices v of tetrahedron t do . Init mass M
7: M(v,v) += 1

4 ρVt13×3

8: compute Dt using Eq. (9) . Init matrix D
9: for i ∈ {0, ...,3} do

10: v← index of the i-th vertex of tet t
11: for j ∈ {0, ...,2} do
12: D(9t +3 j,3v)← Dt(3 j,3i)13×3

13: compute Cholesky factorization of M+2∆t2DT KD

the global minimum by setting the gradient to 0 which results in the
normal equations (see [NW06]):(

M+2∆t2DT KD
)

x(t +∆t) = Mx̃+2∆t2DT Kr. (11)

We will slightly rearrange these equations so that fixed vertices can
be handled easily. We subtract (M+2∆t2DT KD)x̃ on both sides so
that we solve for position changes ∆x = x(t+∆t)− x̃ instead of the
new positions, resulting in(

M+2∆t2DT KD
)

∆x = 2∆t2DT K(r−Dx̃) . (12)

For fixed vertices there is no position change and we can simply
remove the corresponding rows from Equation (12). From the im-
plementation perspective it is useful to store all fixed vertices at the
beginning or end of the position vector so that they can be removed
efficiently with a simple block operation.

Note that the system matrix is constant as long as the mesh topol-
ogy, the material parameters and the time step do not change. This
means that the Cholesky factorization can be precomputed once
and the linear solves can be computed extremely fast. Further, this
system can be split into three independent systems for the x-, y- and
z-components of the vertex positions which allows for paralleliza-
tion of the forward and backward substitution steps. An overview
of one time integration step can be found in Algorithm 2.

3.2. Volume Conservation

After performing time integration with the corotated optimization
integrator without considering the volume term, we will take it
into account now, by using the compliant constraints formulation.
Tournier et al. [TNGF15] and Macklin et al. [MMC16] showed that
it is equivalent to implicit integration of elastic potentials. Anal-
ogously to Macklin et al. we construct the compliant constraints
Ct(x) for each tetrahedron t by writing the fixed corotated volume
energy from Stomakhin et al. [SHST12] as

Evol,t =
1
2

CT
t α
−1
t Ct =

λ

2
Vt(det(Ft)−1)2. (13)

This defines the volume constraint

Ct(x) = det(Ft)−1 =
[(x1−x0)× (x2−x0)] (x3−x0)

6Vt
−1, (14)

Algorithm 2 Time Step
1: for all vertices i do . Optimization integrator
2: x̃i = xi(t)+vi(t)∆t + 1

mi
fext,i∆t2

3: b← 0 ∈ R9nt

4: for all tetrahedrons t do
5: compute Ft using Eq. (4)
6: Rt ← APD(Ft ) with Algorithm 3
7: b[9t]← vec(R)−vec(F)
8: b← 2∆t2DT Kb
9: Solve (M+2∆t2DT KD)∆x= b with precomp. Cholesky dcmp

10: for all tetrahedrons t do . Solve volume constraints
11: κt ← 0
12: while i < solverIterations do
13: for all tetrahedrons t do
14: Update x and κt using Eq. (15) and (16)
15: for all vertices i do . Update positions
16: vi← 1

∆t (xi(t +∆t)−xi(t))

where xi are the four vertex positions of tetrahedron t and the com-
pliance factor α

−1
t = λVt∆t2 which relates the material parame-

ter, the rest volume Vt , and the time step ∆t to the stiffness of the
constraint. A similar deformation energy was used by Teschner et
al. [THMG04] in combination with explicit time integration.

To solve the system of nt volume constraints we use Gauss-
Seidel iterations as proposed by Macklin et al. We will skip the
derivation, which can be found in [MMC16], and just present the
equations that are needed to update the Lagrange multipliers κt and
the vertex positions xi when stepping from iteration n to n+1:

∆κt =
Ct −αtκ

n
t

∑
3
i=0

1
mi
‖ ∇xiCt ‖2 +αt

(15)

κ
n+1
t = κ

n
t +∆κt , xn+1

i = xn
i +

1
mi
∇xiCt∆κt . (16)

The required gradients of Eq. (14) can be found in the supplemen-
tal document. At the beginning of each time step we initialize the
Lagrange multipliers with 0. Then we iterate over all tetrahedrons,
update κt and the four vertex positions and move on to the next con-
straint. More details on how the volume constraints fit into our time
stepping scheme can be found in Algorithm 2. In practice a small
number of Gauss-Seidel iterations is sufficient to deliver visually
plausible lateral contractions (see Figure 3) because the accurate
solution of the stretching part provides a good initial guess.

3.3. Analytic Polar Decomposition (APD)

In the previous sections we showed how the linear solves can be
done very efficiently with precomputed Cholesky factorizations.
But another computational bottleneck of corotated FEM simula-
tions is the extraction of the rotational part from the deformation
gradient. In this section we will address this issue by introducing
the analytic polar decomposition (APD). It can be easily imple-
mented using only a few lines of code without branching, square
roots or trigonometric functions. Element inversions are handled
robustly without the requirement to treat any special cases. Further,
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Algorithm 3 Analytic Polar Decomposition (APD) of matrix A
1: q← q(t−∆t) . Start: quaternion from last time step
2: while ‖ ∆ωωω ‖> τ do
3: R← q.rotationMatrix()
4: compute gradient g using Eq. (24)
5: compute Hessian H using Eq. (25)
6: ∆ωωω←H−1g
7: clamp(‖ ∆ωωω ‖,−π,π)
8: q← q◦ cay(∆ωωω) with Eq. (27)

the APD allows us to exploit the temporal coherence of the simu-
lation, it is robust under single precision floating point arithmetic,
and can be easily parallelized or vectorized. Overall this results in
Algorithm 3 that outperforms the commonly used methods to com-
pute the polar decompositions by a factor of up to 38.

Definition of the APD: First, we will give the definition of the
APD and then we show how it can be efficiently computed. The
standard polar decomposition of a matrix A ∈ Rm×n is usually de-
fined as A = RS, where R ∈ Rm×n is an orthogonal matrix and
S ∈ Rn×n is a symmetric, positive semidefinite matrix. Mehrmann
and Rath [MR93] showed that the polar decomposition can be de-
fined analogously for an analytic, matrix valued function A(t) :
[a,b] → Rm×n (e.g. the deformation gradient), where all com-
ponents of the matrix A are analytic functions of the variable t.
The analytic polar decomposition (APD) is a path of factorizations
A(t) = R(t)S(t), such that R(t) and S(t) are orthogonal and sym-
metric, respectively, and both are analytic functions in t. Further,
Mehrmann and Rath proved that if the matrix A(t0) at one specific
point t0 ∈ [a,b] is non-singular, S(t0) is positive definite and the
APD is unique on [a,b].

Note that the symmetric factor is not necessarily positive
semidefinite for all t ∈ [a,b]. This is a useful property when we
consider the APD of the deformation gradient because it ensures
that in the case of inverted elements the reflection will be contained
in the symmetric factor and the orthogonal factor will always be
a pure rotation, given that det(R(t0)) = 1. For instance, this is the
case when t0 is the starting point in the rest pose. Due to the fact
that R(t) is a continuous function, its determinant is also continu-
ous and there cannot be a jump from +1 to−1 so that the reflection
has to be contained in the symmetric factor.

The APD as an optimization problem: Next, we will show that
the APD of the 3× 3 deformation gradient can be efficiently com-
puted by solving an optimization problem on SO(3). We adapt the
pathfollowing approach of Janovsky et al. [JJT06], which was orig-
inally developed for computing the analytic singular value decom-
position of arbitrary sized matrices, to determine the 3× 3 APD.
We define the function

G(R(t),S(t), t) =

A(t)−R(t)S(t)
R(t)T R(t)−1

S(t)−S(t)T

 , (17)

such that the curve, which is implicitly defined by G = 0, defines
the APD. The roots of G can be computed by minimizing ‖ G ‖2

over all rotations and all symmetric matrices

(R(t),S(t)) = min
R∈SO(3),S

‖ A(t)−RS ‖2 + ‖ S−ST ‖2, (18)

where the second component of G can be dropped since we com-
pute the minimum over all R∈ SO(3). In a simulation with discrete
time steps the APD can be computed by solving this optimization
problem in each time step ti for the deformation gradient F(ti). By
using the optimum of the last time step as starting point, we can
exploit the temporal coherence of the simulation. In most cases the
rotation during one time step is small so that we are already close
to the optimum. Actually it is sufficient to start with S = 1 and
minimize over the rotation alone. It is well-known as Grioli’s the-
orem [CMPG79] that minimizing ‖ A−R ‖ over all rotations re-
sults in the orthogonal factor of the standard polar decomposition,
so that we can find the minimizing symmetric matrix as S = RT A.
This means that we have to minimize the objective function

EAPD(R) = 1
2 ‖ R−A ‖2= 1

2

3

∑
i=1

(Rei−Aei)
2, (19)

where ei denotes the i-th base vector.

Optimization on SO(3): This can be done efficiently by using the
manifold version of Newton’s method which was presented by Tay-
lor and Kriegman [TK94]. At every point R0 on the manifold SO(3)
we can define a local parametrization

R(ωωω) = R0 exp
(
[ωωω]×

)
ωωω ∈ R3,‖ ωωω ‖< π, (20)

which is an invertible and differentiable mapping between the
neighborhood of R0 and an open set in R3. Here, the vector ωωω is a
rotation around the axis ωωω with the angle ‖ωωω ‖ and [·]× is the oper-
ator that maps a given vector to the corresponding skew symmetric
matrix. The matrix exponential exp(·) is defined by the exponential
series and can be efficiently computed with a closed form expres-
sion for the 3×3 case.

But first, we will discuss how to solve the optimization prob-
lem. We will represent the objective function in terms of ωωω using
Eq. (20) and compute a quadratic Taylor approximation

EAPD(R(ωωω)) = EAPD(R0)+gT
∆ωωω+

1
2

∆ωωω
T H∆ωωω, (21)

where g and H are the gradient and Hessian of EAPD evaluated at
ωωω = 0, which means at the rotation R0. By setting the gradient of
Eq. (21) to 0 we obtain the update rule

∆ωωω =−H−1g (22)

Rn+1
0 = Rn

0 exp
(
[∆ωωω]×

)
, (23)

which performs one Newton step on the local parametrization and
then computes the new position on the manifold SO(3). When we
guarantee that ‖ ∆ωωω ‖< π so that it stays in the range of the local
parametrization then we can minimize the objective function by
iterating these updates.

To compute the gradient and Hessian we have to determine the
derivatives of R(ωωω) which can be done component wise by using
the exponential series. This can be found in detail in the supplemen-
tal document. Here we only present the final results for the gradient
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g and Hessian H of the objective, which are

g =
∂

∂ωωω
EAPD(ωωω) =−2axl

(
RT

0 A
)

(24)

H =
∂

2

∂ωωω2 EAPD(ωωω) = tr
(

RT
0 A
)
1− sym

(
RT

0 A
)
, (25)

where axl(Y)k =
1
2 ∑i ∑ j Yi jεi jk denotes the axial vector of the ma-

trix Y, εi jk is the Levi-Civita symbol, and sym(Y) = 1
2 (Y+YT )

denotes the symmetric part of Y.

Exponential and Cayley Maps: Finally, we discuss how to com-
pute the exponential map so that we can compute the APD. There
are several ways to this. E.g., one can use the Rodrigues formula.
An even simpler way is to represent the rotation as a quaternion,
for which the exponential map can be computed as (see [Sel10])

exp(ωωω) = (cos(‖ ωωω/2 ‖),sin(‖ ωωω/2 ‖)ω̂ωωT )T , (26)

where ω̂ωω = ωωω/ ‖ ωωω ‖. Then the update step in Equation (23) can be
computed as a standard quaternion product qn+1 = qn ◦ exp(∆ωωω).
Note that it is not necessary to normalize the quaternion after the
update step, because the exponential map always returns a unit
quaternion.

Another alternative is the Cayley map which approximates the
exponential map without using trigonometric functions and also re-
turns a unit quaternion so that no square root for normalization is
required. It can be computed as the quaternion (see [Sel10])

cay(ωωω) =

(
1− ‖ ωωω/2 ‖2

1+ ‖ ωωω/2 ‖2 ,
1

1+ ‖ ωωω/2 ‖2 ωωω
T

)T

. (27)

This quaternion also represents a rotation around the axis ω̂ωω, but the
angle θ is given by ‖ωωω ‖= tan(θ). This is a good approximation for
small angles that are very common in our scenario because of the
temporal coherence between two time steps of the simulation. For
larger values of ‖ωωω ‖ the Cayley map results in too small rotations,
which means that the step will reduce the objective function but
convergence will be slower. So we trade slower convergence in the
rare case of large rotations for faster computation times in the com-
mon scenario of small rotations. In all our experiments we used the
Cayley map because it results in better performance.

4. Results

In this section we discuss our results and compare our method to
other simulation methods in terms of computational performance
and visual quality. All steps of our algorithm are explicitly vector-
ized using AVX instructions and the loop over all meshes is par-
allelized with OpenMP. The Cholesky factorizations are computed
using the LLT method from the Eigen library [GJ∗10]. The timings
in this section were measured on an Intel Core i7-7700k quad core
processor.

Corotated / Non-Linear FEM Our method splits the energy den-
sity of the corotated material model in a stretching and a vol-
ume term. We solve the stretching part using a direct Cholesky
solver and the volume part by compliant constraints. The signif-
icant speedup of our method in comparison to other approaches

Figure 2: A swinging armadillo is simulated using our method
(left) and the corotated FEM implementation in the library Vega
FEM (right). The results are visually almost identical for small
Poisson ratios.

Figure 3: Comparison of our method (top) and corotated FEM
(bottom) in a simulation in which a beam that is fixed at both ends
gets compressed, stretched and twisted (see video). The Poisson ra-
tio was set to 0.49 such that the material is nearly incompressible.
Although our method handles resistance to volume changes only
approximately, it delivers visually plausible results.

is obtained by using only a weak coupling of both solutions. Our
method is up to two orders of magnitude faster than the traditional
corotated FEM but less accurate. In the following, we show that we
still obtain a convincing visual quality.

We simulated a swinging armadillo model with our method
and the corotated FEM implementation in the Vega FEM library
[SSB13] using a small Poisson ratio to compare the stretching re-
sistance (see Figure 2). In the accompanying video it can be seen
that our results are almost visually identical to the full corotated
FEM simulation. We performed another comparison with an almost
incompressible beam model with a Poisson ratio of 0.49 which is
fixed at both ends and gets compressed, stretched and twisted (see
Figure 3). The results show that our method produces visually plau-
sible lateral contractions. Note that in this experiment only one it-
eration of our volume constraint solver was enough to obtain a vol-
ume error of less than one percent.

It is clear that our weak coupling cannot reproduce the full vi-
sual quality of corotated or non-linear FEM simulations, especially
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Figure 4: Comparison of our method (left) and position-based dy-
namics (right) in a simulation of an irregularly sampled thin sheet.
PBD cannot use real material parameters and the material be-
comes softer in densely sampled regions. With our method we use
the same value of Young’s modulus for all tetrahedrons and the
stiffness is independent of the spatial sampling.

for meshes with fine sampling where many iterations are needed
to reach convergence. However, in interactive applications the de-
formable solids are typically approximated by only a few hundred
or a few thousand tetrahedral elements. In this case our method de-
livers visually comparable results at low computational costs.

PBD and Shape Matching Our method enables fast and high-
quality simulations of deformable bodies and does not have the
typical drawbacks of position based or shape matching simula-
tions. That means our material stiffness can be specified in terms of
Young’s modulus and Poisson ratio and is independent of the time
step size and spatial resolution of the mesh, which is demonstrated
in Figure 4. Further, there is no parameter like the shape matching
cluster size which affects the material behavior and has to be tuned
by the user. Recently, these issues have been addressed by Mack-
lin et al. [MMC16] with their extended position based dynamics
(XPBD) approach, which allows for using real material parame-
ters. However, the computational costs for simulating elastic ma-
terials are higher than in standard PBD [BKCW14] because more
complex, higher dimensional constraints are required.

Analytic Polar Decomposition Typically the rotational part of F
is found by computing the polar decomposition F = RS, where R
and S are an orthogonal and a symmetric, positive semidefinite ma-
trix, respectively. However, in the case of inverted elements the or-
thogonal factor contains a reflection, which forces the element to
return to the reflected rest configuration. In the worst case this can
force adjacent elements into inversion which ultimately destroys
the entire simulation mesh. Therefore, Irving et al. [ITF04] pro-
posed the invertible finite elements (IFE) method that enables ro-
bust recovery from inverted states. They compute the SVD of the
deformation gradient F = UΣΣΣVT , where U and V are orthogonal
and ΣΣΣ is a diagonal matrix. Because the SVD is not unique, a stan-
dard convention is to choose the singular values to be positive and
to arrange them in descending order. This means that the reflection
of F is contained in the orthogonal factors. Irving et al. made the
heuristic assumption that the element is "as uninverted as possi-
ble" and proposed to obtain the rotational part of inverted elements
by switching the sign of the smallest singular value and the cor-
responding singular vector, which does not change the SVD, and
R = UVT is a rotation matrix without a reflection.

Müller et al. [MBCM16] compute the polar decomposition of F

as the minimum of ‖ R−F ‖2 over all rotation matrices R. This
is the same optimization problem as the one that we have to solve
for the APD, meaning that it delivers the same results as the APD.
But Müller et al. solve the optimization problem by interpreting the
element as a rigid body and applying forces to drive it towards the
minimum. Their approach can be interpreted as a kind of gradient
descent method, which is expected to have linear convergence. In
contrast, our Newton solver is expected to have quadratic conver-
gence [TK94]. Therefore, it requires much less iterations to con-
verge as discussed below.

In our work we use an APD to extract the rotational part of F.
A formal proof that the APD delivers the same results as the SVD
method of Irving et al. [ITF04] can be found in the supplemental
document. The advantage of the APD is that it is computationally
faster than both methods above. Moreover, it is easy to implement
and does not contain any branching, so that it can be easily par-
allelized on GPUs or on CPUs using SIMD instructions. To show
that the APD faithfully handles inversions in practice, we started
the simulation of an armadillo mesh in the reflected rest pose. It
was able to recover its original shape in just a few time steps, which
is shown in Figure 5.

Performance In this paragraph we will present several benchmark
results, that are all computed on a single core. First, we com-
pare the computational performance of our method to several coro-
tated finite element solvers like the Vega FEM library [SSB13], the
ADMM method of Narain et al. [NOB16] and the Quasi-Newton
L-BFGS method of Liu et al. [LBK17]. Moreover, we compared
our method to PBD, XPBD, and shape matching. We simulated the
swinging armadillo scene (see Figure 2) with varying mesh resolu-
tions and depict the computation times in Table 1. The parameters
were: time step ∆t = 10ms, Young’s modulus E = 106Pa, and Pois-
son ratio ν = 0.33. We performed 10 iterations of the ADMM and
L-BFGS solver and one iteration of our volume constraint solver.
The iteration count of PBD and the cluster size of shape match-
ing were tuned such that we achieved a similar material behav-
ior. The results show, that our method scales well with increasing
mesh resolutions and that it outperforms standard corotated FEM
simulations by two orders of magnitude. Our method also outper-
forms PBD, XPBD, and shape matching by one to two orders of
magnitude, depending on the mesh resolution. In general PBD and
shape matching require a higher iteration count or larger cluster
sizes when the mesh resolution or the time step size increases.

We also compare the performance of the solvers for varying ma-
terial stiffness and time step size, which is shown in Tables 2 and 3.
In contrast to the commonly used PCG solver of the Vega FEM li-
brary, which needs more iterations with increasing stiffness or time
step size, the computation times of our direct solver are not affected
by these parameters. This means that we can efficiently simulate
stiff materials with large time steps.

In order to show the computational performance of our APD, we
made benchmarks of several polar and singular value decomposi-
tion methods. We randomly sampled 800k 3× 3 matrices from a
uniform distribution on SO(3) with a maximal angle of 10◦. Then
they were used to transform the vertices of a tetrahedron that was
slightly deformed by applying a random displacement of maxi-
mally 10% of the average edge length to all vertices. The maxi-
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Figure 5: Left to right: Armadillo model recovers from an completely inverted state using the analytic polar decomposition.

Mesh Resolution Simulation Times in Milliseconds / Speedup of our Method
# of vert. # of elem. Our Method Vega Fem ADMM L-BFGS PBD XPBD Shape Matching

1849 6088 0.44 55.7 / 126x 81.6 / 184x 104 / 236x 7.12 / 16x 25.3 / 57x 6.31 / 14x
3063 10349 0.85 120 / 140x 145 / 169x 178 / 208x 21.1 / 25x 42.9 / 50x 19.9 / 23x
4716 16225 1.64 250 / 152x 225 / 138x 283 / 172x 50.5 / 31x 115 / 70x 57.9 / 35x
9392 33076 4.13 704 / 170x 486 / 118x 563 / 136x 263 / 64x 494 / 120x 276 / 67x
14791 55494 8.31 1509 / 182x 840 / 101x 997 / 120x 590 / 71x 1079 / 130x 908 / 109x
43805 173196 28.2 6611 / 234x 1455 / 52x 3368/ 119x 6382 / 226x 9762 / 346x -
77954 330814 54.2 18489 / 341x 2666 / 49x 6423/ 118x 31377 /579x 45110/ 832x -

Table 1: Comparison of simulation times in milliseconds with varying mesh resolution. We compare our method against the standard coro-
tated linear FEM method from the Vega FEM library [SSB13], the ADMM optimization integrator [NOB16], the L-BFGS integrator [LBK17],
the position based continuous materials method [BKCW14], the extended PBD (XPBD) method [MMC16], and the clustered shape match-
ing method [MHTG05]. Please note, that we left out measurements for the very high-resolution meshes with shape matching due to the high
memory demand associated with the growing cluster size.

Simulation times in ms / Speedup of our method
E [Pa] Our method Vega Fem ADMM L-BFGS

105 1.60 131 / 82x 222 / 139x 384 / 239x
5 ·105 1.77 205 / 116x 226 / 128x 358 / 202x

106 1.63 236 / 145x 226 / 138x 282 / 173x
107 1.59 552 / 347x 226 / 142x 198 / 124x

Table 2: Comparison of simulation times per step in millisec-
onds with varying material stiffness. We simulated the Stanford ar-
madillo with 16k elements and a time step of ∆t = 10ms.

mal angle and the maximal deformation mimics the temporal co-
herence of the FEM simulation, where the deformations and rota-
tions between two time steps are commonly small. We enforced an
average error below 0.05◦ (compared to the SVD solution using
the angular metric d(R1,R2) = ∠(RT

1 R2)). The timings for com-
puting the rotational parts of the 800k matrices are summarized
in Table 4. The best performance can be reached with our ADP
implementation that uses AVX instructions to compute 8 APDs at
once. It is more than two times faster than the SVD method of
McAdams et al. [MST∗11], which also uses AVX vectorization.
In contrast to the approach of McAdams et al. the APD requires
just a few lines of code and could be easily implemented on GPUs.
Further, the APD is 21 times faster than the polar decomposition
of Müller et al. [MBCM16], which required 5 iterations to con-

Simulation times in ms / Speedup of our method
∆t [ms] Our method Vega Fem ADMM L-BFGS

5 1.68 128 / 76x 226 / 134x 366 / 217x
10 1.63 240 / 147x 226 / 138x 282 / 173x
16 1.59 330 / 207x 226 / 142x 184 / 116x
33 1.64 576 / 352x 226 / 138x 174 / 107x

Table 3: Comparison of simulation times per step in milliseconds
with varying time step sizes. We simulated the Stanford armadillo
with 16k elements and Young’s modulus of E= 106Pa.

verge to the same error as the APD with 1 iteration. Compared to
the standard polar decomposition (implementation from the Posi-
tionBasedDynamics library [Ben17]), the invertible FEM heuris-
tic (code from [MBCM16]) and the implicitly shifted QR-SVD by
Gast et al. [GFJT16], the APD is 14−15 times faster. The standard
SVD from the Eigen library turned out to be the slowest method
and needs 38 times more computation time than the APD. This
shows that the APD is a fast, simple to implement and easy to use
alternative to common polar decomposition algorithms.

Since the algorithm of Müller et al. [MBCM16] solves the same
optimization problem as the one we have to solve for the APD, we
compare the convergence of both methods. For this comparison we
again use the random deformation gradient scenario (see above).
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Polar Decomposition Times
Method Time [ms] Speedup

Our Method (APD) SIMD 18.7 -
Our Method (APD) 73.5 3.9x
Müller et al. [MBCM16] 384 21x
SVD: McAdams et al. [MST∗11] 40.5 2.2x
QR SVD: Gast et al. [GFJT16] 283 15x
Irving et al. [ITF04] 271 14x
Polar Decomposition 267 14x
Jacobi SVD Eigen [GJ∗10] 704 38x

Table 4: Comparison of polar decomposition times in milliseconds
and speedups of the SIMD APD for 800k deformation gradients
of randomly rotated and deformed tetrahedrons. An average error
below 0.05◦ was enforced. The starting rotation was limited to 10◦,
which corresponds to 167 rpm for ∆t = 10ms, to mimic the effect of
temporal coherence.
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Figure 6: Comparison of the convergence of the APD, where we
expect quadratic convergence, to the algorithm of Müller et al.
where we expect a linear one. This result shows the expected be-
havior and our method needs much less iterations to converge. The
computation times per iteration are nearly identical for both meth-
ods. The residual is computed as the angular distance d(R1,R2) =
∠(RT

1 R2) to the exact result which was computed with an SVD.

The results, shown in Figure 6, demonstrate the much faster con-
vergence of the APD. The APD requires only 3% more time per
iteration than the method of Müller et al. Therefore, our method is
about 21 times faster (see Table 4).

Complex Scenarios To show that our method can simulate large
scenes at interactive rates, we simulated 105 deformable solids con-
sisting of 356k tetrahedrons falling through horizontal poles (see
Figure 1, left). Collisions between the meshes were not handled
in this scene. The step size was ∆t = 20ms and a complete sim-
ulation step required 17ms on average when all models are active.
This means the simulation was faster than real-time. For the second

large scenario we added collision handling. We use the spatial hash-
ing algorithm [THM∗03] in combination with a Signed Distance
Field (SDF) [KDBB17] in the reference configuration to perform
the collision detection. Similar to McAdams et al. [MZS∗11] the
SDF is used to determine the closest point on the undeformed sur-
face. The corresponding deformed position of this point is used to
resolve the collision using the position-based approach [BMM17].
Figure 1 (right) shows 320 solids consisting of 1.42 million tetrahe-
drons that are colliding with each other as they are falling through
a funnel after they have been shot through the air. The deformation
was simulated in 140ms per time step on average.

5. Conclusion and Future Work

We presented a fast and stable method for interactive simulation
of deformable bodies using corotated finite elements and optimiza-
tion based implicit time integration. Our method builds upon the
observation that one part of the corotated stiffness matrix, which ac-
counts for stretching resistance in the individual spatial directions,
is invariant to rotations. This means that we can use an operator
splitting approach and solve the resulting linear system very effi-
ciently, because the corresponding matrix is constant for all time
steps and can be prefactored. The effect of volumetric compression
resistance, which is modeled by the remaining term, is approxi-
mated using compliant constraints, which offers a good trade-off
between accuracy and computation time. Further, we introduced
the analytic polar decomposition as a fast and simple way to com-
pute the rotational part of the deformation gradient with robust han-
dling of inverted elements. Finally, this results in extremely fast
simulations with high visual quality, that outperform standard coro-
tated FEMs by more than two orders of magnitude and even out-
perform the fast but inaccurate PBD and shape matching methods
by more than one order of magnitude without having their typi-
cal drawbacks. This enables a very efficient simulation of complex
models consisting of more than a million finite elements.

A limitation of our method is that the volumetric compression re-
sistance is roughly approximated using compliant constraints. This
may not be a problem in typical interactive scenarios like games,
where computational performance and numerical robustness are
more important than physical accuracy, and where the commonly
used techniques like PBD and shape matching deliver less accu-
rate results at higher computational costs than our method. But
there are many important applications of FEM simulations, where
incompressibility is crucial, like character skinning for visual ef-
fects [MZS∗11, SDGK17]. Therefore, we are planning to combine
our method with more accurate volume conservation techniques
like the one of Irving et al. [ISF07].

Another limitation is that our method suffers from numerical
dissipation due to the implicit Euler integration with large time
steps. Therefore, we are planning to combine our approach with
the method of Dinev et al. [DLK18] to achieve energy conserva-
tion without sacrificing the stability of the implicit Euler scheme
and the computational speed that comes along with being able to
use large time steps.
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[XB16] XU H., BARBIČ J.: Pose-space subspace dynamics. ACM Trans-
actions on Graphics 35, 4 (2016). 3

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.


