IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2026

HYVE: Hybrid Vertex Encoder for Neural Distance
Fields

Stefan R. Jeske*, Jonathan Kleinf, Dominik Michels’ and Jan Bender*
*Visual Computing Institute, RWTH Aachen University Aachen, Germany
{jeske,bender} @cs.rwth-aachen.de
fComputational Sciences Group, KAUST Thuwal, Saudi Arabia
{jonathan.klein,dominik.michels } @kaust.edu.sa

hyve.physics-simulation.org

Abstract—Neural shape representation generally refers to rep-
resenting 3D geometry using neural networks, e.g., computing a
signed distance or occupancy value at a specific spatial position.
In this paper we present a neural-network architecture suitable
for accurate encoding of 3D shapes in a single forward pass. Our
architecture is based on a multi-scale hybrid system incorporating
graph-based and voxel-based components, as well as a continu-
ously differentiable decoder. The hybrid system includes a novel
way of voxelizing point-based features in neural networks by
projecting the point “feature-field” onto a grid. This projection
is insensitive to local point density, and we show that it can
be used to obtain smoother and more detailed reconstructions,
in particular when combined with oriented point clouds as
input. Our architecture also requires only a single forward pass,
instead of the latent-code optimization used in auto-decoder
methods. Furthermore, our network is trained to solve the well-
established eikonal equation and only requires knowledge of the
zero-level set for training and inference. We additionally propose
a modification to the aforementioned loss function for the case
that surface normals are not well defined, e.g., in the context of
non-watertight surfaces and non-manifold geometry. Overall, our
method consistently outperforms other baselines on the surface
reconstruction task across a wide variety of datasets, while being
more computationally efficient and requiring fewer parameters.

Index Terms—neural shape representation, neural distance
fields, eikonal equation, surface point-cloud, encoder-decoder

I. INTRODUCTION

Algorithms processing 3D geometric data have become
omnipresent and an integral part of many systems. These
include, for example, systems evaluating LiDAR sensor data,
game engines, 3D asset visualization, and physical simulation
used in engineering prototypes. In recent years, deep learn-
ing methods have been increasingly investigated to assist in
solving problems pertaining to 3D geometry.

In particular, neural shape representation is the task of
using neural networks to predict shape occupancies or surface
distances at arbitrary spatial coordinates. Recent works have
shown the ability to capture intricate details of 3D geometry
with ever-increasing fidelity [2]], [3]]. However, a significant

© 2026 IEEE. This is the authors’ version of the work. Personal use is
permitted. For any other purposes, permission must be obtained from the IEEE
by emailing pubs-permissions@ieee.org. The definitive version of record is
available at https://dx.doi.org/10.1109/tvcg.2026.3658870.

number of such works employ an auto-decoder-based archi-
tecture, which requires solving an optimization problem when
representing new geometry. Additionally, the auto-decoder still
has to be evaluated for all query points individually, which can
become very costly when evaluating these systems for high-
resolution reconstruction [4]. Finally, many of these methods
also require annotated and densely sampled ground truth data.
Meta-learning approaches, e.g., by Sitzmann et al. [5] and
Ousafi et al. [6], mitigate this problem, but also have to run
several iterations of gradient descent to specialize the network
for each new model before inference. Encoder-decoders can
instead encode the shape in a single forward pass [[7]-[9], and
typically employ computationally cheaper decoder networks
for evaluating query points. Nevertheless, these approaches
also often require elaborate data preprocessing pipelines, and
rely on labeled training data.

One of our core motivations for this work was to develop
a neural distance field based method that could be used for
signed distance computation of both rigid and deforming
shapes. Both are represented as points and the latter can
change often, requiring frequent recomputation of the distance
field. The deformations and dynamics of these shapes are
not explicitly learned by the network but instead implicitly
captured through geometric changes in the input shape. As a
result, we wanted to keep the decoder network computationally
efficient and, instead of latent optimization, we wanted to
develop an encoder capable of generating fast and accurate
latent codes for this decoder network.

Therefore, we propose an end-to-end learnable encoder-
decoder system that is not bound by previous data preprocess-
ing constraints and can be trained using only the zero-level
set, i.e., surface samples as labeled data, which are readily
available with a minimal amount of preprocessing. This kind
of training was previously introduced for auto-decoders [10],
and is enabled by using the eikonal equation as a training
target. Similar approaches have been attempted for encoders
by Atzmon et al. [[11], [[12]], using global encoders augmented
by latent-optimization at test-time. Yet to the best of our
knowledge, this kind of training is not well-established using
encoders without latent-optimization.

We summarize our contributions as follows:

o We derive an encoder architecture for representing 3D

https://hyve.physics-simulation.org/
https://dx.doi.org/10.1109/tvcg.2026.3658870

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2026

Input Points

Our Reconstruction

Fig. 1.

The reconstruction of a 3D scan of a beehive (left) and comparisons of input points and our respective reconstructions on the Objaverse dataset

(right) [T]). These examples show the capability of our neural distance field encoder to capture a large amount of detail in a single forward pass, using only

oriented point clouds as input.

shapes. The key component of this encoder is the hybrid
and interleaved execution of graph-level convolutions and
3D grid convolutions, as well as back-and-forth feature
projections. Our motivation for this hybrid approach is
the ability to accurately extract information from surface-
points and to efficiently process information in grid
(Euclidean) space.

o We introduce a novel way of voxelizing point-features
within network architectures, in which the pooling oper-
ator is replaced by projection of the entire “feature-field”
onto the grid. We show that this results in less-noisy and
more detailed surfaces, particularly when point normals
are used as additional input.

o We show that the accuracy of our architecture is intu-
itively controllable. Using a model with as little as 38K
parameters (including the decoder) can already achieve
excellent visual quality while being very fast to evaluate.
This makes it potentially useful for practical applications
within resource constrained computing platforms.

o We show the feasibility of training encoder-decoder net-
works on the eikonal equation for high-fidelity 3D shape
encoding. We also propose a simple yet effective mod-
ification to the loss function that can gracefully handle
poorly oriented surface normals in the training data, e.g.,
caused by non-manifold or non-watertight geometry.

In the evaluation, we show that we are able to reconstruct
better quality surfaces than other state-of-the-art methods.
Sample reconstructions of our method are shown in Figure [T}

II. RELATED WORK

Neural fields have become an integral part of research in
geometric deep learning, with hundreds of papers published
in recent years. A comprehensive overview is given by Xie
et al. [4]. One of the seminal works on deep learning for
unstructured data was the introduction of PointNet [13]]. From

today’s perspective, one of the major limitations of this
work is the difficulty of learning high-frequency functions
from low-dimensional data [[14], [I5]. The solution to the
problem is addressed by more recent approaches such as
NeRFs [16] and Fourier Feature Networks [17]. In essence,
the idea is to use positional embeddings, inspired by the
embeddings proposed by Vaswani et al. for transformer
networks. These embeddings compute a mapping from low
dimensional positional information (typically 2D or 3D) into
higher dimensional spaces using a specific number of Fourier
basis functions [I7]. A concurrent work shows that using
periodic activation functions inside an MLP also significantly
improves reconstruction quality and surface detail [10], the
single layer of which can again be seen as a kind of positional
encoding [4]]. Subsequent works improve the usage of posi-
tional encodings, e.g., by controlling the frequency through
a feedback loop or modulating the periodic activations
using a separate ReLU-activated MLP [20]. Other benefits
of using periodic activations are the ability to better learn
high-frequency mappings and the continuous differentiability
of these activations which is useful for evaluating network
derivatives as training targets [2]], [21]], [22].

There are many approaches for representing 3D shapes
using neural networks. For clarity of exposition we will
classify them into global-prior and local-prior based methods.
In addition, we will discuss overfitting-based methods, general
unsupervised shape encoding and neural scene representation.
Finally, we will differentiate our work from previous works.

a) Global methods: These do not make use of geometric
structures in the network itself, and can generally be used
irrespective of the discretized representation of the geometry.
Typically auto-decoder methods, in which the latent repre-
sentation is optimized during training and testing, are in this

category [2], [10]-{12], [20], [23]-[25]. The network can then

be queried using both the latent feature and a 3D coordinate

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2026

Convolution
(2x2 Kernel)

H

Feature values Graph convolution

ERCE PR 5
A

Connectivity

Projection

A

0o

(m, 2)

<]

2 3

(n, f)

Skip connection

Deconvolution Interpolation Fully-connected Layer
(2x2 Kernel) + Activation
\‘.‘(
g’
> > PN P (@ D, F Feature values
| @, 4,0

‘ G Grid values

Fig. 2. Convolution block that extracts features for a specific grid resolution. For clarity of illustration, a 2D rather than 3D grid is shown here. The input is
a set of vertices (with position / feature data) and edges (encoded as vertex indices). The + denotes element-wise vector addition. The block has two outputs,
feature values on the vertices and grid values for each grid cell. For all resolutions, a 2 X 2 convolution kernel is used. n: number of vertices. m: number of
edges. f: number of features (on the first level, the features are the spatial coordinate of each vertex).

to evaluate either a distance metric or an occupancy value.
Meta learning approaches also fall into this category. A few
iterations of gradient descent are used to specialize the weights
of a generalized network to a new shape [5], [[6]. An ap-
proach that has both discretization-dependent and independent
components was presented by Chen et al. [22], where the
discretization-dependent encoder is typically discarded during
inference. The amount of encoded details by these methods
is naturally bounded by the number of network weights. It
has also been shown that using pooling-based set encoders for
global conditioning frequently underfits the data [26].

b) Local methods: This group of methods typically
relies on using spatial structures, namely spatial grids or
point clouds, within the network itself for the extraction of
meaningful information [7]-[9], [27]-[37]. This has proven to
be a valuable approach since it is quite difficult for neural
networks to encode the high-frequency functions needed to
represent detailed fields in 3D. Previous works make efficient
use of discretized structures, e.g., point clouds, meshes or
voxel-grids as either inputs or outputs [13]], [[19]], [26], [38].
There are also exceptions using other discretized structures.
One such work uses triplanes instead of volumetric grids for
latent diffusion 3D generation tasks [39]], while another makes
use of grid “patches” representing local geometric features
that are merged through a global octree structure [40]. A
similar approach is used by Yariv et al. [41], which uses
patches of small volumetric grids covering the object surface.
For encoder-type methods, extracting local features has been
shown to generally improve network performance over global
ones.

More recently, kernel-based methods have evolved, com-
bining local features in spatial structures with an inference-
time sparse linear solve [34]-[36]. This allows local methods
to more strictly adhere to the input point cloud and scale
to larger inputs, at the cost of the linear solve in addition
to inferencing a ‘“convolutional-backbone” network. Finally,
Miiller et al. [42] propose an efficient way to use sparsity
through multiresolution hashing and demonstrate its potential
applicability for many of the local methods discussed here.

c) Unsupervised shape encoding: A number of recent
works have investigated the ability to train networks for shape
representation without direct supervision [3]], [1O]-[12], [25],

[43]-[47]. Most of these works focus on auto-decoders and
generally use optimization of latent codes during inference,
while others “overfit” small networks to specific shapes [43]].
Some also use unsigned distance fields, which enables train-
ing on non-manifold geometry but increases reconstruction
difficulty. While Tang et al. [31] also use sign-agnostic op-
timization of occupancy fields, they still require ground-truth
occupancy values for pre-training. Notably, Gropp et al. [25]]
introduced the formulation of the unsupervised eikonal loss,
which was further refined in the work of Sitzmann et al. [[10].
In our work we extend this loss to improve training on data
with inconsistent normal orientations.

d) Neural scene representations and diffusion-based 3D
generation: Apart from our focus on shape reconstruction,
recent neural scene representations reconstruct scenes from
posed multi-view images. Prominent approaches include neu-
ral implicit fields, often neural radiance fields (NeRFs) [16],
[48]-[50] and explicit primitive-based methods such as 3D
Gaussian splatting [51]-[53]]. The dominant objective is pho-
torealistic novel-view synthesis and interactive editing. While
geometric reconstruction is possible (e.g., implicit-surface
methods like Neuralangelo), most pipelines prioritize render-
ing quality and speed over watertight mesh extraction.

For generating 3D shapes or assets from text or images,
diffusion models have become the most common paradigm
[54]-[56]. Nevertheless, a recent autoregressive model has
shown competitive performance to the prevalent diffusion
models for shape generation [57].

e) Differentiation from Related Works: Many previous
works focus on either purely point-based or grid-based ap-
proaches with prior voxelization of input points. Early works
by Liu et al. [58]], [59] explore the use of hybrid point-voxel
architectures for object segmentation and classification and
show promising results in terms of accuracy and efficiency. In
the latter work, the authors particularly focus on the efficiency
aspect, presenting a method to find an optimal neural archi-
tecture to fit into a specific computational budget, again with
application to classification and segmentation of 3D scenes.
In contrast to previous work, we expand the capabilities of
hybrid approaches to the unsupervised 3D reconstruction task
and explore important design decisions. This includes details
on network construction and the often-overlooked point-to-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2026

Input point cloud Convolution blocks

F
> Resolution]6G (16, 16, f) »
| Y

0. 3)

Positional encoding

" @ Resolution 8 G (8, 8,) >

(n, f)
+ Fully-connected
+ Activation

. .
»Q Resolution 4 4,4, 1) g
G
HH ‘ (n, f) ‘ ,

LD ¢ Resolution 2 ch 220 .

Latent Grids Interpolations

6.0
Modulated Siren MLP
(s, 1)
(s,) ,
S
Query =71 T
positions - L - L - L
(s,) .3 ‘
- @ .3 | D
(s,)

Encoder

Decoder

Fig. 3. The encoder-decoder architecture of our network. The encoder computes vertex and volumetric features at multiple resolutions. By passing the feature
vector through the convolution blocks, neighbor information is collected. The implementation of the convolution blocks is shown in Figure P] After the last
block, the vertex feature vector is discarded. The + denotes element-wise vector addition. n: number of vertices. f: number of features. s: number of SDF

sample points.

grid feature transfer methods to maintain consistency between
grid and points.

As opposed to other works operating purely on point-based
data [8]], [9]], we have found the usage of a grid to be beneficial
both in terms of efficiency and accuracy. We also use graph-
convolutions at the point-level, extracting information at the
smallest possible scale, while Wang et al. [33]] use graph-
convolutions at the voxel-level, as a surrogate for sparse grid-
convolutions. Our formulation also retains information about
the local positioning of the points in the grid cells by not
voxelizing the input as is common with purely grid-based
approaches [7], [33]], [37]. Using these components we propose
and ablate an architecture that outperforms previous baselines
on a number of popular datasets and behaves predictably when
changing internal resolutions and latent sizes. We further pro-
pose to approximate a continuous feature field that adheres to
the input points by coupling point-centered and grid-centered
convolutions through feature projections. In contrast to recent
works [23], [34], [36]], we maintain this “continuity” without
any additional optimization or linear solves at inference-time.

III. ZERO-LEVEL-SET ENCODER

In the following we will present our encoder-decoder ar-
chitecture, including our convolution block for the encoder,
the decoder structure, the loss function along with our mod-
ification to support non-manifold geometries, and the overall
training process. We will also propose a new way to transfer
information from points to voxels within neural networks,
which is inspired by hybrid Eulerian-Lagrangian physical
simulation methods.

Our inputs are surface point-clouds of 3D objects, given
by a set of vertices V = {V € R3}. In order to use graph
convolutions, we create edges £ = {E € (N x N)} between
vertices, using e.g. k-nearest-neighbor (k-NN) or radius graph
connectivity. Within the network, the surface points store
abstract f-dimensional feature vectors (V/ € RY), rather
than 3D coordinates. This input representation also allows

for utilization of known point connectivity, e.g., for partially
meshed point cloud inputs or triangle soups.

A. Encoder-Decoder Architecture

a) Convolution block: We introduce our hybrid point-
grid convolution block in Figure 2] as the main building block
for our encoder. This is in contrast to many previous encoder
approaches that use either only point data [8]], [9], [13]], [24]]
or transfer point data to voxel grids for further processing
[7], [28]. To get the best of both, we instead interleave these
approaches. The intuition behind this idea is that the points
represent exactly the shape that should be encoded. In order to
reason about the surrounding space of the object, the features
are projected onto a grid and propagated by using shallow
convolutional layers. Then, to extract as much information as
possible about the shape, features are interpolated from the
grid to the input points and propagated between the nodes. The
usage of shallow 3D convolutions makes the network faster to
evaluate and use less intermediate storage.

First, a graph convolution operator (e.g., EdgeConv by
Wang et al. [[60]) transforms each vertex feature %24 using the
edge connectivity information. Next, we project the feature
vectors onto a grid. We do this using our projection method
described in Section [MI=B] A 2 x 2 x 2 convolution and
subsequent deconvolution with activation (where the feature
count is doubled for the latent space to retain information) is
then used to exchange information between neighboring cells.
We map the features back onto the vertices through tri-linear
interpolation using the 8 closest cell centers. Here, they are
combined with the original output of the graph convolution
before finally being processed through a single per-vertex
fully-connected layer. This output serves as the input of the
next convolution block, while the deconvolved grid values are
cached for later use.

We reason that the grid is suitable for distances in Eu-
clidean space, because the regular grid structure implicitly
assumes regular distances between cells and across convolu-
tion weights. This information can be used implicitly to more

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2026

TABLE I
METADATA ABOUT EACH OF OUR DATASETS. O DENOTES A ROUGHLY EVEN SPLIT OF MANIFOLD AND NON-MANIFOLD INSTANCES.

Trained Shapes Tested Shapes Trained Vertices Tested Vertices Manifold Noisy Sparse
Dragon 2,400 300 2,210 2,210 v X X
Armadillo 2,400 300 25,441 25,441 v X X
DFAUST 6,258 2,038 30,000 100,000 X v X
ScanNet 1,513 100 30,000 100,000 X v v
ThingilOk 2,000 200 4 - 4,995 282 - 4,890 v X v
ShapeNet v2 planes 1,632 421 434 - 14,879 457 - 13,888 X X X
Objaverse 2,000 200 50,000 100,000 o X X

accurately locate patches of points, projected to individual grid
cells, within the global structure. In turn, the graph convolution
can maximize information extraction from the input points
at a smaller scale. Connecting the points based on geometric
proximity and using the relative distance in graph convolu-
tions makes the information extraction more “fine-grained”
within local patches of points. Combining both multiple times
throughout the network makes the feature extraction time and
memory efficient.

b) Encoder: The overall encoder-decoder architecture is
shown in Figure [3] At the beginning of the encoder, the input
vertex positions) are transformed to per-vertex features V7
through positional encoding [17]] and a single linear layer with
ReLU activations. We feed the encoded positions through a
fixed number (typically 4-5) of our hybrid convolution blocks
(as described above) with increasing resolution (contrary to
the usual decreasing order of convolutional neural networks).
The concatenated outputs of the grids form the grid vector (the
vertex-level feature output of the last convolutional block can
be discarded). Values from each level of the grid vector are
extracted for each of the s SDF sample positions by tri-linear
interpolation. The results are summed element-wise to form
the final latent vector. We note that when latent vectors for
additional sample positions are computed, there is no need to
recompute the grid vector — it can be cached for future use.

¢) Decoder: The decoder receives the sample features
and sample positions as input, see Section and processes
them individually to compute a single signed distance value
for each sample. As architecture we make use of the proposed
decoder of Mehta et al. [20], which is an augmentation of the
SIREN layer proposed by Sitzmann et al. [[10]. The feature
vector is passed through a ReLU-activated MLP and the
sample position through a sine-activated MLP. The activations
of the ReLU MLP are then used to modulate the activations
of the sine MLP whose output is the final SDF value. In our
experiments we have found sine-based decoders to consis-
tently outperform ReLU-based decoders. In our testing, regular
SIREN layers often had instabilities, which was remedied by
using the modulation proposed by Mehta et al. [20].

The decoder is specifically chosen to be a smaller network,
since per our motivation, it should be efficient to evaluate for
a very large number of query points.

B. Point-to-Grid Transfer

Instead of the usual voxelization schemes applied in neural
networks, typically occupancy indicators, max pooling or aver-

age pooling, we propose to use the particle-in-cell interpolation
approach [61], [62]. This approach is commonly used in hybrid
physical simulation methods in order to transfer momentum
from particles to an enclosing grid. The concept of this transfer
is sketched in Figure[2] As opposed to commonly used pooling
operations, which only transfer features to the closest grid
node, our projection operation splits up the feature vector
across the eight closest grid nodes (for linear basis functions),
shown by the black arrows. This intuitively allows for the
reconstruction of a more accurate and consistent “feature-
field” by using a more meaningful geometric operation. The
feature vector f; at each grid point ¢ can be computed using

. f
fi= E wipmp.fp7 w; = E Wip, fi= j_,
1
P P

where f, € RS denotes the feature vector at vertex p. We
further assume unit masses m, = 1, meaning that each
vertex carries the same amount of “weight” as all others.
This quantity could theoretically be used to relatively weight
contributions according to local point density or variability, or
even to learn via, e.g., an attention-based mechanism. Lastly,

wz'p:N(xp;xi)N<yp;yi)N<zp;Zi>

denotes the interpolation weights, h the grid spacing and N
the linear interpolation function given by

1—|.%‘|,
0,

N(z) = 0<]z|<1
1< |z
Using this interpolation scheme instead of a pooling approach
allows for a smoother transition between graph-convolutions
and grid-convolutions, since both of them now approximate
the same continuous “feature-field”. We show in Section [V-C
that this improves reconstruction quality and reduces noise
in reconstructed surfaces when compared to max pooling,
especially when used in conjunction with input normals.
This projection scheme can also be interpreted as a kind
of “cross-attention” layer, that computes grid features using
a weighted sum of point features. Namely, the dot-product
between key and query is replaced by the geometric weights
w;p, computed from the interpolation function N. In contrast
to regular scaled dot product attention, one can directly obtain
grid features from point features, without “initializing” the grid
features in any way.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2026

C. Loss Function
An SDF can be defined as the unique solution ¢ of the
following eikonal equation:
[VO(x)| =1 for z € Q\ Qs C R?
®(x) =0 for x € Qg,
where (2 is the SDF domain and g is the surface of the
object. Related to the work of Smith et al. [63]], Sitzmann et

al. [10]] proposed the following loss function as a measure of
how well the eikonal equation is satisfied

Leikonal :/ |||VCI)(CC)” -]'| de +/
Q

Qs

+ /Qs (1—-(VP(x),n,)) der

(D

|®(x)|dx
2)

—1—/9\95 exp(—a|®(x)|) de.

Here ®(x) denotes the predicted signed distance value of our
neural network at position x € €2, and n, denotes the target
surface normal. The exponential in the last term is a weighting
function which “pushes” signed distance values away from
zero for points not on the surface. The original paper notes
that the value of the constant o should be chosen as o > 1,
however we have found that this is sometimes detrimental to
the desired effect, while choosing a lower value of o ~ 10
yielded the best results.

If the input surface is non-manifold or self-intersecting,
the inside and outside of the object’s volume are not well
defined and normal vectors do not necessarily point in the right
direction. For these cases we introduce a simple modification
that ignores the sign of the normal:

Lurface normal = /Q (1 - |<v¢’($), nz>|) dex. 3)
S

This change alone still allows for the result to be a valid
signed distance field. As we discuss in Section this
greatly improves performance on meshes with poor quality.
An example of multiple reconstructed SDF contours from a
model trained using all of these losses on the ShapeNet v2
planes dataset is shown in Figure [A-2] of the supplemental
document.

D. Training

A major advantage of our proposed architecture is that
ground truth SDF values for the input point cloud never have
to be computed. However, it does need sample points to train
the network. While these could theoretically be generated on
the fly, we sample a number of evaluation points in advance
to reduce the training overhead. In order to evaluate the
eikonal loss, only the sample positions and classification into
(1) surface and (2) non-surface samples are required. After
normalizing the input point clouds to the unit cube, the training
samples can be trivially generated.

We sample them in the following ways: (1) Surface points.
If the source is a triangle mesh rather than a point-cloud, its
surface is randomly sampled to create additional on-surface
samples. If it is a point-cloud, we either take all available

Increasing feature size

16 32 64
>
1x
S

)
N 0.56 s /0.30 MB 1.05 s/ 0.60 MB 1955/ 1.2 MB
w
k=]
=
St
on
on| 2X
=
R
w
I
3)
Pt
2 0.58 s/ 2.40 MB 1.08 s / 4.80 MB 199 5 /9.58 MB
=

4x

e
0.63's/19.17 MB 119 s/ 38.34 MB 233 5/76.67 MB
Fig. 4. From top to bottom, we increase the size of all latent grids,

while from left to right the size of the latent feature is increased. Below
each figure the inference time for 17M points (256° regular grid) and the
storage requirements for the latent grid is shown. The number of trainable
network parameters for feature sizes 16, 32, and 64 are 38K, 151K, and
604K, respectively, regardless of the specific grid sizes.

points or subsample to a reasonable number (typically 100k-
200k). (2a) Random points in the surrounding volume are
sampled as off-surface samples (no check is performed if
these points actually lie on the surface per chance since the
surface has zero measure as a volume). (2b) If surface normal
information is available, additional close-to-surface samples
are generated from random points on the surface by displacing
them along the surface normal. These additional samples are
not strictly needed but aid the training process, as the SDF is
most detailed close to the surface.

We train our encoder-decoder architecture end to end by
inputting batches of surface point-clouds and sample points
and computing output signed distance values. The set of
input points is always disjoint from the set of sample points.
Automatic differentiation is used to provide spatial derivatives
for the SDF gradients in Leikona-

IV. RESULTS

The evaluation of our method is split into three parts:
First, we compare different model sizes (i.e., number of
learned parameters and grid resolutions) with respect to the
amount of detail they can reconstruct. Second, we compare
our results to a number of recent encoder architectures to
highlight the advantages of our approach. Finally, we showcase
the improvement of using our proposed point-to-grid feature
projection over pooling-based voxelization. Details on general
model ablation can be found in Section [A] of the supplemental
document.

a) Datasets: To cover a variety of relevant scenarios, we
use seven different datasets, which are summarized in Table
The first two datasets consist of synthetic deformations of
two different simulated solid objects, a low-resolution dragon
and a high-resolution armadillo, which were computed using
the IPC simulation framework [65]. We additionally use the
raw point scan data of the dynamic FAUST (DFAUST) dataset

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2026

ConvONet IFNet

Input

ThingilOk DFaust Armadillo Dragon

ShapeNetV2

Fig. 5.

3DS2VS Ours Ground Truth

Comparing our method to related baselines. All methods use a variable number of input vertices for the ThingilOk and ShapeNet v2 datasets, while

POCO and 3DS2VS use a fixed number of input vertices. Please refer to the accompanying video for a more immersive comparison.

IFNet POCO 3DS2VS

Ours Ground Truth Ours high-res

Fig. 6. Comparing our method to related baselines on the indoor scene scan dataset ScanNet [64]. The results of ONet and ConvONet are omitted due to
poor quality. In the rightmost column, we additionally show the results obtained with our method utilizing double resolution grid sizes and oriented point
clouds. Best viewed under magnification in the digital document. Please refer to the accompanying video for a more immersive comparison.

[66], which consists of temporally deforming 3D shapes and
the ScanNet dataset [64] which contains a large variety of
scanned indoor scenes. Due to the origin of these datasets,
they contain varying amounts of holes and noise. To analyze
performance on variable vertex count as well as single-class
and multi-class encoding, we employ the ThingilOk dataset as
provided by Hu et al. [67]] as well as the “planes” category
of the ShapeNet v2 dataset [68]. Finally, we use the public-
domain models of the Objaverse dataset [I]] to test the ability
of our method to fit more complex shapes.

b) Baselines: We focus our comparison on other
encoder-based 3D shape representation methods, as they are
most similar to our work. To that end we implemented the
encoder components of Occupancy Networks (ONet) [24],
Convolutional Occupancy Networks (ConvONet) [28], Im-
plicit Feature Networks (IFNet) []Z]], Point Convolution for
Surface Reconstruction (POCO) [EI] and 3DShape2VecSet
(3DS2VS) [9]. To ensure a fair comparison, we use the
same training and testing data for all models as well as the
same modulated-SIREN decoder as discussed in Section [}
In addition, we use the same eikonal loss for all baselines,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2026

TABLE II
A SUMMARY OF THE COMPARISONS BETWEEN OUR ENCODER METHOD, ONET [24]], CONVONET [28]], IFNET [[7]], POCO [8]] AND 3DSHAPE2VECSET
[9]l. THE TABLE SHOWS THE L1 CHAMFER DISTANCE (CD-L1), L2 CHAMFER DISTANCE (CD-L2), NORMAL CONSISTENCY (NC),
INTERSECTION-OVER-UNION (IoU) AND F-SCORE (F). THE ARROW INDICATES WHETHER LOWER OR HIGHER VALUES ARE BETTER. THE BEST SCORE IS
MARKED USING A BOLD FONT. ALL VALUES ARE GIVEN SCALED TO -10~2. FOOTNOTES FOR SPECIFIC VALUES: | EVALUATED ON A SUBSET OF 200
RANDOM SHAPES DUE TO COMPUTATIONAL CONSTRAINTS. 2 BETTER METRIC BUT LESS DESIRABLE SOLUTION. 3 TRAINED AND EVALUATED USING A
FIXED NUMBER OF INPUT POINTS INSTEAD OF A VARIABLE NUMBER.

Metric Method Dragon Armadillo DFAUST ScanNet ThingilOk ShapeNet ShapeNet
v2 w/ Eq. v2 w/o
(%)) Eq.)
CDr1 4 mean ONet 5.581 4451 16.50 15.64 12.69 34.89 10.02
ConvONet 3.960 2.377 1.627 10.69 10.62 3.734 4.424
IFNet 2.681 1.259 1.015 1.559 2 3.888 2.180 2.724
POCO 2.981 2.594 3.480 ! 29.82 3.2353 3.843 3 43823
3DS2VS 2.823 1.291 1.181 7.722 6.196 3 23623 6.104 3
Ours 2.406 0.934 0.662 4.721 3.222 1.888 3.547
CDro) mean ONet 0.281 0.322 3.667 3.000 2.298 19.76 1.161
ConvONet 0.143 0.096 0.070 1.421 1.407 0.164 0.235
IFNet 0.056 0.048 0.101 0.022 2 0.135 0.035 0.055
POCO 0.067 0.067 02171 14.53 0.120 3 0.264 3 0.243 3
3DS2VS 0.062 0.012 0.049 1.520 0.596 3 0.050 3 0.600 3
Ours 0.049 0.005 0.004 0.679 0.112 0.027 0.092
NC 1 mean ONet 82.20 83.35 82.70 64.51 62.16 59.61 58.11
ConvONet 88.89 90.80 94.50 63.91 67.11 75.43 72.31
IFNet 95.63 95.87 96.52 83.36 2 92.27 82.34 81.61
POCO 92.39 89.06 84.93 ! 65.13 93.57 3 78.01 3 73.66 3
3DS2VS 92.64 94.12 95.33 74.22 79.74 3 83.35 3 70.11 3
Ours 96.33 98.22 97.41 82.27 94.26 86.75 78.67
IoUg.01 7 mean ONet 32.41 32.60 20.90 9.428 11.65 17.70 11.97
ConvONet 51.12 53.72 56.78 8.687 14.51 36.68 29.93
IFNet 74.20 76.84 76.25 52.26 50.71 55.10 39.69
POCO 63.80 37.25 39.52! 31.83 78.42 3 38.76 3 30.57 3
3DS2VS 66.79 71.32 72.96 35.49 38.66 3 52543 23.98 3
Ours 87.73 89.76 85.82 52.29 80.02 66.96 27.30
Fo.01 T mean ONet 48.04 49.56 23.44 16.15 16.59 18.29 18.85
ConvONet 68.44 74.68 82.04 13.54 21.30 56.87 45.84
IFNet 94.29 96.86 96.50 73.10 2 68.32 79.17 58.06
POCO 86.53 56.65 68.94 1 20.15 91.73 3 61.94 3 43523
3DS2VS 87.75 93.12 95.31 52.33 54.14 3 78.80 3 40323
Ours 99.47 99.82 97.89 71.01 93.86 93.23 40.44
TABLE 111

NUMBER OF PARAMETERS AND INFERENCE TIME OF THE DIFFERENT ENCODER BASELINES COMPARED IN TABLEml

ONet ConvONet IFNet POCO 3DS2VS Ours
Params 626K 1.1M 1.9M 12.8M 106M 747K
Time 245 s 0.7 s 153s 120s-330s 123s-20.1s 234s

which trains all models to compute signed distance fields. We
should note that while we use 3DS2VS for reconstruction,
it is more strongly targeted towards latent compression and
generation. Furthermore, the implementations of POCO and
3DS2VS were unfortunately not trivially adjustable to account
for a variable number of input points during training, which
is why they are evaluated using a fixed number of vertices
for our versions of the ThingilOK and ShapeNet v2 dataset.
Specifically, we sample the mean number of points for each
geometry across the respective datasets to train these models.
For all comparisons with the other methods, our model utilizes
five layers of latent grids with resolutions [4,8,16,32,64], a
latent size of 64, k = 8 for kNN connectivity and EdgeConv
[60] as point convolution operator. Please refer to Section [A]

in the supplemental document for details on model component
ablation.

c) Metrics: We use four different metrics in our eval-
vation: The widely used Chamfer distance (CD) in L1 and
L2 norm, normal consistency (NC), intersection-over-union
(IoU) and F-score. The Chamfer distance compares distances
between two point clouds A and B by finding the distance
to the closest point in B for each point in A and taking
the average of the L1 and L2 norms respectively. While the
values typically correlate strongly, the L2 Chamfer distance
penalizes outliers more strongly than the L1 Chamfer distance
and is therefore also reported for completeness. The normal
consistency instead compares orientations of normals by also
finding the closest point in B for each point in A, but instead

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2026

computing the cosine similarity of the normal vectors and
taking the average. The same is done for the reverse direction
and the results are summed together in the case of the Chamfer
distance, and averaged in the case of the normal consistency.

The IoU and F-score are computed using a “thick-shell”
surface representation of prediction and ground truth. For the
IoU, a voxel grid of 2563 is sampled and cells marked as 1
that are within a distance of 0.01 for both the prediction and
ground truth. The IoU is then the number of cells that are 1 in
both grids divided by the number of cells that are 1 in either
grid.

The F-score is computed in a similar manner, but uses
sampled points instead of a regular grid. In specific, we sample
100k points on the surface of the predicted and ground-
truth mesh respectively. Recall is computed as the number
of ground-truth points that are within 0.01 distance to the
predicted surface, while precision is the reverse, i.e., the
number of predicted points within 0.01 to the ground-truth
surface. The F-score is finally computed as usual.

For all tests we use 100-2000 individual reconstructions and
report mean values for all metrics.

d) Hardware and Framework: We train all models on
RTX 4000 Ada GPUs with 20GB of memory (they also fit on
an RTX 2080 Ti which increases the training times reported
below by ~ 30%). The training time for 400 epochs of our
model using a batch size of 16 on a single GPU is between
1-2 days. Most other models trained in similar time, apart
from IFNet, POCO, and 3DS2VS which required between 3-
16 days on a single GPU. We implemented all of the models
in this paper in the PyTorch framework [[69]. In addition,
we make use of PyTorch-Geometric for its 3D graph and set
learning capabilities [70]. All models were trained using the
Adam optimizer using a learning rate of 5e-4 and a batch size
of 16. We have also implemented the tri-linear interpolation
and point-to-grid projection using custom CUDA kernels. For
the former, this includes the double backward pass, which is
not supported by the native PyTorch interpolation function,
but necessary because we are using network gradients in our
training target. We limit the impact of the additional GPU
memory and compute-load of this double-backward pass, by
only differentiating the “small” decoder network twice, instead
of the whole encoder-decoder structure.

A. Model Size

The number of features per vertex and the resolutions of the
grids are tunable parameters of our architecture. Increasing
them enables the network to capture more surface details,
at the cost of increased storage requirements or computation
time. The results are shown in Figure @] We find that the
network behaves very intuitively and that results degrade
gracefully when the model size is reduced. Most notably,
the models in the first column with a latent size of 16 all
contain only 38K network parameters in total, of which the
decoder contains just 1.4K. High-frequency features vanish
first which makes small model sizes particularly appealing
for applications such as approximate collision tests, e.g., in
physical simulation, or deployment in resource constrained
environments, e.g., edge devices.

B. Comparison to Related Work

We now discuss comparisons to the other baseline shape
encoder methods on six datasets. They are shown for all
methods and datasets in the accompanying video, as well
as in Figure [5} in Figure [6] in Table and in Table
We can summarize that our method outperforms the other
baselines with respect to reconstructed surface detail in terms
of all metrics on nearly all datasets. There is however one
exception, where IFNet seemingly performs better on ScanNet.
On closer inspection, this is due to IFNet finding a less-
desirable minimum to the eikonal loss, by “wrapping” thin
sheets around the sparsely distributed geometry. While this
results in smaller loss values, this is clearly a less desirable
and less useful result. The visual comparison in Figure [and
the supplementary video confirm this observation.

A potential risk of using k-nearest neighbor connectivity
in our method is for fine detail to become “connected”.
However, out of all the baselines, only our method was able
to reconstruct the individual teeth of the cog wheel in the
ThingilOk dataset. In addition, some methods also struggle
with the hand of the of armadillo and the claws of the dragon,
while our method is able to reproduce them in better detail. We
attribute this to the effectiveness of our proposed architecture
and point-to-grid feature projection at extracting point-level
information and detail. This assumption is supported by the
results in Figure

From Table [[II] we can see, that our method also is able to
reconstruct a dense grid of approx. 17M points in only 2.35s,
while IFNet takes more than 6x longer. Only ConvONet is
faster on the reconstruction task, however at significantly lower
quality. We can conclude that our approach offers the highest
quality per parameter.

Our model consistently exhibits very low L2 Chamfer
distance on all datasets. This indicates that there are fewer
outliers, which means that the performance of our network
is more predictable for a given level of accuracy. This is
underlined by the comparison in Figure] which shows the
effect of changing latent size and grid resolutions. Very small
networks with our architecture can already have remarkable
representational abilities.

Finally, we introduced a simple modification to the loss
function (Equation [3), to be able to compute distance fields
for surfaces with inconsistent surface normals, which we tested
on the ShapeNet v2 dataset. Results without this modification
are shown in the grey column in Table We observed an
improvement on all metrics for five of the six tested methods,
with the exception of ONet [24f, which partially performed
better using the original loss. Although it should be noted
that the model did not seem to be able to deal well with the
changing number of vertices in the dataset, which is why we
interpret this result as an outlier.

C. Point-to-Grid Feature Projection

As described in Section [[II-B| we propose a physically-
inspired method to project particle features to the convo-
lutional grid. We find, that the feature projection generally
makes reconstructions smoother and details sharper, as can

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2026

Proj. Pool w/ n Proj. w/ n GT

Pool

Fig. 7. Visual comparison of our architecture using pooling-based and
projection-based point-to-grid transfers. Row two and three from the top use
point normals as extra input.

be seen in Figure []] We further compare our method using
projection with the well-established max pooling operator in
the top two rows for each metric in Table of the sup-
plemental document. Simply exchanging the pooling operator
for our projection already results in improved metrics for most
datasets. This exchange comes at identical network complexity
and memory requirements and nearly identical training and
inference speed.

In the case that the input point clouds contain information
about orientation, i.e., point normals, these can be used as ad-
ditional inputs to our network. To do so, they are concatenated
to the surface-point positions (cf. Figure [3). Results using
normals are shown in the bottom two rows for each metric in
Table [A-V]for the pooling-based and projection-based variants
of our network, respectively. Again, projection measurably
improves performance, outperforming almost all other variants
of our model across all datasets. The reconstructed surfaces in
Figure [7] again show improved surface smoothness and detail
sharpness. We also apply projection-based pooling using input
normals to the ScanNet dataset, using twice the resolution of
the baseline model, and show the results in the right column
of Figure [f] It is again possible to see improved surface detail
and smoothness. The reader is encouraged to view examples
from the other datasets in the second half of the supplementary
video.

Since projection maps a single point to eight grid cells in
contrast to the one to one mapping of pooling, we have at
times found it useful to apply dropout within the projection
operator. In practice we have found a larger dropout factor
to be necessary, when the shapes within a dataset are more

diverse. For the Objaverse dataset, we in fact only keep one
of the eight points during training, whereas for the dragon and
armadillo datasets we keep all eight.

V. CONCLUSION AND FUTURE WORK

We have shown that our hybrid approach of interleaving
graph and grid convolutions, including point-to-grid projection
and feature interpolation, is capable of outperforming other
state-of-the-art encoders on the surface reconstruction task
from point cloud inputs. We are able to do this using only
surface information and additional unlabeled samples in the
surrounding volume, which prevents us from having to solve
for a ground truth signed distance field in advance. We
have also introduced a physically-inspired projection operator
for particle-to-grid feature transfers in neural networks and
shown its effectiveness. Using this projection enables the
reconstruction of both more detailed and less noisy surfaces,
by improving “feature-field” consistency between point-based
and grid-based representations.

We believe that this work could be foundational for further
research regarding efficient models for 3D shape encoding.
For instance, exploring the sparsity of our latent grids could
enable the usage of ever higher latent resolutions, resulting
in accurate encoding of almost arbitrarily complex shapes.
Combined with small latent sizes, this could result in a more
scalable architecture, where the accuracy can be determined by
available compute capabilities. Another interesting direction
of further study is the use of the latent grid as a basis for
shape generation. Multiple latent representations could also
be blended, or operators could be learned on the latent codes
to achieve specific effects. Finally, in the spirit of using
traditional geometric techniques within neural architectures, it
could be explored whether projecting surface features to outer
grid cells using methods such as fast marching or Laplacian
smoothing could further improve predictions at distant points.

Please refer to the project website hyve.physics-
simulation.org for implementation details.

ACKNOWLEDGMENTS

This work has been partially supported by the German Re-
search Foundation (Deutsche Forschungsgemeinschaft, DFG)
project number 310833819 and the individual baseline funding
of the Computational Sciences Group within the KAUST
Visual Computing Center.

REFERENCES

[1] M. Deitke, D. Schwenk, J. Salvador, L. Weihs, O. Michel, E. VanderBilt,
L. Schmidt, K. Ehsani, A. Kembhavi, and A. Farhadi, “Objaverse: A
Universe of Annotated 3D Objects,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023.

[2] Y. Wang, L. Rahmann, and O. Sorkine-Hornung, “Geometry-consistent
neural shape representation with implicit displacement fields,” in The
Tenth International Conference on Learning Representations, 2022.

[3] X. Long, C. Lin, L. Liu, Y. Liu, P. Wang, C. Theobalt, T. Komura,
and W. Wang, “NeuralUDF: Learning Unsigned Distance Fields for
Multi-View Reconstruction of Surfaces With Arbitrary Topologies,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023.

[4] Y. Xie, T. Takikawa, S. Saito, O. Litany, S. Yan, N. Khan, F. Tombari,
J. Tompkin, V. Sitzmann, and S. Sridhar, “Neural Fields in Visual
Computing and Beyond,” Computer Graphics Forum, 2022.

https://hyve.physics-simulation.org/
https://hyve.physics-simulation.org/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2026

[5]

[6]

[7]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

V. Sitzmann, E. Chan, R. Tucker, N. Snavely, and G. Wetzstein,
“MetaSDF: Meta-Learning Signed Distance Functions,” in Advances in
Neural Information Processing Systems, 2020.

A. Ouasfi and A. Boukhayma, “Few ‘Zero Level Set’-Shot Learning
of Shape Signed Distance Functions in Feature Space,” in Computer
Vision — ECCV 2022, 2022.

J. Chibane, T. Alldieck, and G. Pons-Moll, “Implicit Functions in
Feature Space for 3D Shape Reconstruction and Completion,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020.

A. Boulch and R. Marlet, “POCO: Point Convolution for Surface Re-
construction,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

B. Zhang, J. Tang, M. NieBner, and P. Wonka, “3DShape2VecSet: A
3D Shape Representation for Neural Fields and Generative Diffusion
Models,” ACM Transactions on Graphics, Jul. 2023.

V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein,
“Implicit Neural Representations with Periodic Activation Functions,”
in Advances in Neural Information Processing Systems, 2020.

M. Atzmon and Y. Lipman, “SAL: Sign Agnostic Learning of Shapes
From Raw Data,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020.

——, “SALD: Sign Agnostic Learning with Derivatives,” in 9th Interna-
tional Conference on Learning Representations, ICLR 2021, Oct. 2020.
C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017.

Z.-Q. J. Xu, Y. Zhang, and Y. Xiao, “Training Behavior of Deep Neural
Network in Frequency Domain,” in Neural Information Processing,
2019.

N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht,
Y. Bengio, and A. Courville, “On the Spectral Bias of Neural Networks,”
in Proceedings of the 36th International Conference on Machine Learn-
ing, May 2019.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis,” in Computer Vision — ECCV 2020, 2020.

M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Ragha-
van, U. Singhal, R. Ramamoorthi, J. T. Barron, and R. Ng, “Fourier
Features Let Networks Learn High Frequency Functions in Low Dimen-
sional Domains,” in Proceedings of the 34th International Conference
on Neural Information Processing Systems, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017.

A. Hertz, O. Perel, R. Giryes, O. Sorkine-Hornung, and D. Cohen-Or,
“SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimiza-
tion,” in Advances in Neural Information Processing Systems, 2021.

I. Mehta, M. Gharbi, C. Barnes, E. Shechtman, R. Ramamoorthi,
and M. Chandraker, “Modulated Periodic Activations for Generalizable
Local Functional Representations,” in 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), Apr. 2021.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational Physics, Feb. 2019.

P. Y. Chen, J. Xiang, D. H. Cho, Y. Chang, G. A. Pershing, H. T.
Maia, M. M. Chiaramonte, K. T. Carlberg, and E. Grinspun, “CROM:
Continuous reduced-order modeling of PDEs using implicit neural
representations,” in The Eleventh International Conference on Learning
Representations, 2023.

J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2019.

L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger,
“Occupancy Networks: Learning 3D Reconstruction in Function Space,”
in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), Jun. 2019.

A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Implicit
Geometric Regularization for Learning Shapes,” in Proceedings of the
37th International Conference on Machine Learning, Nov. 2020.

D. Buterez, J. P. Janet, S. J. Kiddle, D. Oglic, and P. Li0, “Graph Neural
Networks with Adaptive Readouts,” Advances in Neural Information
Processing Systems, Dec. 2022.

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann, and
Y. Sheikh, “Neural volumes: Learning dynamic renderable volumes from
images,” ACM Transactions on Graphics, Jul. 2019.

S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger,
“Convolutional Occupancy Networks,” in Computer Vision — ECCV
2020, 2020.

R. Chabra, J. E. Lenssen, E. Ilg, T. Schmidt, J. Straub, S. Lovegrove,
and R. Newcombe, “Deep Local Shapes: Learning Local SDF Priors for
Detailed 3D Reconstruction,” in Computer Vision — ECCV 2020, 2020.
C. Jiang, A. Sud, A. Makadia, J. Huang, M. Niefiner, and T. Funkhouser,
“Local Implicit Grid Representations for 3D Scenes,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Jun.
2020.

J. Tang, J. Lei, D. Xu, F. Ma, K. Jia, and L. Zhang, “SA-ConvONet:
Sign-Agnostic Optimization of Convolutional Occupancy Networks,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021.

B. Zhang, M. Niessner, and P. Wonka, “3DILG: Irregular Latent Grids
for 3D Generative Modeling,” Advances in Neural Information Process-
ing Systems, Dec. 2022.

P-S. Wang, Y. Liu, and X. Tong, “Dual octree graph networks for
learning adaptive volumetric shape representations,” ACM Trans. Graph.,
Jul. 2022.

F. Williams, Z. Gojcic, S. Khamis, D. Zorin, J. Bruna, S. Fidler, and
O. Litany, “Neural Fields As Learnable Kernels for 3D Reconstruction,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022.

J. Huang, H.-X. Chen, and S.-M. Hu, “A Neural Galerkin Solver for
Accurate Surface Reconstruction,” ACM Trans. Graph., Nov. 2022.

J. Huang, Z. Gojcic, M. Atzmon, O. Litany, S. Fidler, and F. Williams,
“Neural Kernel Surface Reconstruction,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023.

X. Ren, J. Huang, X. Zeng, K. Museth, S. Fidler, and F. Williams,
“XCube: Large-Scale 3D Generative Modeling using Sparse Voxel
Hierarchies,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024.

T. Takikawa, J. Litalien, K. Yin, K. Kreis, C. Loop, D. Nowrouzezahrai,
A. Jacobson, M. McGuire, and S. Fidler, “Neural Geometric Level of
Detail: Real-time Rendering with Implicit 3D Shapes,” Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

A. Gupta, W. Xiong, Y. Nie, I. Jones, and B. Oguz, “3DGen: Triplane
Latent Diffusion for Textured Mesh Generation,” Mar. 2023.

G. Lin, L. Yang, C. Zhang, H. Pan, Y. Ping, G. Wei, T. Komura,
J. Keyser, and W. Wang, “Patch-Grid: An Efficient and Feature-
Preserving Neural Implicit Surface Representation,” Aug. 2023.

L. Yariv, O. Puny, O. Gafni, and Y. Lipman, “Mosaic-SDF for 3D
Generative Models,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024.

T. Miiller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM Trans. Graph.,
Jul. 2022.

B. Ma, Z. Han, Y.-S. Liu, and M. Zwicker, “Neural-Pull: Learning
Signed Distance Function from Point clouds by Learning to Pull Space
onto Surface,” in Proceedings of the 38th International Conference on
Machine Learning, Jul. 2021.

S. Peng, C. Jiang, Y. Liao, M. Niemeyer, M. Pollefeys, and A. Geiger,
“Shape As Points: A Differentiable Poisson Solver,” in Advances in
Neural Information Processing Systems, 2021.

J. Chibane, M. A. mir, and G. Pons-Moll, “Neural Unsigned Distance
Fields for Implicit Function Learning,” in Advances in Neural Informa-
tion Processing Systems, 2020.

C. Chen, Y.-S. Liu, and Z. Han, “NeuralTPS: Learning Signed Distance
Functions Without Priors From Single Sparse Point Clouds,” [EEE
Transactions on Pattern Analysis and Machine Intelligence, Jan. 2025.
S. Li, G. Gao, Y. Liu, M. Gu, and Y.-S. Liu, “Implicit Filtering
for Learning Neural Signed Distance Functions from 3D Point Clouds,”
in Computer Vision — ECCV 2024, 2025.

J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hed-
man, “Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023.

Z.Li, T. Miiller, A. Evans, R. H. Taylor, M. Unberath, M.-Y. Liu, and C.-
H. Lin, “Neuralangelo: High-Fidelity Neural Surface Reconstruction,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2026

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

(591

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

S. Fridovich-Keil, G. Meanti, F. R. Warburg, B. Recht, and A. Kanazawa,
“K-Planes: Explicit Radiance Fields in Space, Time, and Appearance,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023.

B. Kerbl, G. Kopanas, T. Leimkuehler, and G. Drettakis, “3D Gaussian
Splatting for Real-Time Radiance Field Rendering,” ACM Transactions
on Graphics, Jul. 2023.

G. Wu, T. Yi, J. Fang, L. Xie, X. Zhang, W. Wei, W. Liu, Q. Tian,
and X. Wang, “4D Gaussian Splatting for Real-Time Dynamic Scene
Rendering,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024.

Y. Jiang, C. Yu, T. Xie, X. Li, Y. Feng, H. Wang, M. Li, H. Lau, F. Gao,
Y. Yang, and C. Jiang, “VR-GS: A Physical Dynamics-Aware Interactive
Gaussian Splatting System in Virtual Reality,” in ACM SIGGRAPH 2024
Conference Papers, Jul. 2024.

Z. Wang, C. Lu, Y. Wang, F. Bao, C. LI, H. Su, and J. Zhu, “Pro-
lificDreamer: High-fidelity and diverse text-to-3D generation with vari-
ational score distillation,” in Advances in Neural Information Processing
Systems, 2023.

Y.-C. Cheng, H.-Y. Lee, S. Tuyakov, A. Schwing, and L. Gui, “SDFu-
sion: Multimodal 3D shape completion, reconstruction, and generation,”
in CVPR, 2023.

Z. Zhao et al., “Hunyuan3D 2.0: Scaling Diffusion Models for High
Resolution Textured 3D Assets Generation,” Feb. 2025.

S.-T. Wei, R.-H. Wang, C.-Z. Zhou, B. Chen, and P.-S. Wang, “OctGPT:
Octree-based Multiscale Autoregressive Models for 3D Shape Genera-
tion,” Apr. 2025.

Z. Liu, H. Tang, Y. Lin, and S. Han, “Point-Voxel CNN for Efficient 3D
Deep Learning,” in Advances in Neural Information Processing Systems,
2019.

Z. Liu, H. Tang, S. Zhao, K. Shao, and S. Han, “PVNAS: 3D Neural
Architecture Search With Point-Voxel Convolution,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Nov. 2022.

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic Graph CNN for Learning on Point Clouds,” ACM
Transactions on Graphics, Oct. 2019.

F. Harlow, “The particle-in-cell method for numerical solution of prob-
lems in fluid dynamics,” Tech. Rep., Mar. 1962.

C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin, “The affine
particle-in-cell method,” ACM Transactions on Graphics, Jul. 2015.

J. D. Smith, K. Azizzadenesheli, and Z. E. Ross, “EikoNet: Solving the
Eikonal Equation With Deep Neural Networks,” IEEE Transactions on
Geoscience and Remote Sensing, Dec. 2021.

A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Niessner, “ScanNet: Richly-Annotated 3D Reconstructions of Indoor
Scenes,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

M. Li, Z. Ferguson, T. Schneider, T. Langlois, D. Zorin, D. Panozzo,
C. Jiang, and D. M. Kaufman, “Incremental potential contact:
Intersection-and inversion-free, large-deformation dynamics,” ACM
Transactions on Graphics, Aug. 2020.

F. Bogo, J. Romero, G. Pons-Moll, and M. J. Black, “Dynamic FAUST:
Registering Human Bodies in Motion,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jul. 2017.

Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, and D. Panozzo,
“Tetrahedral meshing in the wild,” ACM Transactions on Graphics, Jul.
2018.

A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and
F. Yu, “ShapeNet: An information-rich 3D model repository,” Stanford
University — Princeton University — Toyota Technological Institute at
Chicago, Tech. Rep., 2015.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in Advances in Neural Information
Processing Systems, 2019.

M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

Kolb.

v

Stefan R. Jeske received his BSc and MSc de-
grees in Computational Engineering Science from
RWTH Aachen University. He is pursuing his PhD
degree in Computer Science under the supervision
of Prof. Jan Bender. His research interest lies in
physical simulation and deep-learning on particle-
based representations.

Jonathan Klein is a Research Scientist in the
Computational Sciences Group at KAUST, working
with Prof. Dominik L. Michels. His research is
focused on computational simulation, machine learn-
ing, procedural modeling & synthetic data genera-
tion, smart agriculture, and computational photogra-
phy. He completed his Ph.D. on Computational Non-
Line-of-Sight Imaging at the University of Bonn,
working with Prof. Matthias B. Hullin, and his
MSc and BSc degrees in Computer Science at the
University of Siegen, working with Prof. Andreas

Dominik L. Michels received the BSc degree in
computer science and physics from the University
of Bonn, the MSc degree in computer science, and
the PhD degree from the Faculty of Mathematics
and Natural Sciences. He is an associate profes-
sor of computer science and applied mathematics
with KAUST, and the principal investigator of the
KAUST Computational Sciences Group. Together
with his team he develops principled computational
methods for the accurate and efficient simulation
of natural phenomena solving practically relevant

problems in Scientific and Visual Computing. Previously, he joined Stanford
University heading the High Fidelity Algorithmics Group within the Max
Planck Center for Visual Computing and Communication. Prior to this, he
did postdoctoral studies in Computing and Mathematical Sciences with the
California Institute of Technology.

Jan Bender is professor of computer science and
leader of the Computer Animation Group at RWTH
Aachen University. He received his diploma, PhD
and habilitation in computer science from the Uni-
versity of Karlsruhe. His research interests include
the physically-based simulation of rigid body sys-
tems, deformable solids, and fluids, collision han-
dling, cutting, fracturing, and real-time simulation
methods.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2026

TABLE A-1
THE RESULTS OF COMPARING DIFFERENT DESIGN CHOICES WITHIN THE
STRUCTURE OF OUR NETWORK (SEE FIGUREQ). THE TABLE SHOWS THE
L1 CHAMFER DISTANCE, NORMAL CONSISTENCY,
INTERSECTION-OVER-UNION (IOU) AND F-SCORE. GNN REFERS TO
GRAPH-CONVOLUTIONS AND CNN REFERS TO GRID-CONVOLUTIONS.
THE CELL COLOR CODING IS DERIVED FROM THE MEAN VALUE,
DIFFERENT METRICS USE DIFFERENT COLOR MAPS. THE ARROW

TABLE A-II
ABLATION STUDY OF THE INFLUENCE OF THE GRID ORDER, GRAPH
CONVOLUTION AND THE NUMBER OF NEAREST NEIGHBORS ON THE
PERFORMANCE OF OUR METHOD. CD-L1 DENOTES THE L1 CHAMFER
DISTANCE, NC THE NORMAL CONSISTENCY, IOU THE
INTERSECTION-OVER-UNION AND F THE F-SCORE. THE BEST VALUES
ARE HIGHLIGHTED IN BOLD. ALL VALUES DENOTE THE MEAN.

INDICATES WHETHER LOWER OR HIGHER VALUES ARE BETTER. A GNN Res. kNN CD-L1J NC 1 10Uo.01 T+ Fo.or T
DARKER COLOR CORRESPONDS TO A BETTER VALUE.

PointConv ~ Decr. None 1.045 96.603 82.651 99.165

EdgeConv Decr. 2 0.994 97.423 85.719 99.613

Tnterpolation on Interpolation off EdgeConv Incr. 2 0.953 97.765 88.754 99.684

EdgeConv Incr. 4 0.947 97.807 89.197 99.724

GNN CNN on CNN off CNN on CNN off EdgeConv Incr. 8 0.942 97.938 89.542 99.771
on 4.637/ 4.819/

1.936 2.026
off 3.141/ 12.40/ 3.176/ 12.67/ TABLE A-III
0.736 1.270 0.774 1.388 COMPARISON OF THE L1 CHAMFER DISTANCE, NORMAL CONSISTENCY,

(a) Chamfer distance L1 | mean / std (-1072)

Interpolation on Interpolation off

GNN CNN on CNN off CNN on CNN off
on 85.75/ 85.54/
7.193 8.190
off 92.50/ 85.85/ 92.30/ 85.81/
4.472 5.997 4.683 5.969

(b) Normal Consistency + mean / std (-1072)

Interpolation on Interpolation off

GNN CNN on CNN off CNN on CNN off
on 34.21/ 38.89/
15.19 19.61
off 27.741 28.92/
10.30 11.07
(c) loUg.01 T mean / std (-1072)
Interpolation on Interpolation off
GNN CNN on CNN off CNN on CNN off
on 51.74/ 57.37/
21.45 25.49
off 35.51/ 36.00/
12.04 12.20

(d) Fo.o1 T mean/std (-1072)

APPENDIX

This section provides information on the various ablation
experiments that we conducted in the context of our work.

A. Design Ablation

To highlight the impact of different design choices within
our network architecture, we first conduct a number of ablation
studies. The first covers three decisions within our convolution
block in Figure 2} 1) using the nearest neighbor instead of
linear interpolation to map values from latent grid back to
the input points, 2) enabling/ disabling the graph convolu-
tions (GNN), and 3) enabling/ disabling the grid convolutions
(CNN).

The results for different combinations are reported in Ta-
ble [A-l The most impactful component is clearly using

INTERSECTION-OVER-UNION (IoU) AND F-SCORE (F) ACROSS DIFFERENT
NOISY PERTURBATIONS IN RANDOM DIRECTIONS OF THE INPUT POINTS.
ROWS INDICATE THE NOISE LEVEL USED DURING TRAINING AND
COLUMNS DURING TESTING. THE BEST VALUE FOR EACH METRIC IS
MARKED IN BOLD FONT.

Train \Test none Se-4 Se-3 le-2 Se-2
none 3349 3348 3357 3397 4.198
Se-4 3358 3358 3361 3403 4.262
Se-3 3381 3379 3397 3448 4268
le-2 3.403 3404 3415 3464 4345

(a) Chamfer Distance L1 | mean / std (-10~2)

Train \Test none Se-4 Se-3 le-2 Se-2

none 93.200 93.189 93.063 92702 81.880
Se-4 93.114 93.097 93.016 92.633 81.777
5e-3 93.001 93.017 92918 92.616 82.344
le-2 93.130 93.117 93.037 92.809 83.813

(b) Normal Consistency 1 mean / std (-102)

Train \Test none Se-4 Se-3 le-2 Se-2

none 77.000 76950 75272 71.615 36.144
Se-4 76.598 76.603 75.115 71.503 35.673
Se-3 76356 76.375 75261 72393 36.860
le-2 73.923 73934 73509 71.860 37.767

(c) loUg.o; T mean/std (-1072)

Train \Test none Se-4 5e-3 le-2 Se-2

none 91.725 91.743 91.480 90.537 48.793
Se-4 91.614 91.606 91.425 90.443 47.880
Se-3 91.459 91.469 91.244 90.532 49.494
le-2 91.254 91.252 91.110 90.451 50.569

(d) Fo.01 T mean/std (-1072)

the grid convolutions, which also contains the majority of
trainable weights. The next important decision is enabling the
graph convolution. Furthermore, interpolation seems to have
a greater impact on network performance when the graph
convolution is also enabled. This is because without the graph
convolution, the interpolated features are immediately pro-
jected back to the grid, eliminating most implicit information
gain. For maximal performance, all options should enabled.
Next, we investigate the impact of varying the number of

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2026

TABLE A-IV
COMPARISON OF THE L1 CHAMFER DISTANCE, NORMAL CONSISTENCY,
INTERSECTION-OVER-UNION (IoU) AND F-SCORE (F) ACROSS DIFFERENT
NOISY PERTURBATIONS IN THE DIRECTION OF VERTEX NORMALS OF THE
INPUT POINTS. ROWS INDICATE THE NOISE LEVEL USED DURING
TRAINING AND COLUMNS DURING TESTING. THE BEST VALUE FOR EACH
METRIC IS MARKED IN BOLD FONT.

Train \Test none 5e-4 5e-3 le-2 Se-2
none 3381 3381 3429 3534 4.684
Se-4 3370 3371 3410 3517 4.642
Se-3 3.365 3.365 3.415 3531 4.667
le-2 3417 3417 3452 3567 4731

(a) Chamfer Distance L1 | mean / std (-10~2)

Train \Test none Se-4 Se-3 le-2 Se-2

none 93.070 93.059 92770 91.850 77.978
Se-4 93.035 93.033 92.768 91.804 77.722
5e-3 93.254 93244 93.058 92.503 78.971
le-2 93.200 93213 93.165 92915 80.882

(b) Normal Consistency t mean / std (-10~2)

Train \Test none Se-4 Se-3 le-2 Se-2

none 74459 74396 71.118 63.869 19.128
Se-4 75429 75417 71846 64361 19.056
5e-3 75.375 75372 73537 68.036 19.557
le-2 72430 72527 72392 70457 20.812

(c) loUg.01 T mean /std (-1072)

Train \Test none Se-4 5e-3 le-2 Se-2

none 91.198 91.196 90369 86.334 25.295
Se-4 91.508 91.496 90.706 86.788 25.213
5e-3 91.518 91.512 90.996 88.918 25.550
le-2 91.138 91.144 90944 89.934 26.985

(d) Fo.01 T mean/std (-1072)

nearest neighbors (k) for connecting the input point cloud,
using point convolutions [13] instead of edge convolutions
[60], and finally reversing the resolution of latent grids. We
show the results in Table In the depicted parameter
sequence, the grid order has the single largest impact. This
suggests that coarse features are extracted earlier and fine
features later in the network. Using an increasing number
of k consistently improves both CD-L1 and NC. For all
experiments we use the settings corresponding to the best
result.

In addition to this, we investigate the impact of increasing
the number of nearest neighbors (k) in combination with
changing the point-to-grid interpolation scheme. The results
of this ablation are shown in Figure It becomes clear that
increasing the number of nearest neighbors (k) has a positive
impact on all metrics regardless of the transfer method used.
However, we also observe that our proposed projection method
appears to scale better with increasing k, and it outperforms
pooling-based point-to-grid transfer for all values of &k > 2.
For all of our experiments we otherwise use k = 8, as
increasing k further appears to result in diminishing returns.

B. Noise Ablation

We investigate our architecture’s sensitivity to noise by
training and testing using different noise levels. We add noise
by perturbing input vertices by a random amount drawn from
U(—o,0) in random direction (see Table or in normal
direction (see Table [A-IV). Here, o is the noise level shown
in the column labels and row labels of the respective tables.
Since the coordinates have been normalized to the unit box,
the maximum evaluated noise of 5e-2 corresponds to a shift
of 1/40 of the bounding box edge length. Our model remains
stable during training up to noise levels of 1e-2 both in normal
or random directions and even benefits from data augmentation
using noise in normal direction.

C. Point-to-Grid Feature Projection

In addition to the visual comparison in Figure [7, Table [A-]
shows the metrics comparing pooling- and projection-based
feature transfers across all datasets.

D. Contours of Volumetric Signed Distance Field

Despite mostly showing only the zero level-set of the
computed signed distance field, out network also produces
a reasonable volumetric signed distance field. We show this
briefly in Figure [A-2] where contours are generated at multiple
iso-values for the signed distance field.

E. Non-manifold Handling

Non-manifold meshes, mostly in the form of non-
watertightness or self-intersections appear in a number of
different datasets (Table [[). We show in Figure [A-3] using an
example from the Objaverse dataset, that our model is able to
deal with these self-intersections fairly well.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2026 15

CDy1) NC + IoUg.01 T Fo.o1 T
3.8 1 75
3.6 70
3.4 - 65
T T T T T T T T T T T
02 4 8 16 02 4 8 16 02 4 8 16
k-NN k-NN k-NN

=@ DPooling —l= Projection

Fig. A-1. Ablation study comparing pooling and our projection operator when using different numbers of nearest neighbors (k) to connect input points for the
graph convolution. Increasing k consistently results in improved metrics, where our proposed projection operator benefits more and consistently outperforms
pooling for k> 2. We compare using the L1 Chamfer distance, normal consistency, intersection-over-union (IoU) and F-score.

TABLE A-V
COMPARING OUR METHOD WITH POOLING-BASED AND PROJECTION-BASED POINT-TO-GRID TRANSFERS. OPTIONALLY, INPUT VERTEX NORMALS ARE
ALSO USED. WE EVALUATE THE L1 CHAMFER DISTANCE (CD-L1), NORMAL CONSISTENCY (NC), INTERSECTION-OVER-UNION (IoU) AND F-SCORE
(F). BOLD FONT MARKS THE BEST VALUE IN EACH METRIC AND DATASET. ALL VALUES ARE GIVEN SCALED TO -10~2.

Metric Method Dragon Armadillo DFAUST ScanNet ThingilOk ShapeNet Objaverse
v2

CDr1 { mean Pool w/o n 2.455 0.956 0.627 4.339 3.270 2.011 1.222
Proj. w/o n 2.406 0.934 0.662 4.721 3.222 1.888 1.363
Pool w/ n 2.486 0.934 0.700 4.156 3.446 1.118
Proj. w/ n 2.427 0.906 0.626 4.269 3.075 1.604

NC 1 mean Pool w/o n 96.25 97.86 97.65 82.98 93.65 86.11 92.95
Proj. w/o n 96.33 98.22 97.41 82.27 94.26 86.75 92.00
Pool w/ n 96.37 98.27 97.61 85.15 95.53 94.87
Proj. w/ n 96.53 98.47 97.83 85.33 95.89 95.25

IoUg.01 T mean Pool w/o n 84.84 88.63 88.40 54.88 78.85 61.24 65.75
Proj. w/o n 87.73 89.76 85.82 52.29 80.02 66.96 61.49
Pool w/ n 80.15 89.01 84.76 57.33 61.74 66.79
Proj. w/ n 87.30 92.00 88.76 56.50 87.58 86.53

Fo.01 7T mean Pool w/o n 98.97 99.82 98.17 73.68 92.45 88.53 89.35
Proj. w/o n 99.47 99.82 97.89 71.01 93.86 93.23 85.28
Pool w/ n 98.69 99.87 97.53 75.84 81.09 81.02
Proj. w/ n 99.71 99.89 97.88 74.72 97.47 93.45

Fig. A-3. Our model is able to resolve a large number of self-intersections
in the Objaverse dataset [I] without special treatment, as long as surface
normals have consistent orientation. Left shows our reconstruction without
self-intersections, while the right shows the ground-truth shape containing
self-intersections. The transparent renders show a closeup of the marked red
Fig. A-2. Visualization of various level-sets using our method on an instance region to make self-intersections visible.

of the planes category from the ShapeNet v2 dataset [68].

	Introduction
	Related Work
	Zero-Level-Set Encoder
	Encoder-Decoder Architecture
	Point-to-Grid Transfer
	Loss Function
	Training

	Results
	Model Size
	Comparison to Related Work
	Point-to-Grid Feature Projection

	Conclusion and Future Work
	References
	Biographies
	Stefan R. Jeske
	Jonathan Klein
	Dominik L. Michels
	Jan Bender

	Appendix
	Design Ablation
	Noise Ablation
	Point-to-Grid Feature Projection
	Contours of Volumetric Signed Distance Field
	Non-manifold Handling

