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Abstract—Neural shape representation generally refers to rep-
resenting 3D geometry using neural networks, e.g., computing a
signed distance or occupancy value at a specific spatial position.
In this paper we present a neural-network architecture suitable
for accurate encoding of 3D shapes in a single forward pass. Our
architecture is based on a multi-scale hybrid system incorporating
graph-based and voxel-based components, as well as a continu-
ously differentiable decoder. The hybrid system includes a novel
way of voxelizing point-based features in neural networks by
projecting the point “feature-field” onto a grid. This projection
is insensitive to local point density, and we show that it can
be used to obtain smoother and more detailed reconstructions,
in particular when combined with oriented point clouds as
input. Our architecture also requires only a single forward pass,
instead of the latent-code optimization used in auto-decoder
methods. Furthermore, our network is trained to solve the well-
established eikonal equation and only requires knowledge of the
zero-level set for training and inference. We additionally propose
a modification to the aforementioned loss function for the case
that surface normals are not well defined, e.g., in the context of
non-watertight surfaces and non-manifold geometry. Overall, our
method consistently outperforms other baselines on the surface
reconstruction task across a wide variety of datasets, while being
more computationally efficient and requiring fewer parameters.

Index Terms—neural shape representation, neural distance
fields, eikonal equation, surface point-cloud, encoder-decoder

I. INTRODUCTION

Algorithms processing 3D geometric data have become

omnipresent and an integral part of many systems. These

include, for example, systems evaluating LiDAR sensor data,

game engines, 3D asset visualization, and physical simulation

used in engineering prototypes. In recent years, deep learn-

ing methods have been increasingly investigated to assist in

solving problems pertaining to 3D geometry.

In particular, neural shape representation is the task of

using neural networks to predict shape occupancies or surface

distances at arbitrary spatial coordinates. Recent works have

shown the ability to capture intricate details of 3D geometry

with ever-increasing fidelity [2], [3]. However, a significant
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number of such works employ an auto-decoder-based archi-

tecture, which requires solving an optimization problem when

representing new geometry. Additionally, the auto-decoder still

has to be evaluated for all query points individually, which can

become very costly when evaluating these systems for high-

resolution reconstruction [4]. Finally, many of these methods

also require annotated and densely sampled ground truth data.

Meta-learning approaches, e.g., by Sitzmann et al. [5] and

Ousafi et al. [6], mitigate this problem, but also have to run

several iterations of gradient descent to specialize the network

for each new model before inference. Encoder-decoders can

instead encode the shape in a single forward pass [7]–[9], and

typically employ computationally cheaper decoder networks

for evaluating query points. Nevertheless, these approaches

also often require elaborate data preprocessing pipelines, and

rely on labeled training data.

One of our core motivations for this work was to develop

a neural distance field based method that could be used for

signed distance computation of both rigid and deforming

shapes. Both are represented as points and the latter can

change often, requiring frequent recomputation of the distance

field. The deformations and dynamics of these shapes are

not explicitly learned by the network but instead implicitly

captured through geometric changes in the input shape. As a

result, we wanted to keep the decoder network computationally

efficient and, instead of latent optimization, we wanted to

develop an encoder capable of generating fast and accurate

latent codes for this decoder network.

Therefore, we propose an end-to-end learnable encoder-

decoder system that is not bound by previous data preprocess-

ing constraints and can be trained using only the zero-level

set, i.e., surface samples as labeled data, which are readily

available with a minimal amount of preprocessing. This kind

of training was previously introduced for auto-decoders [10],

and is enabled by using the eikonal equation as a training

target. Similar approaches have been attempted for encoders

by Atzmon et al. [11], [12], using global encoders augmented

by latent-optimization at test-time. Yet to the best of our

knowledge, this kind of training is not well-established using

encoders without latent-optimization.

We summarize our contributions as follows:

• We derive an encoder architecture for representing 3D

https://hyve.physics-simulation.org/
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Fig. 1. The reconstruction of a 3D scan of a beehive (left) and comparisons of input points and our respective reconstructions on the Objaverse dataset
(right) [1]. These examples show the capability of our neural distance field encoder to capture a large amount of detail in a single forward pass, using only
oriented point clouds as input.

shapes. The key component of this encoder is the hybrid

and interleaved execution of graph-level convolutions and

3D grid convolutions, as well as back-and-forth feature

projections. Our motivation for this hybrid approach is

the ability to accurately extract information from surface-

points and to efficiently process information in grid

(Euclidean) space.

• We introduce a novel way of voxelizing point-features

within network architectures, in which the pooling oper-

ator is replaced by projection of the entire “feature-field”

onto the grid. We show that this results in less-noisy and

more detailed surfaces, particularly when point normals

are used as additional input.

• We show that the accuracy of our architecture is intu-

itively controllable. Using a model with as little as 38K

parameters (including the decoder) can already achieve

excellent visual quality while being very fast to evaluate.

This makes it potentially useful for practical applications

within resource constrained computing platforms.

• We show the feasibility of training encoder-decoder net-

works on the eikonal equation for high-fidelity 3D shape

encoding. We also propose a simple yet effective mod-

ification to the loss function that can gracefully handle

poorly oriented surface normals in the training data, e.g.,

caused by non-manifold or non-watertight geometry.

In the evaluation, we show that we are able to reconstruct

better quality surfaces than other state-of-the-art methods.

Sample reconstructions of our method are shown in Figure 1.

II. RELATED WORK

Neural fields have become an integral part of research in

geometric deep learning, with hundreds of papers published

in recent years. A comprehensive overview is given by Xie

et al. [4]. One of the seminal works on deep learning for

unstructured data was the introduction of PointNet [13]. From

today’s perspective, one of the major limitations of this

work is the difficulty of learning high-frequency functions

from low-dimensional data [14], [15]. The solution to the

problem is addressed by more recent approaches such as

NeRFs [16] and Fourier Feature Networks [17]. In essence,

the idea is to use positional embeddings, inspired by the

embeddings proposed by Vaswani et al. [18] for transformer

networks. These embeddings compute a mapping from low

dimensional positional information (typically 2D or 3D) into

higher dimensional spaces using a specific number of Fourier

basis functions [17]. A concurrent work shows that using

periodic activation functions inside an MLP also significantly

improves reconstruction quality and surface detail [10], the

single layer of which can again be seen as a kind of positional

encoding [4]. Subsequent works improve the usage of posi-

tional encodings, e.g., by controlling the frequency through

a feedback loop [19] or modulating the periodic activations

using a separate ReLU-activated MLP [20]. Other benefits

of using periodic activations are the ability to better learn

high-frequency mappings and the continuous differentiability

of these activations which is useful for evaluating network

derivatives as training targets [2], [21], [22].

There are many approaches for representing 3D shapes

using neural networks. For clarity of exposition we will

classify them into global-prior and local-prior based methods.

In addition, we will discuss overfitting-based methods, general

unsupervised shape encoding and neural scene representation.

Finally, we will differentiate our work from previous works.

a) Global methods: These do not make use of geometric

structures in the network itself, and can generally be used

irrespective of the discretized representation of the geometry.

Typically auto-decoder methods, in which the latent repre-

sentation is optimized during training and testing, are in this

category [2], [10]–[12], [20], [23]–[25]. The network can then

be queried using both the latent feature and a 3D coordinate
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Fig. 2. Convolution block that extracts features for a specific grid resolution. For clarity of illustration, a 2D rather than 3D grid is shown here. The input is
a set of vertices (with position / feature data) and edges (encoded as vertex indices). The + denotes element-wise vector addition. The block has two outputs,
feature values on the vertices and grid values for each grid cell. For all resolutions, a 2× 2 convolution kernel is used. n: number of vertices. m: number of
edges. f : number of features (on the first level, the features are the spatial coordinate of each vertex).

to evaluate either a distance metric or an occupancy value.

Meta learning approaches also fall into this category. A few

iterations of gradient descent are used to specialize the weights

of a generalized network to a new shape [5], [6]. An ap-

proach that has both discretization-dependent and independent

components was presented by Chen et al. [22], where the

discretization-dependent encoder is typically discarded during

inference. The amount of encoded details by these methods

is naturally bounded by the number of network weights. It

has also been shown that using pooling-based set encoders for

global conditioning frequently underfits the data [26].

b) Local methods: This group of methods typically

relies on using spatial structures, namely spatial grids or

point clouds, within the network itself for the extraction of

meaningful information [7]–[9], [27]–[37]. This has proven to

be a valuable approach since it is quite difficult for neural

networks to encode the high-frequency functions needed to

represent detailed fields in 3D. Previous works make efficient

use of discretized structures, e.g., point clouds, meshes or

voxel-grids as either inputs or outputs [13], [19], [26], [38].

There are also exceptions using other discretized structures.

One such work uses triplanes instead of volumetric grids for

latent diffusion 3D generation tasks [39], while another makes

use of grid “patches” representing local geometric features

that are merged through a global octree structure [40]. A

similar approach is used by Yariv et al. [41], which uses

patches of small volumetric grids covering the object surface.

For encoder-type methods, extracting local features has been

shown to generally improve network performance over global

ones.

More recently, kernel-based methods have evolved, com-

bining local features in spatial structures with an inference-

time sparse linear solve [34]–[36]. This allows local methods

to more strictly adhere to the input point cloud and scale

to larger inputs, at the cost of the linear solve in addition

to inferencing a “convolutional-backbone” network. Finally,

Müller et al. [42] propose an efficient way to use sparsity

through multiresolution hashing and demonstrate its potential

applicability for many of the local methods discussed here.

c) Unsupervised shape encoding: A number of recent

works have investigated the ability to train networks for shape

representation without direct supervision [3], [10]–[12], [25],

[43]–[47]. Most of these works focus on auto-decoders and

generally use optimization of latent codes during inference,

while others “overfit” small networks to specific shapes [43].

Some also use unsigned distance fields, which enables train-

ing on non-manifold geometry but increases reconstruction

difficulty. While Tang et al. [31] also use sign-agnostic op-

timization of occupancy fields, they still require ground-truth

occupancy values for pre-training. Notably, Gropp et al. [25]

introduced the formulation of the unsupervised eikonal loss,

which was further refined in the work of Sitzmann et al. [10].

In our work we extend this loss to improve training on data

with inconsistent normal orientations.

d) Neural scene representations and diffusion-based 3D

generation: Apart from our focus on shape reconstruction,

recent neural scene representations reconstruct scenes from

posed multi-view images. Prominent approaches include neu-

ral implicit fields, often neural radiance fields (NeRFs) [16],

[48]–[50] and explicit primitive-based methods such as 3D

Gaussian splatting [51]–[53]. The dominant objective is pho-

torealistic novel-view synthesis and interactive editing. While

geometric reconstruction is possible (e.g., implicit-surface

methods like Neuralangelo), most pipelines prioritize render-

ing quality and speed over watertight mesh extraction.

For generating 3D shapes or assets from text or images,

diffusion models have become the most common paradigm

[54]–[56]. Nevertheless, a recent autoregressive model has

shown competitive performance to the prevalent diffusion

models for shape generation [57].

e) Differentiation from Related Works: Many previous

works focus on either purely point-based or grid-based ap-

proaches with prior voxelization of input points. Early works

by Liu et al. [58], [59] explore the use of hybrid point-voxel

architectures for object segmentation and classification and

show promising results in terms of accuracy and efficiency. In

the latter work, the authors particularly focus on the efficiency

aspect, presenting a method to find an optimal neural archi-

tecture to fit into a specific computational budget, again with

application to classification and segmentation of 3D scenes.

In contrast to previous work, we expand the capabilities of

hybrid approaches to the unsupervised 3D reconstruction task

and explore important design decisions. This includes details

on network construction and the often-overlooked point-to-
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Fig. 3. The encoder-decoder architecture of our network. The encoder computes vertex and volumetric features at multiple resolutions. By passing the feature
vector through the convolution blocks, neighbor information is collected. The implementation of the convolution blocks is shown in Figure 2. After the last
block, the vertex feature vector is discarded. The + denotes element-wise vector addition. n: number of vertices. f : number of features. s: number of SDF
sample points.

grid feature transfer methods to maintain consistency between

grid and points.

As opposed to other works operating purely on point-based

data [8], [9], we have found the usage of a grid to be beneficial

both in terms of efficiency and accuracy. We also use graph-

convolutions at the point-level, extracting information at the

smallest possible scale, while Wang et al. [33] use graph-

convolutions at the voxel-level, as a surrogate for sparse grid-

convolutions. Our formulation also retains information about

the local positioning of the points in the grid cells by not

voxelizing the input as is common with purely grid-based

approaches [7], [33], [37]. Using these components we propose

and ablate an architecture that outperforms previous baselines

on a number of popular datasets and behaves predictably when

changing internal resolutions and latent sizes. We further pro-

pose to approximate a continuous feature field that adheres to

the input points by coupling point-centered and grid-centered

convolutions through feature projections. In contrast to recent

works [23], [34], [36], we maintain this “continuity” without

any additional optimization or linear solves at inference-time.

III. ZERO-LEVEL-SET ENCODER

In the following we will present our encoder-decoder ar-

chitecture, including our convolution block for the encoder,

the decoder structure, the loss function along with our mod-

ification to support non-manifold geometries, and the overall

training process. We will also propose a new way to transfer

information from points to voxels within neural networks,

which is inspired by hybrid Eulerian-Lagrangian physical

simulation methods.

Our inputs are surface point-clouds of 3D objects, given

by a set of vertices V =
{

V ∈ R
3
}

. In order to use graph

convolutions, we create edges E = {E ∈ (N× N)} between

vertices, using e.g. k-nearest-neighbor (k-NN) or radius graph

connectivity. Within the network, the surface points store

abstract f -dimensional feature vectors (V f ∈ R
f ), rather

than 3D coordinates. This input representation also allows

for utilization of known point connectivity, e.g., for partially

meshed point cloud inputs or triangle soups.

A. Encoder-Decoder Architecture

a) Convolution block: We introduce our hybrid point-

grid convolution block in Figure 2 as the main building block

for our encoder. This is in contrast to many previous encoder

approaches that use either only point data [8], [9], [13], [24]

or transfer point data to voxel grids for further processing

[7], [28]. To get the best of both, we instead interleave these

approaches. The intuition behind this idea is that the points

represent exactly the shape that should be encoded. In order to

reason about the surrounding space of the object, the features

are projected onto a grid and propagated by using shallow

convolutional layers. Then, to extract as much information as

possible about the shape, features are interpolated from the

grid to the input points and propagated between the nodes. The

usage of shallow 3D convolutions makes the network faster to

evaluate and use less intermediate storage.

First, a graph convolution operator (e.g., EdgeConv by

Wang et al. [60]) transforms each vertex feature V f using the

edge connectivity information. Next, we project the feature

vectors onto a grid. We do this using our projection method

described in Section III-B. A 2 × 2 × 2 convolution and

subsequent deconvolution with activation (where the feature

count is doubled for the latent space to retain information) is

then used to exchange information between neighboring cells.

We map the features back onto the vertices through tri-linear

interpolation using the 8 closest cell centers. Here, they are

combined with the original output of the graph convolution

before finally being processed through a single per-vertex

fully-connected layer. This output serves as the input of the

next convolution block, while the deconvolved grid values are

cached for later use.

We reason that the grid is suitable for distances in Eu-

clidean space, because the regular grid structure implicitly

assumes regular distances between cells and across convolu-

tion weights. This information can be used implicitly to more
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TABLE I
METADATA ABOUT EACH OF OUR DATASETS. O DENOTES A ROUGHLY EVEN SPLIT OF MANIFOLD AND NON-MANIFOLD INSTANCES.

Trained Shapes Tested Shapes Trained Vertices Tested Vertices Manifold Noisy Sparse

Dragon 2,400 300 2,210 2,210 ✓ ✗ ✗

Armadillo 2,400 300 25,441 25,441 ✓ ✗ ✗

DFAUST 6,258 2,038 30,000 100,000 ✗ ✓ ✗

ScanNet 1,513 100 30,000 100,000 ✗ ✓ ✓

Thingi10k 2,000 200 4 - 4,995 282 - 4,890 ✓ ✗ ✓

ShapeNet v2 planes 1,632 421 434 - 14,879 457 - 13,888 ✗ ✗ ✗

Objaverse 2,000 200 50,000 100,000 O ✗ ✗

accurately locate patches of points, projected to individual grid

cells, within the global structure. In turn, the graph convolution

can maximize information extraction from the input points

at a smaller scale. Connecting the points based on geometric

proximity and using the relative distance in graph convolu-

tions makes the information extraction more “fine-grained”

within local patches of points. Combining both multiple times

throughout the network makes the feature extraction time and

memory efficient.
b) Encoder: The overall encoder-decoder architecture is

shown in Figure 3. At the beginning of the encoder, the input

vertex positions V are transformed to per-vertex features V f

through positional encoding [17] and a single linear layer with

ReLU activations. We feed the encoded positions through a

fixed number (typically 4-5) of our hybrid convolution blocks

(as described above) with increasing resolution (contrary to

the usual decreasing order of convolutional neural networks).

The concatenated outputs of the grids form the grid vector (the

vertex-level feature output of the last convolutional block can

be discarded). Values from each level of the grid vector are

extracted for each of the s SDF sample positions by tri-linear

interpolation. The results are summed element-wise to form

the final latent vector. We note that when latent vectors for

additional sample positions are computed, there is no need to

recompute the grid vector — it can be cached for future use.
c) Decoder: The decoder receives the sample features

and sample positions as input, see Section III-D, and processes

them individually to compute a single signed distance value

for each sample. As architecture we make use of the proposed

decoder of Mehta et al. [20], which is an augmentation of the

SIREN layer proposed by Sitzmann et al. [10]. The feature

vector is passed through a ReLU-activated MLP and the

sample position through a sine-activated MLP. The activations

of the ReLU MLP are then used to modulate the activations

of the sine MLP whose output is the final SDF value. In our

experiments we have found sine-based decoders to consis-

tently outperform ReLU-based decoders. In our testing, regular

SIREN layers often had instabilities, which was remedied by

using the modulation proposed by Mehta et al. [20].

The decoder is specifically chosen to be a smaller network,

since per our motivation, it should be efficient to evaluate for

a very large number of query points.

B. Point-to-Grid Transfer

Instead of the usual voxelization schemes applied in neural

networks, typically occupancy indicators, max pooling or aver-

age pooling, we propose to use the particle-in-cell interpolation

approach [61], [62]. This approach is commonly used in hybrid

physical simulation methods in order to transfer momentum

from particles to an enclosing grid. The concept of this transfer

is sketched in Figure 2. As opposed to commonly used pooling

operations, which only transfer features to the closest grid

node, our projection operation splits up the feature vector

across the eight closest grid nodes (for linear basis functions),

shown by the black arrows. This intuitively allows for the

reconstruction of a more accurate and consistent “feature-

field” by using a more meaningful geometric operation. The

feature vector fi at each grid point i can be computed using

f̂i =
∑

p

wipmpfp, wi =
∑

p

wip, fi =
f̂i

wi

,

where fp ∈ R
f denotes the feature vector at vertex p. We

further assume unit masses mp = 1, meaning that each

vertex carries the same amount of “weight” as all others.

This quantity could theoretically be used to relatively weight

contributions according to local point density or variability, or

even to learn via, e.g., an attention-based mechanism. Lastly,

wip = N

(

xp − xi

h

)

N

(

yp − yi
h

)

N

(

zp − zi
h

)

denotes the interpolation weights, h the grid spacing and N
the linear interpolation function given by

N(x) =

{

1− |x|, 0 ≤ |x| < 1

0, 1 ≤ |x|.

Using this interpolation scheme instead of a pooling approach

allows for a smoother transition between graph-convolutions

and grid-convolutions, since both of them now approximate

the same continuous “feature-field”. We show in Section IV-C

that this improves reconstruction quality and reduces noise

in reconstructed surfaces when compared to max pooling,

especially when used in conjunction with input normals.

This projection scheme can also be interpreted as a kind

of “cross-attention” layer, that computes grid features using

a weighted sum of point features. Namely, the dot-product

between key and query is replaced by the geometric weights

wip computed from the interpolation function N . In contrast

to regular scaled dot product attention, one can directly obtain

grid features from point features, without “initializing” the grid

features in any way.
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C. Loss Function

An SDF can be defined as the unique solution Φ of the

following eikonal equation:

∥∇Φ(x)∥ = 1 for x ∈ Ω \ ΩS ⊂ R
3

Φ(x) = 0 for x ∈ ΩS ,
(1)

where Ω is the SDF domain and ΩS is the surface of the

object. Related to the work of Smith et al. [63], Sitzmann et

al. [10] proposed the following loss function as a measure of

how well the eikonal equation is satisfied

Leikonal =

∫

Ω

|∥∇Φ(x)∥ − 1| dx+

∫

ΩS

|Φ(x)| dx

+

∫

ΩS

(1− ⟨∇Φ(x),nx⟩) dx

+

∫

Ω\ΩS

exp(−α|Φ(x)|) dx.

(2)

Here Φ(x) denotes the predicted signed distance value of our

neural network at position x ∈ Ω, and nx denotes the target

surface normal. The exponential in the last term is a weighting

function which “pushes” signed distance values away from

zero for points not on the surface. The original paper notes

that the value of the constant α should be chosen as α ≫ 1,

however we have found that this is sometimes detrimental to

the desired effect, while choosing a lower value of α ≈ 10
yielded the best results.

If the input surface is non-manifold or self-intersecting,

the inside and outside of the object’s volume are not well

defined and normal vectors do not necessarily point in the right

direction. For these cases we introduce a simple modification

that ignores the sign of the normal:

Lsurface normal =

∫

ΩS

(1− |⟨∇Φ(x),nx⟩|) dx. (3)

This change alone still allows for the result to be a valid

signed distance field. As we discuss in Section IV-B, this

greatly improves performance on meshes with poor quality.

An example of multiple reconstructed SDF contours from a

model trained using all of these losses on the ShapeNet v2

planes dataset is shown in Figure A-2 of the supplemental

document.

D. Training

A major advantage of our proposed architecture is that

ground truth SDF values for the input point cloud never have

to be computed. However, it does need sample points to train

the network. While these could theoretically be generated on

the fly, we sample a number of evaluation points in advance

to reduce the training overhead. In order to evaluate the

eikonal loss, only the sample positions and classification into

(1) surface and (2) non-surface samples are required. After

normalizing the input point clouds to the unit cube, the training

samples can be trivially generated.

We sample them in the following ways: (1) Surface points.

If the source is a triangle mesh rather than a point-cloud, its

surface is randomly sampled to create additional on-surface

samples. If it is a point-cloud, we either take all available
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g
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1x
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4x

1.05 s / 0.60 MB0.56 s / 0.30 MB 1.95 s / 1.2 MB
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Fig. 4. From top to bottom, we increase the size of all latent grids,
while from left to right the size of the latent feature is increased. Below
each figure the inference time for 17M points (2563 regular grid) and the
storage requirements for the latent grid is shown. The number of trainable
network parameters for feature sizes 16, 32, and 64 are 38K, 151K, and
604K, respectively, regardless of the specific grid sizes.

points or subsample to a reasonable number (typically 100k-

200k). (2a) Random points in the surrounding volume are

sampled as off-surface samples (no check is performed if

these points actually lie on the surface per chance since the

surface has zero measure as a volume). (2b) If surface normal

information is available, additional close-to-surface samples

are generated from random points on the surface by displacing

them along the surface normal. These additional samples are

not strictly needed but aid the training process, as the SDF is

most detailed close to the surface.

We train our encoder-decoder architecture end to end by

inputting batches of surface point-clouds and sample points

and computing output signed distance values. The set of

input points is always disjoint from the set of sample points.

Automatic differentiation is used to provide spatial derivatives

for the SDF gradients in Leikonal.

IV. RESULTS

The evaluation of our method is split into three parts:

First, we compare different model sizes (i.e., number of

learned parameters and grid resolutions) with respect to the

amount of detail they can reconstruct. Second, we compare

our results to a number of recent encoder architectures to

highlight the advantages of our approach. Finally, we showcase

the improvement of using our proposed point-to-grid feature

projection over pooling-based voxelization. Details on general

model ablation can be found in Section A of the supplemental

document.

a) Datasets: To cover a variety of relevant scenarios, we

use seven different datasets, which are summarized in Table

I. The first two datasets consist of synthetic deformations of

two different simulated solid objects, a low-resolution dragon

and a high-resolution armadillo, which were computed using

the IPC simulation framework [65]. We additionally use the

raw point scan data of the dynamic FAUST (DFAUST) dataset
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Fig. 5. Comparing our method to related baselines. All methods use a variable number of input vertices for the Thingi10k and ShapeNet v2 datasets, while
POCO and 3DS2VS use a fixed number of input vertices. Please refer to the accompanying video for a more immersive comparison.

IFNet POCO 3DS2VS Ours Ground Truth Ours high-res

Fig. 6. Comparing our method to related baselines on the indoor scene scan dataset ScanNet [64]. The results of ONet and ConvONet are omitted due to
poor quality. In the rightmost column, we additionally show the results obtained with our method utilizing double resolution grid sizes and oriented point
clouds. Best viewed under magnification in the digital document. Please refer to the accompanying video for a more immersive comparison.

[66], which consists of temporally deforming 3D shapes and

the ScanNet dataset [64] which contains a large variety of

scanned indoor scenes. Due to the origin of these datasets,

they contain varying amounts of holes and noise. To analyze

performance on variable vertex count as well as single-class

and multi-class encoding, we employ the Thingi10k dataset as

provided by Hu et al. [67] as well as the “planes” category

of the ShapeNet v2 dataset [68]. Finally, we use the public-

domain models of the Objaverse dataset [1] to test the ability

of our method to fit more complex shapes.

b) Baselines: We focus our comparison on other

encoder-based 3D shape representation methods, as they are

most similar to our work. To that end we implemented the

encoder components of Occupancy Networks (ONet) [24],

Convolutional Occupancy Networks (ConvONet) [28], Im-

plicit Feature Networks (IFNet) [7], Point Convolution for

Surface Reconstruction (POCO) [8] and 3DShape2VecSet

(3DS2VS) [9]. To ensure a fair comparison, we use the

same training and testing data for all models as well as the

same modulated-SIREN decoder as discussed in Section III.

In addition, we use the same eikonal loss for all baselines,
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TABLE II
A SUMMARY OF THE COMPARISONS BETWEEN OUR ENCODER METHOD, ONET [24], CONVONET [28], IFNET [7], POCO [8] AND 3DSHAPE2VECSET

[9]. THE TABLE SHOWS THE L1 CHAMFER DISTANCE (CD-L1), L2 CHAMFER DISTANCE (CD-L2), NORMAL CONSISTENCY (NC),
INTERSECTION-OVER-UNION (IOU) AND F-SCORE (F). THE ARROW INDICATES WHETHER LOWER OR HIGHER VALUES ARE BETTER. THE BEST SCORE IS

MARKED USING A BOLD FONT. ALL VALUES ARE GIVEN SCALED TO ·10−2 . FOOTNOTES FOR SPECIFIC VALUES: 1 EVALUATED ON A SUBSET OF 200
RANDOM SHAPES DUE TO COMPUTATIONAL CONSTRAINTS. 2 BETTER METRIC BUT LESS DESIRABLE SOLUTION. 3 TRAINED AND EVALUATED USING A

FIXED NUMBER OF INPUT POINTS INSTEAD OF A VARIABLE NUMBER.

Metric Method Dragon Armadillo DFAUST ScanNet Thingi10k ShapeNet
v2 w/ Eq.
(3)

ShapeNet
v2 w/o
Eq. (3)

CDL1 ↓ mean ONet 5.581 4.451 16.50 15.64 12.69 34.89 10.02
ConvONet 3.960 2.377 1.627 10.69 10.62 3.734 4.424

IFNet 2.681 1.259 1.015 1.559 2 3.888 2.180 2.724

POCO 2.981 2.594 3.480 1 29.82 3.235 3 3.843 3 4.382 3

3DS2VS 2.823 1.291 1.181 7.722 6.196 3 2.362 3 6.104 3

Ours 2.406 0.934 0.662 4.721 3.222 1.888 3.547

CDL2 ↓ mean ONet 0.281 0.322 3.667 3.000 2.298 19.76 1.161
ConvONet 0.143 0.096 0.070 1.421 1.407 0.164 0.235

IFNet 0.056 0.048 0.101 0.022 2 0.135 0.035 0.055

POCO 0.067 0.067 0.217 1 14.53 0.120 3 0.264 3 0.243 3

3DS2VS 0.062 0.012 0.049 1.520 0.596 3 0.050 3 0.600 3

Ours 0.049 0.005 0.004 0.679 0.112 0.027 0.092

NC ↑ mean ONet 82.20 83.35 82.70 64.51 62.16 59.61 58.11
ConvONet 88.89 90.80 94.50 63.91 67.11 75.43 72.31

IFNet 95.63 95.87 96.52 83.36 2 92.27 82.34 81.61

POCO 92.39 89.06 84.93 1 65.13 93.57 3 78.01 3 73.66 3

3DS2VS 92.64 94.12 95.33 74.22 79.74 3 83.35 3 70.11 3

Ours 96.33 98.22 97.41 82.27 94.26 86.75 78.67

IoU0.01 ↑ mean ONet 32.41 32.60 20.90 9.428 11.65 17.70 11.97
ConvONet 51.12 53.72 56.78 8.687 14.51 36.68 29.93
IFNet 74.20 76.84 76.25 52.26 50.71 55.10 39.69

POCO 63.80 37.25 39.52 1 31.83 78.42 3 38.76 3 30.57 3

3DS2VS 66.79 71.32 72.96 35.49 38.66 3 52.54 3 23.98 3

Ours 87.73 89.76 85.82 52.29 80.02 66.96 27.30

F0.01 ↑ mean ONet 48.04 49.56 23.44 16.15 16.59 18.29 18.85
ConvONet 68.44 74.68 82.04 13.54 21.30 56.87 45.84

IFNet 94.29 96.86 96.50 73.10 2 68.32 79.17 58.06

POCO 86.53 56.65 68.94 1 20.15 91.73 3 61.94 3 43.52 3

3DS2VS 87.75 93.12 95.31 52.33 54.14 3 78.80 3 40.32 3

Ours 99.47 99.82 97.89 71.01 93.86 93.23 40.44

TABLE III
NUMBER OF PARAMETERS AND INFERENCE TIME OF THE DIFFERENT ENCODER BASELINES COMPARED IN TABLE II.

ONet ConvONet IFNet POCO 3DS2VS Ours

Params 626K 1.1M 1.9M 12.8M 106M 747K
Time 2.45 s 0.7 s 15.3 s 120 s - 330 s 12.3 s - 20.1 s 2.34 s

which trains all models to compute signed distance fields. We

should note that while we use 3DS2VS for reconstruction,

it is more strongly targeted towards latent compression and

generation. Furthermore, the implementations of POCO and

3DS2VS were unfortunately not trivially adjustable to account

for a variable number of input points during training, which

is why they are evaluated using a fixed number of vertices

for our versions of the Thingi10K and ShapeNet v2 dataset.

Specifically, we sample the mean number of points for each

geometry across the respective datasets to train these models.

For all comparisons with the other methods, our model utilizes

five layers of latent grids with resolutions [4,8,16,32,64], a

latent size of 64, k = 8 for kNN connectivity and EdgeConv

[60] as point convolution operator. Please refer to Section A

in the supplemental document for details on model component

ablation.

c) Metrics: We use four different metrics in our eval-

uation: The widely used Chamfer distance (CD) in L1 and

L2 norm, normal consistency (NC), intersection-over-union

(IoU) and F-score. The Chamfer distance compares distances

between two point clouds A and B by finding the distance

to the closest point in B for each point in A and taking

the average of the L1 and L2 norms respectively. While the

values typically correlate strongly, the L2 Chamfer distance

penalizes outliers more strongly than the L1 Chamfer distance

and is therefore also reported for completeness. The normal

consistency instead compares orientations of normals by also

finding the closest point in B for each point in A, but instead
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computing the cosine similarity of the normal vectors and

taking the average. The same is done for the reverse direction

and the results are summed together in the case of the Chamfer

distance, and averaged in the case of the normal consistency.

The IoU and F-score are computed using a “thick-shell”

surface representation of prediction and ground truth. For the

IoU, a voxel grid of 2563 is sampled and cells marked as 1

that are within a distance of 0.01 for both the prediction and

ground truth. The IoU is then the number of cells that are 1 in

both grids divided by the number of cells that are 1 in either

grid.

The F-score is computed in a similar manner, but uses

sampled points instead of a regular grid. In specific, we sample

100k points on the surface of the predicted and ground-

truth mesh respectively. Recall is computed as the number

of ground-truth points that are within 0.01 distance to the

predicted surface, while precision is the reverse, i.e., the

number of predicted points within 0.01 to the ground-truth

surface. The F-score is finally computed as usual.

For all tests we use 100-2000 individual reconstructions and

report mean values for all metrics.

d) Hardware and Framework: We train all models on

RTX 4000 Ada GPUs with 20GB of memory (they also fit on

an RTX 2080 Ti which increases the training times reported

below by ≈ 30%). The training time for 400 epochs of our

model using a batch size of 16 on a single GPU is between

1-2 days. Most other models trained in similar time, apart

from IFNet, POCO, and 3DS2VS which required between 3-

16 days on a single GPU. We implemented all of the models

in this paper in the PyTorch framework [69]. In addition,

we make use of PyTorch-Geometric for its 3D graph and set

learning capabilities [70]. All models were trained using the

Adam optimizer using a learning rate of 5e-4 and a batch size

of 16. We have also implemented the tri-linear interpolation

and point-to-grid projection using custom CUDA kernels. For

the former, this includes the double backward pass, which is

not supported by the native PyTorch interpolation function,

but necessary because we are using network gradients in our

training target. We limit the impact of the additional GPU

memory and compute-load of this double-backward pass, by

only differentiating the “small” decoder network twice, instead

of the whole encoder-decoder structure.

A. Model Size

The number of features per vertex and the resolutions of the

grids are tunable parameters of our architecture. Increasing

them enables the network to capture more surface details,

at the cost of increased storage requirements or computation

time. The results are shown in Figure 4. We find that the

network behaves very intuitively and that results degrade

gracefully when the model size is reduced. Most notably,

the models in the first column with a latent size of 16 all

contain only 38K network parameters in total, of which the

decoder contains just 1.4K. High-frequency features vanish

first which makes small model sizes particularly appealing

for applications such as approximate collision tests, e.g., in

physical simulation, or deployment in resource constrained

environments, e.g., edge devices.

B. Comparison to Related Work

We now discuss comparisons to the other baseline shape

encoder methods on six datasets. They are shown for all

methods and datasets in the accompanying video, as well

as in Figure 5, in Figure 6, in Table II, and in Table III.

We can summarize that our method outperforms the other

baselines with respect to reconstructed surface detail in terms

of all metrics on nearly all datasets. There is however one

exception, where IFNet seemingly performs better on ScanNet.

On closer inspection, this is due to IFNet finding a less-

desirable minimum to the eikonal loss, by “wrapping” thin

sheets around the sparsely distributed geometry. While this

results in smaller loss values, this is clearly a less desirable

and less useful result. The visual comparison in Figure 6 and

the supplementary video confirm this observation.

A potential risk of using k-nearest neighbor connectivity

in our method is for fine detail to become “connected”.

However, out of all the baselines, only our method was able

to reconstruct the individual teeth of the cog wheel in the

Thingi10k dataset. In addition, some methods also struggle

with the hand of the of armadillo and the claws of the dragon,

while our method is able to reproduce them in better detail. We

attribute this to the effectiveness of our proposed architecture

and point-to-grid feature projection at extracting point-level

information and detail. This assumption is supported by the

results in Figure 7.

From Table III we can see, that our method also is able to

reconstruct a dense grid of approx. 17M points in only 2.35 s,

while IFNet takes more than 6x longer. Only ConvONet is

faster on the reconstruction task, however at significantly lower

quality. We can conclude that our approach offers the highest

quality per parameter.

Our model consistently exhibits very low L2 Chamfer

distance on all datasets. This indicates that there are fewer

outliers, which means that the performance of our network

is more predictable for a given level of accuracy. This is

underlined by the comparison in Figure 4, which shows the

effect of changing latent size and grid resolutions. Very small

networks with our architecture can already have remarkable

representational abilities.

Finally, we introduced a simple modification to the loss

function (Equation 3), to be able to compute distance fields

for surfaces with inconsistent surface normals, which we tested

on the ShapeNet v2 dataset. Results without this modification

are shown in the grey column in Table II. We observed an

improvement on all metrics for five of the six tested methods,

with the exception of ONet [24], which partially performed

better using the original loss. Although it should be noted

that the model did not seem to be able to deal well with the

changing number of vertices in the dataset, which is why we

interpret this result as an outlier.

C. Point-to-Grid Feature Projection

As described in Section III-B, we propose a physically-

inspired method to project particle features to the convo-

lutional grid. We find, that the feature projection generally

makes reconstructions smoother and details sharper, as can



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2026 10

G
T

P
ro

j.
w

/
n

P
ro

j.
P

o
o
l

P
o
o
l

w
/

n

Fig. 7. Visual comparison of our architecture using pooling-based and
projection-based point-to-grid transfers. Row two and three from the top use
point normals as extra input.

be seen in Figure 7. We further compare our method using

projection with the well-established max pooling operator in

the top two rows for each metric in Table A-V of the sup-

plemental document. Simply exchanging the pooling operator

for our projection already results in improved metrics for most

datasets. This exchange comes at identical network complexity

and memory requirements and nearly identical training and

inference speed.

In the case that the input point clouds contain information

about orientation, i.e., point normals, these can be used as ad-

ditional inputs to our network. To do so, they are concatenated

to the surface-point positions (cf. Figure 3). Results using

normals are shown in the bottom two rows for each metric in

Table A-V for the pooling-based and projection-based variants

of our network, respectively. Again, projection measurably

improves performance, outperforming almost all other variants

of our model across all datasets. The reconstructed surfaces in

Figure 7 again show improved surface smoothness and detail

sharpness. We also apply projection-based pooling using input

normals to the ScanNet dataset, using twice the resolution of

the baseline model, and show the results in the right column

of Figure 6. It is again possible to see improved surface detail

and smoothness. The reader is encouraged to view examples

from the other datasets in the second half of the supplementary

video.

Since projection maps a single point to eight grid cells in

contrast to the one to one mapping of pooling, we have at

times found it useful to apply dropout within the projection

operator. In practice we have found a larger dropout factor

to be necessary, when the shapes within a dataset are more

diverse. For the Objaverse dataset, we in fact only keep one

of the eight points during training, whereas for the dragon and

armadillo datasets we keep all eight.

V. CONCLUSION AND FUTURE WORK

We have shown that our hybrid approach of interleaving

graph and grid convolutions, including point-to-grid projection

and feature interpolation, is capable of outperforming other

state-of-the-art encoders on the surface reconstruction task

from point cloud inputs. We are able to do this using only

surface information and additional unlabeled samples in the

surrounding volume, which prevents us from having to solve

for a ground truth signed distance field in advance. We

have also introduced a physically-inspired projection operator

for particle-to-grid feature transfers in neural networks and

shown its effectiveness. Using this projection enables the

reconstruction of both more detailed and less noisy surfaces,

by improving “feature-field” consistency between point-based

and grid-based representations.

We believe that this work could be foundational for further

research regarding efficient models for 3D shape encoding.

For instance, exploring the sparsity of our latent grids could

enable the usage of ever higher latent resolutions, resulting

in accurate encoding of almost arbitrarily complex shapes.

Combined with small latent sizes, this could result in a more

scalable architecture, where the accuracy can be determined by

available compute capabilities. Another interesting direction

of further study is the use of the latent grid as a basis for

shape generation. Multiple latent representations could also

be blended, or operators could be learned on the latent codes

to achieve specific effects. Finally, in the spirit of using

traditional geometric techniques within neural architectures, it

could be explored whether projecting surface features to outer

grid cells using methods such as fast marching or Laplacian

smoothing could further improve predictions at distant points.

Please refer to the project website hyve.physics-

simulation.org for implementation details.
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TABLE A-I
THE RESULTS OF COMPARING DIFFERENT DESIGN CHOICES WITHIN THE

STRUCTURE OF OUR NETWORK (SEE FIGURE 2). THE TABLE SHOWS THE

L1 CHAMFER DISTANCE, NORMAL CONSISTENCY,
INTERSECTION-OVER-UNION (IOU) AND F-SCORE. GNN REFERS TO

GRAPH-CONVOLUTIONS AND CNN REFERS TO GRID-CONVOLUTIONS.
THE CELL COLOR CODING IS DERIVED FROM THE MEAN VALUE,
DIFFERENT METRICS USE DIFFERENT COLOR MAPS. THE ARROW

INDICATES WHETHER LOWER OR HIGHER VALUES ARE BETTER. A
DARKER COLOR CORRESPONDS TO A BETTER VALUE.

Interpolation on Interpolation off

GNN CNN on CNN off CNN on CNN off

on 2.607 /
0.253

4.637 /
1.936

2.771 /
0.355

4.819 /
2.026

off 3.141 /
0.736

12.40 /
1.270

3.176 /
0.774

12.67 /
1.388

(a) Chamfer distance L1 ↓ mean / std (·10−2)

Interpolation on Interpolation off

GNN CNN on CNN off CNN on CNN off

on 95.53 /
1.480

85.75 /
7.193

94.88 /
2.055

85.54 /
8.190

off 92.50 /
4.472

85.85 /
5.997

92.30 /
4.683

85.81 /
5.969

(b) Normal Consistency ↑ mean / std (·10−2)

Interpolation on Interpolation off

GNN CNN on CNN off CNN on CNN off

on 76.69 /
8.015

34.21 /
15.19

70.35 /
12.30

38.89 /
19.61

off 61.29 /
18.40

27.74 /
10.30

59.42 /
17.65

28.92 /
11.07

(c) IoU0.01 ↑ mean / std (·10−2)

Interpolation on Interpolation off

GNN CNN on CNN off CNN on CNN off

on 95.87 /
4.836

51.74 /
21.45

91.48 /
9.472

57.37 /
25.49

off 81.76 /
18.26

35.51 /
12.04

80.59 /
18.49

36.00 /
12.20

(d) F0.01 ↑ mean / std (·10−2)

APPENDIX

This section provides information on the various ablation

experiments that we conducted in the context of our work.

A. Design Ablation

To highlight the impact of different design choices within

our network architecture, we first conduct a number of ablation

studies. The first covers three decisions within our convolution

block in Figure 2: 1) using the nearest neighbor instead of

linear interpolation to map values from latent grid back to

the input points, 2) enabling/ disabling the graph convolu-

tions (GNN), and 3) enabling/ disabling the grid convolutions

(CNN).

The results for different combinations are reported in Ta-

ble A-I. The most impactful component is clearly using

TABLE A-II
ABLATION STUDY OF THE INFLUENCE OF THE GRID ORDER, GRAPH

CONVOLUTION AND THE NUMBER OF NEAREST NEIGHBORS ON THE

PERFORMANCE OF OUR METHOD. CD-L1 DENOTES THE L1 CHAMFER

DISTANCE, NC THE NORMAL CONSISTENCY, IOU THE

INTERSECTION-OVER-UNION AND F THE F-SCORE. THE BEST VALUES

ARE HIGHLIGHTED IN BOLD. ALL VALUES DENOTE THE MEAN.

GNN Res. k-NN CD-L1 ↓ NC ↑ IoU0.01 ↑ F0.01 ↑

PointConv Decr. None 1.045 96.603 82.651 99.165
EdgeConv Decr. 2 0.994 97.423 85.719 99.613
EdgeConv Incr. 2 0.953 97.765 88.754 99.684
EdgeConv Incr. 4 0.947 97.807 89.197 99.724
EdgeConv Incr. 8 0.942 97.938 89.542 99.771

TABLE A-III
COMPARISON OF THE L1 CHAMFER DISTANCE, NORMAL CONSISTENCY,

INTERSECTION-OVER-UNION (IOU) AND F-SCORE (F) ACROSS DIFFERENT

NOISY PERTURBATIONS IN RANDOM DIRECTIONS OF THE INPUT POINTS.
ROWS INDICATE THE NOISE LEVEL USED DURING TRAINING AND

COLUMNS DURING TESTING. THE BEST VALUE FOR EACH METRIC IS

MARKED IN BOLD FONT.

Train \Test none 5e-4 5e-3 1e-2 5e-2

none 3.349 3.348 3.357 3.397 4.198
5e-4 3.358 3.358 3.361 3.403 4.262
5e-3 3.381 3.379 3.397 3.448 4.268
1e-2 3.403 3.404 3.415 3.464 4.345

(a) Chamfer Distance L1 ↓ mean / std (·10−2)

Train \Test none 5e-4 5e-3 1e-2 5e-2

none 93.200 93.189 93.063 92.702 81.880
5e-4 93.114 93.097 93.016 92.633 81.777
5e-3 93.001 93.017 92.918 92.616 82.344
1e-2 93.130 93.117 93.037 92.809 83.813

(b) Normal Consistency ↑ mean / std (·10−2)

Train \Test none 5e-4 5e-3 1e-2 5e-2

none 77.000 76.950 75.272 71.615 36.144
5e-4 76.598 76.603 75.115 71.503 35.673
5e-3 76.356 76.375 75.261 72.393 36.860
1e-2 73.923 73.934 73.509 71.860 37.767

(c) IoU0.01 ↑ mean / std (·10−2)

Train \Test none 5e-4 5e-3 1e-2 5e-2

none 91.725 91.743 91.480 90.537 48.793
5e-4 91.614 91.606 91.425 90.443 47.880
5e-3 91.459 91.469 91.244 90.532 49.494
1e-2 91.254 91.252 91.110 90.451 50.569

(d) F0.01 ↑ mean / std (·10−2)

the grid convolutions, which also contains the majority of

trainable weights. The next important decision is enabling the

graph convolution. Furthermore, interpolation seems to have

a greater impact on network performance when the graph

convolution is also enabled. This is because without the graph

convolution, the interpolated features are immediately pro-

jected back to the grid, eliminating most implicit information

gain. For maximal performance, all options should enabled.

Next, we investigate the impact of varying the number of
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TABLE A-IV
COMPARISON OF THE L1 CHAMFER DISTANCE, NORMAL CONSISTENCY,

INTERSECTION-OVER-UNION (IOU) AND F-SCORE (F) ACROSS DIFFERENT

NOISY PERTURBATIONS IN THE DIRECTION OF VERTEX NORMALS OF THE

INPUT POINTS. ROWS INDICATE THE NOISE LEVEL USED DURING

TRAINING AND COLUMNS DURING TESTING. THE BEST VALUE FOR EACH

METRIC IS MARKED IN BOLD FONT.

Train \Test none 5e-4 5e-3 1e-2 5e-2

none 3.381 3.381 3.429 3.534 4.684
5e-4 3.370 3.371 3.410 3.517 4.642
5e-3 3.365 3.365 3.415 3.531 4.667
1e-2 3.417 3.417 3.452 3.567 4.731

(a) Chamfer Distance L1 ↓ mean / std (·10−2)

Train \Test none 5e-4 5e-3 1e-2 5e-2

none 93.070 93.059 92.770 91.850 77.978
5e-4 93.035 93.033 92.768 91.804 77.722
5e-3 93.254 93.244 93.058 92.503 78.971
1e-2 93.200 93.213 93.165 92.915 80.882

(b) Normal Consistency ↑ mean / std (·10−2)

Train \Test none 5e-4 5e-3 1e-2 5e-2

none 74.459 74.396 71.118 63.869 19.128
5e-4 75.429 75.417 71.846 64.361 19.056
5e-3 75.375 75.372 73.537 68.036 19.557
1e-2 72.430 72.527 72.392 70.457 20.812

(c) IoU0.01 ↑ mean / std (·10−2)

Train \Test none 5e-4 5e-3 1e-2 5e-2

none 91.198 91.196 90.369 86.334 25.295
5e-4 91.508 91.496 90.706 86.788 25.213
5e-3 91.518 91.512 90.996 88.918 25.550
1e-2 91.138 91.144 90.944 89.934 26.985

(d) F0.01 ↑ mean / std (·10−2)

nearest neighbors (k) for connecting the input point cloud,

using point convolutions [13] instead of edge convolutions

[60], and finally reversing the resolution of latent grids. We

show the results in Table A-II. In the depicted parameter

sequence, the grid order has the single largest impact. This

suggests that coarse features are extracted earlier and fine

features later in the network. Using an increasing number

of k consistently improves both CD-L1 and NC. For all

experiments we use the settings corresponding to the best

result.

In addition to this, we investigate the impact of increasing

the number of nearest neighbors (k) in combination with

changing the point-to-grid interpolation scheme. The results

of this ablation are shown in Figure A-1. It becomes clear that

increasing the number of nearest neighbors (k) has a positive

impact on all metrics regardless of the transfer method used.

However, we also observe that our proposed projection method

appears to scale better with increasing k, and it outperforms

pooling-based point-to-grid transfer for all values of k > 2.

For all of our experiments we otherwise use k = 8, as

increasing k further appears to result in diminishing returns.

B. Noise Ablation

We investigate our architecture’s sensitivity to noise by

training and testing using different noise levels. We add noise

by perturbing input vertices by a random amount drawn from

U(−σ, σ) in random direction (see Table A-III) or in normal

direction (see Table A-IV). Here, σ is the noise level shown

in the column labels and row labels of the respective tables.

Since the coordinates have been normalized to the unit box,

the maximum evaluated noise of 5e-2 corresponds to a shift

of 1/40 of the bounding box edge length. Our model remains

stable during training up to noise levels of 1e-2 both in normal

or random directions and even benefits from data augmentation

using noise in normal direction.

C. Point-to-Grid Feature Projection

In addition to the visual comparison in Figure 7, Table A-

V shows the metrics comparing pooling- and projection-based

feature transfers across all datasets.

D. Contours of Volumetric Signed Distance Field

Despite mostly showing only the zero level-set of the

computed signed distance field, out network also produces

a reasonable volumetric signed distance field. We show this

briefly in Figure A-2, where contours are generated at multiple

iso-values for the signed distance field.

E. Non-manifold Handling

Non-manifold meshes, mostly in the form of non-

watertightness or self-intersections appear in a number of

different datasets (Table I). We show in Figure A-3 using an

example from the Objaverse dataset, that our model is able to

deal with these self-intersections fairly well.
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Fig. A-1. Ablation study comparing pooling and our projection operator when using different numbers of nearest neighbors (k) to connect input points for the
graph convolution. Increasing k consistently results in improved metrics, where our proposed projection operator benefits more and consistently outperforms
pooling for k> 2. We compare using the L1 Chamfer distance, normal consistency, intersection-over-union (IoU) and F-score.

TABLE A-V
COMPARING OUR METHOD WITH POOLING-BASED AND PROJECTION-BASED POINT-TO-GRID TRANSFERS. OPTIONALLY, INPUT VERTEX NORMALS ARE

ALSO USED. WE EVALUATE THE L1 CHAMFER DISTANCE (CD-L1), NORMAL CONSISTENCY (NC), INTERSECTION-OVER-UNION (IOU) AND F-SCORE

(F). BOLD FONT MARKS THE BEST VALUE IN EACH METRIC AND DATASET. ALL VALUES ARE GIVEN SCALED TO ·10−2 .

Metric Method Dragon Armadillo DFAUST ScanNet Thingi10k ShapeNet
v2

Objaverse

CDL1 ↓ mean Pool w/o n 2.455 0.956 0.627 4.339 3.270 2.011 1.222
Proj. w/o n 2.406 0.934 0.662 4.721 3.222 1.888 1.363
Pool w/ n 2.486 0.934 0.700 4.156 3.446 1.118

Proj. w/ n 2.427 0.906 0.626 4.269 3.075 1.604

NC ↑ mean Pool w/o n 96.25 97.86 97.65 82.98 93.65 86.11 92.95
Proj. w/o n 96.33 98.22 97.41 82.27 94.26 86.75 92.00
Pool w/ n 96.37 98.27 97.61 85.15 95.53 94.87
Proj. w/ n 96.53 98.47 97.83 85.33 95.89 95.25

IoU0.01 ↑ mean Pool w/o n 84.84 88.63 88.40 54.88 78.85 61.24 65.75
Proj. w/o n 87.73 89.76 85.82 52.29 80.02 66.96 61.49
Pool w/ n 80.15 89.01 84.76 57.33 61.74 66.79
Proj. w/ n 87.30 92.00 88.76 56.50 87.58 86.53

F0.01 ↑ mean Pool w/o n 98.97 99.82 98.17 73.68 92.45 88.53 89.35
Proj. w/o n 99.47 99.82 97.89 71.01 93.86 93.23 85.28
Pool w/ n 98.69 99.87 97.53 75.84 81.09 81.02
Proj. w/ n 99.71 99.89 97.88 74.72 97.47 93.45

Fig. A-2. Visualization of various level-sets using our method on an instance
of the planes category from the ShapeNet v2 dataset [68].

Fig. A-3. Our model is able to resolve a large number of self-intersections
in the Objaverse dataset [1] without special treatment, as long as surface
normals have consistent orientation. Left shows our reconstruction without
self-intersections, while the right shows the ground-truth shape containing
self-intersections. The transparent renders show a closeup of the marked red
region to make self-intersections visible.
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