
A smoothed particle hydrodynamics framework for fluid simulation
in robotics

Emmanouil Angelidis a,d,1,* , Jonathan Arreguit b,1,* , Jan Bender c, Patrick Berggold a,
Ziyuan Liu d, Alois Knoll a, Alessandro Crespi b , Auke J. Ijspeert b

a Technical University of Munich, Munich, Germany
b École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
c RWTH Aachen University, Aachen, Germany
d Munich Research Center, Huawei Technologies GmbH, Germany

A R T I C L E I N F O

Keywords:
Robotics simulation
Self-propelled swimming
Locomotion
Free surface flows
Smoothed particle hydrodynamics
Multi-physics

A B S T R A C T

Simulation is a core component of robotics workflows that can shed light on the complex interplay between a
physical body, the environment and sensory feedback mechanisms in silico. To this goal several simulation
methods, originating in rigid body dynamics and in continuum mechanics have been employed, enabling the
simulation of a plethora of phenomena such as rigid/soft body dynamics, fluid dynamics, muscle simulation as
well as sensor and actuator dynamics. The physics engines commonly employed in robotics simulation focus on
rigid body dynamics, whereas continuum mechanics methods excel on the simulation of phenomena where
deformation plays a crucial role, keeping the two fields relatively separate. Here, we propose a shift of paradigm
that allows for the accurate simulation of fluids in interaction with rigid bodies within the same robotics
simulation framework, based on the continuum mechanics-based Smoothed Particle Hydrodynamics method.
The proposed framework is useful for simulations such as swimming robots with complex geometries, robots
manipulating fluids and even robots emitting highly viscous materials such as the ones used for 3D printing.
Scenarios like swimming on the surface, air-water transitions, locomotion on granular media can be natively
simulated within the proposed framework. Firstly, we present the overall architecture of our framework and give
examples of a concrete software implementation. We then verify our approach by presenting one of the first of its
kind simulation of self-propelled swimming robots with a smooth particle hydrodynamics method and compare
our simulations with real experiments. Finally, we propose a new category of simulations that would benefit from
this approach and discuss ways that the sim-to-real gap could be further reduced.

One Sentence Summary:
We present a framework for the interaction of rigid body dynamics with SPH-based fluid simulation in ro-

botics, showcase its application on self-propelled swimming robots and validate the method by comparing
simulations with physical experiments.

1. Introduction

Accurate fluid simulation in robotics is relatively uncommon, as fast
and freely moving bodies are difficult to simulate with classical
computational fluid dynamics (CFD) simulation methods that rely on
computational grids. Many simulated robots that interact with fluids,
especially mobile ones, need to do so in computational domains that
extend to spaces that are not predefined, and as such the a priori

computation of a computational grid can be cumbersome. On the con-
trary, particle-based fluid dynamics simulation relies on freely moving
particles that can travel to any location within a simulated domain. This
allows for more flexible workflows and enables the simulation of robots
swimming on the free surfaces of fluids, robots manipulating fluids or
even robots emitting highly viscous materials.

In this work we show, by validating them with real world experi-
ments, that Smoothed Particle Hydrodynamics (SPH) particle-based

* Corresponding author.
E-mail address: manosagelidis@gmail.com (E. Angelidis).

1 These authors contributed equally to this work.

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

https://doi.org/10.1016/j.robot.2024.104885
Received 13 June 2024; Received in revised form 29 October 2024; Accepted 3 December 2024

Robotics and Autonomous Systems 185 (2025) 104885 

Available online 8 December 2024 
0921-8890/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://orcid.org/0000-0003-2516-4995
https://orcid.org/0000-0002-1050-9981
https://orcid.org/0000-0001-9863-5220
https://orcid.org/0000-0003-2516-4995
https://orcid.org/0000-0002-1050-9981
https://orcid.org/0000-0001-9863-5220
mailto:manosagelidis@gmail.com
www.sciencedirect.com/science/journal/09218890
https://www.elsevier.com/locate/robot
https://doi.org/10.1016/j.robot.2024.104885
https://doi.org/10.1016/j.robot.2024.104885
https://doi.org/10.1016/j.robot.2024.104885


methods present a viable tool for robotics research. The choice of SPH as
a simulation method comes from the relative advantages that such
methods present compared to Finite Volume (FV) / Finite Differences
(FD) methods. In FV and FD as well as in the closely related Finite El-
ements Method (FEM) the first step is the discretization of a domain with
a computational grid. As we discuss in the next section this can be
cumbersome in cases where fast swimming bodies that swim on the
surface and have complex geometries are involved. In SPH approaches,
based on the Lagrangian formulation, the description of the flow relies
on discrete particles that carry physical quantities i.e., pressure, density
and kinematic quantities i.e., positions, velocities. In this approach the
particles are tracked in time and space as they move, which can be
conceptualized as marking a piece of a fluid with ink and then following
its trajectory to observe the evolution of its movement. In contrast FD/
FV approaches, based on the Eulerian formulation, rely on fixed obser-
vation points in space through which the flow passes, conceptualized as
choosing a point in space and measuring the change of fluid properties
as the flow evolves.

From a computational perspective, Eulerian methods rely on a
computational grid, which is usually fixed in space, whereas SPH
methods discretize space into particles that move freely. This is of
particular importance when it comes to modelling freely moving bodies
that cross or stay on the free surface of fluids, flows with different fluid
phases or material discontinuities. Moreover, problems where the fluid
flow is not a priori known e.g., a rush of water down a valley, waves, or
splashes, are difficult if not impossible to model with other forms of fluid
simulation. Such requirements are typical in robotic applications, spe-
cifically in applications where a body swims on the water surface or
switches between media e.g., water and land. Another category of
problems that can naturally be solved with particle-based methods is
robots that manipulate fluids in various ways (transport, firefighting,
handling of floods etc.).

One major limitation of FD/FV methods is that they rely on finely
generated meshes, which can be computationally expensive and
cumbersome to generate, especially on arbitrary, complex shapes. It is
frequently necessary to update the mesh or even remesh the computa-
tional domain, resulting in algorithmic and computational complexity.
Whereas the aforementioned use cases are particularly difficult to
handle with FD/FV methods, particle-based methods excel at them,
exactly because they do not rely on a fixed computational grid and deal
well with free fluid surfaces.

From a software perspective, compared to standalone fluid dynamics
solvers, SPH methods are easy to couple with other types of physical
simulation, which in our case consists of articulated rigid body dynamics
solvers. In terms of computational workload required the cost of SPH can
be higher than the FV corresponding code as shown in [1] where they
compare the performance of the two approaches for various problems.
However utilizing the GPU to accelerate particle-based simulations can
lead to significantly lower computational times. We refer the reader to
the benchmarks conducted by the DualSPHysics that show simulations
of 70 million particles on a Tesla V100 GPU in 40 h [2]. It should be
noted that combinations of the two main Eulerian/Lagrangian formu-
lations for the description of the fluid flow exist (i.e. Coupled Eulerian
Lagrangian [3], Arbitrary Eulerian Lagrangian [4] and Immersed

Boundary Methods [5]), but due to the complexity of coupling them
with existing physics simulators, we chose to follow the SPH approach.
We show a comparative summary of the characteristics of SPH simula-
tion compared to grid-based methods in Table 1.

To address these limitations related to the applicability of fluid
simulation methods in robotics, we present a unified framework of ro-
botics and fluid simulation that enables capturing part of the complex-
ities described above by simulating the fluid flow with the SPH [6]
Lagrangian-based formulation of the 3D Navier-Stokes equations. We
present how SPH methods can be integrated into existing articulated
rigid body dynamics solvers that are commonly used to simulate ro-
botics problems (in our case Gazebo). The architecture scheme of the
components that enable the incorporation of SPHmethods into robotics’
frameworks can be seen in Fig. 1. In the core of the framework lies the
exchange of physical information between the rigid body dynamics
solver and the fluid simulator. At any simulation step both solvers
maintain a representation of the physical world in their respective in-
ternal data format, and the framework of interaction manages the syn-
chronization between the two representations.

In more detail, the robotics simulator updates the kinematics and
dynamics state of its simulated world and provides this information to
the fluid dynamics solver. The fluid dynamics solver in turn updates its
own internal information on the rigid bodies’ positions, velocities and
orientations with the latest information from the robotics simulation and
solves for a timestep of the fluid world. It subsequently integrates the
fluid forces that are applied on the rigid bodies into forces and torques
which are passed back to the robotics simulation. The robotics simula-
tion receives the information on the forces and torques and applies them
onto the rigid bodies, solving for the updated accelerations, velocities
and positions. At every simulation step sensors and actuator dynamics
can be natively simulated and used as input for adaptive control
methods. Since for the robotics simulation the only necessary informa-
tion from the fluid simulation is the applied force/torque pair, and from
the perspective of the fluid simulation the positions and velocities of
rigid bodies, the exchange of information within the framework is kept
to a minimum. There is of course the question of the visualization of the
flow, so depending on the choice of rendering methodology, the
streaming of the particles’ positions to the rendering engine should be
considered.

Numerous technical challenges needed to be addressed in order to
establish the framework of interaction between the two simulation en-
gines. Firstly, and most importantly, the handling of boundaries with
complex geometries at relatively large e.g., 1 ms timesteps with fast
moving rigid bodies. Fast moving SPH particles can penetrate through
solid boundaries unless treated explicitly through the sampling of solid
surfaces with multiple layers of boundary particles. Furthermore, SPH
simulations are computationally intensive and can be parallelized on the
GPU or by employing single instruction, multiple data (SIMD) [7]
techniques that parallelize computations on the CPU. In our imple-
mentation we used both GPU acceleration for the neighborhood search
problem of finding the particles in the vicinity of a particle as well as
SIMD instructions using the Advanced Vector Extensions (AVX) frame-
work. Finally, achieving numerical stability can prove to be a complex
task for robots interacting with fluids due to the instabilities that the

Table 1
Qualitative comparison of SPH and grid-based methods. SPH has found limited applications in engineering, as grid-based methods have historically prevailed in fluid
simulation. Even though more mature in terms of mathematical accuracy proof, grid-based methods cannot easily handle scenarios such as fast moving boundaries,
material discontinuities, free surfaces and multiphase.

Moving boundaries Free surface flows Multiphase flows Mathematical
accuracy proof

Computational cost

Grid-based methods (FEM, FVM, FDM) With remeshing difficult due
to flow
discontinuity

needs special
treatment

well-established High

SPH ✓ ✓ built-into
the method

limited Higher than grid-based[15]

E. Angelidis et al. Robotics and Autonomous Systems 185 (2025) 104885 

2 



fast-moving links of the robots can induce to the fluid simulation when
large timesteps are used. To address the latter, we employed a combi-
nation of adaptive time-stepping, explicit treatment of viscosity through
the use of dedicated viscosity models and an implicit time integration
scheme. However, this often comes at the expense of increased
computational costs. One parameter which defines the accuracy of the
simulation from the theoretical perspective is the particle size. We
investigated thoroughly which particle sizes can better capture the
simulation’s complexity and provide accuracy without hindering per-
formance. To better capture this dependency, we present simulations
with very few particles and show that although they are stable they
cannot fully capture the behavior of the robot.

In the next section we analyze previous efforts for the simulation of
fluid dynamics problems in self-propelled swimming and robotics.

1.1. Previous works

Multiple CFD methods have been employed in the past for the
simulation of swimming bodies such as the Finite Differences (FD), the
Finite Volumes (FV) [8] methods, the Arbitrary Eulerian-Lagrangian
(ALE) [9,10] method, the Immersed Boundary method (IB) [11,12]
and particle based methods like Vortex Methods [13] among others.
Some combinations of the Smoothed Particle Hydrodynamics (SPH)
method with IB have been shown in the past [14] for the simulation of
self-propelled swimmers, but employ remeshing techniques that induce
computational cost and programming complexity.

Historically the Finite Element (FEM), FV and FD methods for the
solution of fluid dynamics problems have been prevalent, since their
development starts already in the 1940s and whose algorithmic maturity
exceeds that of SPH, complimented by the lack of a complete mathe-
matical treatise on the numerical accuracy of SPH methods [15]. While
FD and FV methods offer discretization schemes with varying degrees of

accuracy even up to 8th order [16], practically 1st and 2nd order
schemes are employed in most widely used commercial and research
software. It should be noted that accuracy increases as the cell size de-
creases so the tradeoff between cell size and discretization scheme order
should be considered relative to the computational workload.

On the other hand, SPH based methods have been widely adopted by
the computer graphics community [17], and more recently in the en-
gineering community, within various fields of applications [18–20]. The
current understanding of the SPH community is that the discretization
methods commonly employed in SPH lead to a 2nd order theoretical
accuracy and practically converge to an accuracy between 1st and 2nd
order [15,21], with some efforts focusing on higher order approxima-
tions [22]. Intense research effort goes into improving the convergence
properties and the numerical accuracy of SPH methods [15].

Even with the latest developments, particle-based methods have
found practically limited to non-existent applications in robotics apart
from the work of Lopez-Guevara et al.[23], where they employ the Po-
sition Based Fluids method [24], implemented into the Nvidia FleX
solver. Some reasons are the fact that they have higher computational
complexity, boundary handling can be cumbersome for established
boundary conditions like pressure and velocity inlet/outlet conditions,
and the fact that there are no de-facto standard tools and frameworks
widely adopted by the community. Moreover the technological chal-
lenges of ensuring stability between the robotics and fluid simulation,
handling fast moving rigid bodies and complex geometries render the
development and use of such tools cumbersome. A recent application of
our proposed framework was shown in [25], where the authors simulate
3D material deposition with moving robots and in [26], where the au-
thors describe the software implementation of SPH and rigid body dy-
namics coupling.

For applications where accuracy of the fluid forces is not essential,
researchers have employed simpler fluid dynamics models [27], that can

Fig. 1. The abstract framework of interaction between the rigid body dynamics and the fluid solver. In this framework each simulator aggregates the in-
formation about the physical world in its own internal representation. Typical requirements for an SPH simulator are the support for different boundary models, a
pressure solver, viscosity models, numerical integration, surface tension and vorticity models as well as neighborhood search. The rigid body dynamics simulator
supports collision detection, computation of external forces (i.e., gravity), the definition of joint and friction constraints and the solver that enforces them, as well as
numerical integration. The exchange of information is kept to a minimum of forces and torques applied by the fluid to the rigid bodies and of the poses of rigid bodies
from the rigid body simulator to the fluid simulator. Optionally the particles positions can be communicated for rendering purposes. The framework of interaction
enforces synchronization and executes a numerical integration step for each simulator. The data is exchanged during explicit synchronization steps. This means that
practically the simulator with the largest timestep (which in our case is the fluid simulator) has to wait for multiple simulation steps of the slower simulator. The
particles positions vector occupies a significant amount of memory, especially for large geometrical objects. The data that describe the fluid forces and torques as well
as the rigid bodies positions are small and in practice add little memory overhead.

E. Angelidis et al. Robotics and Autonomous Systems 185 (2025) 104885 

3 



estimate the drag forces applied on a rigid body based on a drag coef-
ficient [28]. Such models have proven very useful for the testing of robot
control strategies, but their intrinsic lack of accuracy can often fail to
capture the complex phenomena attributed to the fluid flow, such as
vorticity, surface tension and turbulence. Dedicated fluid dynamics
solvers based on Lighthill’s theory have been developed for anguiliform
swimmers [29]. They present very good accuracy but their intrinsic lack
of applicability to other types of swimmers limits their adoption.

2. Methods

2.1. SPH method

SPH research has provided many variations of the original Gringold
and Monaghan’s 1977 method, many of which originate in computer
graphics [17,21]. In our work we used the weakly compressible SPH
(WCSPH) [30] and divergence-free SPH (DFSPH) [31] formulations,
both of which are well-established methods in the field. For the
modelling of viscosity, we used the XSPH viscosity formulation. Various
methods exist in SPH for the handling of boundaries between solids and
fluids. One approach is to sample the surface of solids with dummy
particles that can be used for the computation of the fluid’s properties,
but which are updated with the positions and velocities of the rigid
bodies, thus remaining attached to the rigid body. One of the most
commonly used techniques was first presented by Akinci et al. [32].,
where they solve the problem of non-uniform particle sampling. The
problem can arise when sampling complex surfaces with particles, and
in their method the sampling is performed by weighting the contribu-
tions of the boundary particles depending on their sampling density. An
example of this sampling of robot surfaces with particles can be seen in
Fig. 2. Another approach uses density [33] or volume maps [34], which
are implicit structures that enable a smooth boundary representation.
We implemented a version of Akinci’s model due to the ease of imple-
mentation and robustness. The timestep used was 1 ms.

2.2. Software implementation

We provide an open-source software implementation of the frame-
work of interaction described in the introduction (see also Fig. 1), using
Gazebo [35] with ODE as its physics engine (the user can also change the
simulator to bullet), a simulator which is widely adopted by the robotics
research community. Gazebo comes with a rich ecosystem built around
the Robot Operating System (ROS) [36], and support for multiple
physics engines (ODE, bullet, DART [37], simbody [38]). For the fluid
dynamics simulation, we coupled the open-source SPH-based SPlisHS-
PlasH2 library with Gazebo. The coupling is achieved through a C++

plugin3 written as an interface between the robot and the fluid simula-
tion. Within every simulation timestep Gazebo executes a physics
simulation step and computes the poses of all the rigid bodies in its
scene, by solving the equations of motion along with constraint equa-
tions, e.g., joint and non-penetration constraints. It then calls the fluid
simulation plugin to perform an update of its own world, using the
updated rigid bodies poses as input. The fluid simulator solves the SPH
equations of flow and computes the forces applied on the rigid bodies by
the particles. Each particle contributes to the force and torque applied
on the rigid bodies which are summed and sent back to the robot
simulator. It is worth noting that the two simulation engines can run
with independent timesteps, as often the control loops required in ro-
botics are in the range of ms, whereas the fluid simulation can stably run
with higher timesteps in the order of 10 s of ms. As such the robot
simulation can be run for some steps before a step of the fluid simulation
is executed. However, when larger timesteps are taken, the SPH solver

requires more iterations to converge so in practice very large timesteps
should be avoided. In order to ensure stability, we implemented a syn-
chronization strategy based on the Courant-Friedrichs-Lewy (CFL)
condition that dictates that the maximum distance a particle travels
within a timestep, should be smaller than two times the radius of the
particle to prevent high repulsive forces between particles. Typically,
the robot simulation stays close to real time when run independently
whereas the fluid simulation takes some seconds per ms of simulation
time as shown in the results section on the benchmarks that we con-
ducted. The specifications of the computers that we used are on the
middle of the spectrum of computers for personal use i.e., a laptop with
an intel i9–11900H CPU and an NVIDIA GeForce RTX 3080 GPU. We
expect the simulation to scale excellently on CPUs with multiple cores
-such as the ones used on High-Performance Computing clusters- as the
code is parallelized with OpenMP. The simulation is directly interfaced
with ROS and other plugins can be used simultaneously, providing
control and sensor loops along with the robot and fluid dynamics
simulation.

2.3. The simulation model

As the robot of choice, we used the Amphibot robot developed by the
Biorobotics Lab at EPFL. The Amphibot robot has been employed in the
past by multiple researchers as a means to examine various hypotheses
around the organization of locomotor neural networks [39] and to test
robot control algorithms [40]. Notably, the robot is slightly buoyant and
swims therefore just below the water surface, which makes it difficult to
simulate with other fluid simulation methods that are typically designed
for deeply immersed swimming. We employed a detailed 3D model of
the physical robot (Fig. 2), along with measurements of its dynamics
data. We conducted sets of experiments with the purpose of testing
locomotion controllers in silico compared to their physical counterparts
and to examine the applicability of our simulation architecture under
different conditions. We present two sets of simulations, one used for the
software validation of the simulations based on a simple-sine-based
controller, and a second one based on replaying the kinematics of
physical experiments with the real robot in order to assess the accuracy
of the simulation. The usefulness of our proposed simulation paradigm
becomes evident as a tool for the validation of the control algorithms as
well as the estimation of the accurate fluid flow. With this type of
simulation, we can explain the complex fluid phenomena that arise,
which simpler models are unable to capture.

The first set of simulations, with the purpose of validating the soft-
ware implementation, involves two different scenarios:

• Forward swimming
• Right turning

In both cases the control method that we used is a simple sine-based
controller, that generates target angles for the simulated robot joints and
applies them with a PID controller. We used the travelling wave func-
tion:

xi = Aisin(ωt+ 2πΔφ(i − 1)) + bi,

where xi is the target angle for the i th joint, Ai is the i th joint’s
amplitude, ω is the angular frequency, Δφ is the phase difference be-
tween controlled joints and bi is a term that adds bias to the wave and
induces turning. This system of equations generates the travelling wave
pattern. It should be noted that this simplified control method resembles
a steady-state Central Pattern Generator (CPG), a control method that
has previously been used to control the amphibot robot [39] and is used
as an initial validation step for the more complex CPG-controlled

2 https://github.com/InteractiveComputerGraphics/SPlisHSPlasH
3 https://bitbucket.org/hbpneurorobotics/splishsplash/src/master/

E. Angelidis et al. Robotics and Autonomous Systems 185 (2025) 104885 

4 

https://github.com/InteractiveComputerGraphics/SPlisHSPlasH
https://bitbucket.org/hbpneurorobotics/splishsplash/src/master/


locomotion patterns we used in the physical experiments.
The outcome of these simulations can be seen in Videos 1,42 ,53 ,64

,7 where the forward swimming (Video 1) and a comparison of the
forward swimming with different number of particles (Video 2) can be
seen. Similarly, we show the robot turning to the right (Video 3) and
compare the turning gait with different number of particles (Video 4).
One important observation from this set of simulations is that the tra-
jectory and velocity of the robot is practically identical and unaffected
by the number of particles, as long as the particle size is small enough to
capture the complexity and to ensure the stability of the simulation. In
order to properly test this hypothesis we performed a set of experiments
of the amphibot robot swimming forward starting from a mere 1 K
particles up to 447 K particles. The outcome of this experiment can be
seen in Video 5.8 We can observe that when the number of particles is
<20 K the simulation explodes. When the number of particles is higher
we get more stable simulations, however the robot changes direction
instead of following the expected forward trajectory that we observe in
the experiments with more particles. For our experiments around 300 K
particles in a simulated pool of dimensions of 3 × 6 m with particle size
of 0.008 m were enough to get stable simulations. However, the quality
and details that we can capture with the fluid simulation vary signifi-
cantly, as can be shown in Figs. 3 and 4. Details such as the formation of
vortices and wave propagation are minimally – if at all- captured when a
low resolution of particles is used, as opposed to the finest resolution
where such phenomena are successfully simulated. As such, depending
on the application at hand, a finer resolution might or may not be
essential, as the robot’s behavior is well captured in both cases. We note
that it is not the number of particles per se that affects the simulation
rather than the resolution i.e., the particle size. Indeed, when very few
particles are employed, the particle radius is large. When the radius is
comparable to the dimensions of the robot’s links the numerical accu-
racy that is necessary to capture the fluid forces is limited, thus the

swimming could be hindered. We empirically found that when the
particle radius compared to the robot’s length is at around 1/10 the
simulations were stable and the robot would follow the desired
trajectory.

One interesting confirmation of our simulations by real experiments
is that the formation of vortices behind the swimmer’s tail has been
confirmed both in other simulations and with physical experiments from
Particle Image Velocimetry (PIV) data [41] recorded in experiments of
coral catfish swimming. The hydrodynamics of undulatory swimming
have been thoroughly analyzed by Lauder and Tytell in [42] and we
refer the reader to their publication for further details. It should be noted
that numerical instability has been shown to affect the formation of
vortices in SPH [43], which can be mitigated by employing higher order
kernels, using an appropriate viscosity model, and appropriately small
timesteps, which are techniques we used in our work.

After validating the software implementation and performing the
first set of simulations, we compared them to physical experiments. This
is a crucial step towards understanding the applicability of particle-
based simulation methods in robotics as well as a means to quantify
the sim-to-real gap. As such, four different physical experiments were
performed using the Amphibot robot. The robot is equipped with LED
lights on each element that are tracked from above with a camera for
extracting swimming kinematics. This provides joint angles, as well as
the robot position and orientation over time, at a rate of 143 Hz. The
extracted joint angles are provided as reference angles for the simulated
robot PID controllers. We can then compare the resulting swimming
trajectories between the simulation and real experiments to assess how
closely the simulation replicates reality. In these experiments (Videos
6,7,8,9), the robot swims under different physical experiment scenarios:

1. Forward swimming – Dataset 1
2. Forward swimming and fast turning – Dataset 2
3. Slow turning – Dataset 3
4. In-place fast turning – Dataset 4

The robot’s control method is a CPG model [39], that is applied
through PID controllers. An analysis of the different gaits along with
their control signals is shown in Fig. 5. In the Figure multiple timesteps
have been chosen that correspond to a dynamic change of the robot’s

Fig. 2. Sampling of the simulated amphibot robot’s surface with particles[26]. In the top figure the physical amphibot robot model is shown. In the middle
figure, a side view of the simulated robot is shown. In the bottom figure the robot’s sampling with boundary particles is shown. With this technique proposed by
Akinci et al.[32], the surface of a robot’s mesh is sampled with particles that contribute to the solution of the SPH equations. This way, complex geometries with
irregular sampling can be accurately simulated. Here we show a discretization with particles of 0.008 radius, with a total number of particles at around 2.5 K.
Simulations where the dimensions of the robot’s links are comparable to the particle size can lead to the inaccurate estimation of the fluid forces applied on the
boundary particles. We chose a maximum particle size of 0.008 m which leads to an average of 300 particles on top of the robot’s links surfaces. As we show in
Table 3 the particle size plays an important role in the estimation of the fluid forces and subsequently of the swimming velocity.

4 https://youtu.be/IbyMPYz9kLc
5 https://youtube.com/shorts/6oeqGLC14v8
6 https://youtu.be/k5d1IuYph7s
7 https://youtube.com/shorts/DTxOKq5XWOo
8 https://youtu.be/qLFwJTDszo0

E. Angelidis et al. Robotics and Autonomous Systems 185 (2025) 104885 

5 

https://youtu.be/IbyMPYz9kLc
https://youtube.com/shorts/6oeqGLC14v8
https://youtu.be/k5d1IuYph7s
https://youtube.com/shorts/DTxOKq5XWOo
https://youtu.be/qLFwJTDszo0


gait. These complex gaits capture a wide range of the physical robot’s
behaviors, from forward swimming under a steady-state signal to abrupt
changes in the robot’s direction and swimming velocity. They also show
that the recorded joint positions closely follow the target signals pat-
terns. This is however not the case for the simulated robot, whose target
signals are not precisely followed by the simulated PID controllers (see
also Fig. 6). A direct comparison of the simulated and the real robot

swimming can be seen in Videos 6,97 ,108 ,119 .12 In these videos the
physical robot’s LEDs are overlayed with yellow markers on top of the
simulated robot. This visualization is the most straightforward way to
visually inspect the accuracy of the simulation compared to the real
experiments. The simulation parameters are provided in Table 2.

Fig. 3. Effect of the number of particles and radius on the accuracy of the simulation for the forward swimming scenario. Comparison of the forward
swimming simulated with 365 K particles / 0.008 m radius (top), 1.3 M particles / 0.007 m radius (middle) and 2.2 M particles / 0.006 m radius (bottom). It can be
observed that the robot ‘s pose is practically identical and invariant to the number of particles in the forward swimming gait. On the contrary, the level of details that
can be accurately captured by the fluid simulation varies significantly. The formation of vortices as well as other aspects such as the propagation of waves depends
heavily on the particle radius used to represent the fluid flow. With a particle radius smaller than 0.008 m the simulation breaks down due to numerical instabilities
as the number of particles used to represent the complex fluid flow is not enough.

9 https://youtu.be/O645VGloQ9g
10 https://youtu.be/cQZdVhbEekM
11 https://youtu.be/TDyQKz3ZIsU
12 https://www.youtube.com/watch?v=YDcLCObAWhI

E. Angelidis et al. Robotics and Autonomous Systems 185 (2025) 104885 

6 

https://youtu.be/O645VGloQ9g
https://youtu.be/cQZdVhbEekM
https://youtu.be/TDyQKz3ZIsU
https://www.youtube.com/watch?v=YDcLCObAWhI


Fig. 4. Effect of the number and radius of particles on the accuracy of the simulation for the robot turning scenario. Comparison of the turning gait simulated
with 365 K particles / 0.008 m radius(top), 1.3 M particles / 0.007 m radius (middle) and 2.2 M particles / 0.006 m radius (bottom). As in the case of the forward
swimming, the particle radius largely defines the details captured by the fluid simulation as it is the parameter that defines the spatial discretization. Here we can
observe that the waving patterns and formation of complex vortices is captured progressively more accurately as the number of particles increases. In the 2.2 M
particles simulation, the formation of waves is modelled whereas in the simulations with fewer particles the waves are dampened.

E. Angelidis et al. Robotics and Autonomous Systems 185 (2025) 104885 

7 



Moreover, to better compare the outcome of the simulation with the real
experiments we performed an analysis of the swimming trajectory of the
robot shown in Fig. 7. The data that we used for the simulation and for
the experiment are not geometrically identical as the experimental data

is acquired from the LEDs on the robot whereas on the simulated robot
we used the frames attached to the robot’s links, but they present a good
basis for quantitative comparison. The main observation of the trajec-
tories is that the overall pattern is well matched, but there is some

Fig. 5. The datasets input data. Depicted are the target joint angles vs the recorded angles. The locomotor gait is generated by a CPG model. The datasets
correspond to forward swimming (Dataset 1), forward swimming with fast turning (Dataset 2), slow turning (Dataset 3) and in-place fast turning (Dataset 4). To
further analyze the gait we choose time points of interest for each Dataset. For Dataset 1 the timestep T1 corresponds to the first peak of the travelling wave where the
robot deforms towards the right side. The timestep T2 is the corresponding peak towards the left side. At timestep T3 the gait has fully developed, and the robot is
fully deformed towards the right side. Timestep T4 corresponds to one of the peaks to the left side. For Dataset 2 timestep 1 corresponds to the initial right peak, T2 to
the initial left peak. At timestep T3 the gait has shifted towards the right. At timestep T4 the wave has fully developed towards the right. By comparing Datasets 1 and
2 we can already observe the turning behavior, which is confirmed by the simulations. For Dataset 3 timestep T1 corresponds to a minor shift of the gait towards the
right at T1 and towards the left at T2 and T3. These timesteps can be used to determine whether the effect of small shifts of the gait towards the side leads to turning
behavior in the simulation. Finally, Dataset 4 is the most complicated pattern, presenting a slow left turn, followed by an abrupt change of direction towards the right.
This very fast transition is one of the many complex gaits that can be encoded through a CPG. Timestep T1 shows the beginning of the abrupt turning. At timesteps T2
and T3 the gait has fully developed and shifted towards the right, with peak amplitude and frequency, causing the robot to turn towards the right. All these expected
behaviors are well captured by our simulations, proving their value as a validation tool for robot control algorithms.

Fig. 6. The recorded vs simulated joints. A good evaluation metric of the divergence between simulation and reality is to examine the robot’s experimentally
recorded joints angles in comparison to the robot’s simulated angles. The simulated PID controller tries to apply the angles, but due to the rigid body dynamics
solver’s inability to exactly enforce the joint angles, there is small discrepancy between the simulated and the experimentally recorded joint angles. This is another
source of sim-to-real gap, coming from one component of the physics simulation, the rigid body dynamics solver.

E. Angelidis et al. Robotics and Autonomous Systems 185 (2025) 104885 

8 



damping of the robot’s velocity in the simulation as we analyze in the
Discussion section. We observe that the simulated robot’s PID controller
cannot follow the recorded angles of the physical robot precisely due to
the numerical solver’s inability to satisfy the joint constraints (Figs. 5
and 6).

It is well established that a plethora of factors contribute to the sim-
to-real gap, namely sensors’ noise, PID controller imperfections, differ-
ences between the dynamical model of the simulated robot and the
dynamics of the real robot, the infeasibility of replicating the initial
conditions of the experiment and the difficulty of estimating the fluid
dynamics simulation parameters, such as viscosity coefficients. Despite
all these sources of discrepancy, the simulation captures the overall
behavior of the robot well.

To further quantify the sim-to-real gap, we present an analysis of the
orientation vector of the simulated and the real robot. The vector’s
origin is at the tail link and its end at the head link, thus giving a good
estimate of the robot’s pose. The animations for the 4 Datasets can be
seen in Animations 1,13 2,14 3,15 4.16 The robot’s orientation is close to
the experiments, given the sources of sim-to-real gap. The robot rolls
minimally as is observed in the real robot but does not fall to the sides as
would be the case if there was an inaccurate estimation of the forces that

are applied on the robot link’s side surfaces. Buoyancy is heavily
dependent on the parametrization of the simulation and the mass and
volume data, and as we can see in the Videos 1 and 3, the robot swims
close to the surface, as is the case with the real robot. An inaccurate
estimation of the mass can quickly lead to numerical instabilities as the
robot might be swimming closer to the surface and thus fewer particles
would be in contact with the robot’s links. In this case the number of
particles would not be enough to accurately compute the forces applied
from the fluid to the robot’s links.

Another important metric for the estimation of the effect of the
particle simulation is shown in Table 3. On the table an estimation of the
forward swimming velocity for a varying number of particles is given.
The analysis shows that the finer particle resolution gives a more ac-
curate estimation of the swimming velocity, which is higher as the
particle size decreases. Nevertheless, the effect of the particle size is not
so significant, as with the finest particle resolution the velocity changes
from 0.627 m/s to 0.645 m/s which is a 2.7% underestimation. Thus,
simulations with fewer particles which are computationally less costly
can be used to give an estimation of the overall swimming behavior.
Finer resolutions can be used to estimate the velocity more accurately as
well as to add more details to the fluid simulation, such as the formation
of vortices, waves, splashes etc. Finally we attempt to quantify the dif-
ference between the trajectories for the experiments and the simulations
by employing similarity metrics as per [44] as shown in Table 4. For the
different datasets we can observe that the similarity measures remain
relatively small, meaning that the errors between the curves are not
high. Furthermore the values remain similar between the different
datasets, allowing us to conclude that the gap between simulation and
reality remains relatively consistent throughout the experiments.

3. Discussion

To our knowledge this is one of the first applications of SPH on robot
swimming, and the first one that compares simulations with real ex-
periments in order to estimate the sim-to-real gap. We found that the
agreement between the experimental and simulated data is good, given
all the factors that contribute to the sim-to-real gap. This line of works
paves the way for future works that would further focus on closing the
sim-to-real gap.

It has been shown in the literature that SPH simulations tend to
overpredict dissipation at finite viscosities, whereas in the absence of
viscosity, the particle movement is chaotic [45]. This leads to a damping
effect due to dissipation, which can be observed in our simulations. It is
particularly difficult to find parameters for viscosity that are at the same
time physically meaningful and lead to stable simulations. We note that
in our simulations there is energy loss due to the XSPH formulation of
viscosity as analyzed byMonaghan [18]. This means that it is impossible
to accurately predict the behavior of the robot when it is not actively
swimming, as is the case when it is pushed to drift on the swimming
pool.

The simulation results show that SPH-based robotics simulations can
capture the intricacies of self-propelled swimming, even when complex
interactions take place, such as abrupt changes in the velocity and di-
rection of the robot. The simulations are nevertheless very close to the
real experiments, given the various factors that are difficult to model,
including the initial position of the robot, the noise in the sensory data,
the estimation of the dynamics parameters of the simulated models, the
parametrization of viscosity and numerical errors among others. These
factors are worth exploring in future work as they would help reduce the
sim-to-real gap. We found in practice that the parametrization of vis-
cosity is the parameter that is the most important for the fluid simula-
tion, as too much viscosity dampens the robot’s movement. On the
contrary low viscosity leads to chaotic movement of the particles and
instability of the fluid simulation as is mentioned previously. The rest of
the factors that are coming from the differences between the experi-
mental setup and the simulation setup can be alleviated by establishing

Table 2
The parameters used for the simulations. The timestep size is the most
important parameter when it comes to the stability of the simulation. It can vary
between the fluid and the robotics simulators, with the cost of adding syn-
chronization complexity. In most cases the control loops of the robotic simula-
tion require timesteps in the order of 1 ms, whereas the fluid simulation for slow
moving particles can be simulated with timesteps in the order of 10 s of ms.
However the larger the timestep, the more iterations it takes for the SPH solver
to converge. This tradeoff should be taken into account when designing simu-
lations such as the ones we show. The viscosity model that we used for Gazebo/
SPlisHSPlasH is XSPH with a model-specific parameter of 0.001. This model-
specific value was chosen as a compromise between stability and excessive
damping of the robot’s swimming velocity. Smaller values lead to chaotic par-
ticle movement whereas higher values overdamp the robot’s velocity. The
adaptive timestep size for the fluid simulation has an upper limit that is given by
the Courant–Friedrichs–Lewy (CFL) condition[47]. In the computation of the
particles velocity needed by the CFL condition, the boundary particles’ velocities
are also taken into account. The accuracy of the simulation as well as the
computational time are directly influenced by the particle size which also de-
termines the number of particles. The SPH method for Gazebo/SPlisHSPlasH is
DFSPH. We use a semi-implicit Euler integration scheme for the fluid simulation.
The time integration scheme used in the Open Dynamics Engine that powers the
Gazebo simulation is referred to as a first order Euler integration scheme, but no
more details about the implementation are given.v

SPH method DFSPH

Boundary handling method Akinci et al.
Timestep Size 1ms
Viscosity Model XSPH
Viscosity Parameter (model specific) 0.001
Particle Radius 0.006 m - 0.008 m
Particle Number ~365 K - ~2.2M
SPH Kernel Cubic Spline

13 https://youtu.be/J8zbCbF3GP0
14 https://youtu.be/gUhWXMozPVs
15 https://youtu.be/R3hh6iYN7HQ
16 https://youtu.be/rFAxx5mPr50

v http://www.ode.org/ode-latest-userguide.html#sec_3_3_0

E. Angelidis et al. Robotics and Autonomous Systems 185 (2025) 104885 

9 

https://youtu.be/J8zbCbF3GP0
https://youtu.be/gUhWXMozPVs
https://youtu.be/R3hh6iYN7HQ
https://youtu.be/rFAxx5mPr50
http://www.ode.org/ode-latest-userguide.html#sec_3_3_0


protocols for the successful reproduction of experiments in silico. Such
examples could be the accurate recording of the robot’s pose at the
beginning of every experiment, the experimental determination of the
robot’s links inertial tensors and the recording of multiple camera views
for better visual inspection.

The simulations that we show are just a small subset of the possible
robotics simulations that would benefit from our framework. We envi-
sion scenarios such as simulating amphibious field robots, biorobots that
receive sensory feedback and adapt their control loops, robots manip-
ulating fluids, as well as highly viscous and elastic materials simulations
such as the ones shown in [25]. Furthermore, multi-physics simulations
combining material models for soft body simulation (FEM) and
advanced contact resolution methods such as Incremental Potential
Contact [46] (IPC) would give the possibility to model different types of
media in the same simulation e.g., granular media and environments
that mix water, sand, mud, dry ground etc.

From the fluid simulation point of view, various solutions that in-
crease the SPH accuracy have been proposed, including the adaptation
of the particles size depending on the proximity to the areas in the
environment where motion occurs. In the context of robotics simula-
tions, the fluid flow is more turbulent in the areas proximal to the robot,
where the fluid forces need to be estimated accurately and where a finer
particle granularity could provide such accuracy. On the contrary areas
where the fluid is resting could be modelled with fewer particles.

Various methods like FVM, FDM, IBM have been proposed for the
simulation of self-propelled swimming robots as we discuss in the
Introduction part. The difficulty of boundary handling for fast moving
and shape changing bodies, mesh generation and updates for complex
geometries, the treatment of open simulation worlds limit their appli-
cability to pre-determined computational domains. Particle-based
methods on the other hand give a very useful tool for use cases such
as swimming on the surface, abrupt changes in the robot velocity, fast
changing robot morphology.

Table 4
Quantitative comparison of the trajectories’ curves. In order to quantify the
gap between the simulations and the experimental data we use two metrics that
can be used to assess the difference between two curves. The two metrics are the
Discrete Frechet distance and the Curve Length similarity measure. The Discrete
Frechet distance computes the shortest leash distance that is required to connect
the two curves, whereas the Curve Length distance estimates the differences in
arc-length distance between the two curves[44]. For both methods a smaller
value represents a higher similarity between the two curves.

Similarity Measure Dataset 1 Dataset 2 Dataset 3 Dataset 4

Discrete Frechet distance 1.21 0.62 0.59 0.58
Curve Length 7.26 8.36 6.35 10.42

Fig. 7. Simulated and recorded trajectories for the experiments. The overall behavior of the robot is well captured by the simulation and is close to the real
experiments. Differences between the simulation and the experiment can be attributed to the noisy data, the dynamics model, the imperfect PID controller, the
difficulty of tuning the simulation parameters and the infeasibility of precisely reproducing the initial conditions of the experiment. Especially for Dataset 4, the
recording of the robot’s trajectory is interrupted due to the sensor’s inability to accurately record the link frames, as can also be seen in Video 8.

Table 3
Forward swimming velocity relative to the number of particles. The robot’s
forward swimming velocity is influenced by the particle size, nevertheless its
effect does not significantly increase as the resolution increases. This means that
simulations with lower resolutions that are computationally less costly can be
used to estimate the overall behavior of a robot. A more costly simulation with a
higher number of particles can provide a more accurate estimation of the
swimming velocity as well as the overall behavior of the fluid as shown in the
videos and figures.

Number of particles Particle size Forward swimming velocity

365K 0.008 m 0.627 m/s
1.3M 0.007 m 0.640 m/s
2.2M 0.006 m 0.645 m/s

E. Angelidis et al. Robotics and Autonomous Systems 185 (2025) 104885 

10 



As a general conclusion we anticipate that the adoption of SPH
methods and the usage of multi-physics simulation in robotics will bring
us one step closer to bridging the gap between simulation and reality.
We believe that our work is a useful step towards this direction.

Data and materials availability:
All data and materials will be made publicly available upon publi-

cation acceptance. The software implementation is already open-
sourced and can be found in17

CRediT authorship contribution statement

Emmanouil Angelidis: Writing – review & editing, Writing – orig-
inal draft, Visualization, Validation, Supervision, Software, Resources,
Project administration, Methodology, Investigation, Funding acquisi-
tion, Formal analysis, Data curation, Conceptualization. Jonathan
Arreguit: Software, Methodology, Investigation, Conceptualization.
Jan Bender: Writing – review & editing, Supervision, Software, Meth-
odology, Investigation, Funding acquisition, Formal analysis, Concep-
tualization. Patrick Berggold: Software, Conceptualization. Ziyuan
Liu: Resources, Project administration. Alois Knoll: Supervision, Re-
sources, Project administration. Alessandro Crespi: Visualization,
Validation, Software, Investigation, Data curation, Conceptualization.
Auke J. Ijspeert:Writing – review & editing, Visualization, Validation,
Supervision, Software, Resources, Project administration, Methodology,
Investigation, Funding acquisition, Formal analysis, Data curation,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

Funding: J.A. and A.J.I are/were funded by the ERC Synergy grant
number 951477 and the HFSP grant number RGP0027/2017.

Data availability

Data will be made available on request.

References

[1] D. De Padova, L. Calvo, P.M. Carbone, D. Maraglino, M. Mossa, Comparison
between the Lagrangian and Eulerian Approach for Simulating Regular and
Solitary Waves Propagation, Breaking and Run-Up, Appl. Sci 11 (2021) 9421.

[2] J.M. Domínguez, et al., DualSPHysics: from fluid dynamics to multiphysics
problems, Comput. Part. Mech. 9 (2022) 867–895.

[3] G. Qiu, S. Henke, J. Grabe, Application of a Coupled Eulerian–Lagrangian approach
on geomechanical problems involving large deformations, Comput. Geotech. 38
(2011) 30–39.

[4] A.J. Barlow, P.-H. Maire, W.J. Rider, R.N. Rieben, M.J. Shashkov, Arbitrary
Lagrangian–Eulerian methods for modeling high-speed compressible multimaterial
flows, J. Comput. Phys. 322 (2016) 603–665.

[5] T. Kempe, J. Fröhlich, An improved immersed boundary method with direct
forcing for the simulation of particle laden flows, J. Comput. Phys. 231 (2012)
3663–3684.

[6] R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and
application to non-spherical stars, Mon. Not. R. Astron. Soc. 181 (1977) 375–389.

[7] C.J. Hughes, Single-Instruction Multiple-Data Execution, Springer Nature, 2022.
[8] S. Pacholak, S. Hochstein, A. Rudert, C. Brücker, Unsteady flow phenomena in

human undulatory swimming: a numerical approach, Sports Biomech 13 (2014)
176–194.

[9] S. Kern, P. Koumoutsakos, Simulations of optimized anguilliform swimming,
J. Exp. Biol. 209 (2006) 4841–4857.

[10] L. Yan, et al., A numerical simulation method for bionic fish self-propelled
swimming under control based on deep reinforcement learning, Proc. Inst. Mech.
Eng. Part C J. Mech. Eng. Sci. 234 (2020) 3397–3415.

[11] J. Zhang, et al., Numerical Study of the Fish-like Robot Swimming in Fluid with
High Reynolds Number: immersed Boundary Method, Actuators 11 (2022) 158.

[12] E.D. Tytell, C.-Y. Hsu, T.L. Williams, A.H. Cohen, L.J. Fauci, Interactions between
internal forces, body stiffness, and fluid environment in a neuromechanical model
of lamprey swimming, Proc. Natl. Acad. Sci 107 (2010) 19832–19837.

[13] M. Gazzola, P. Chatelain, W.M. van Rees, P. Koumoutsakos, Simulations of single
and multiple swimmers with non-divergence free deforming geometries,
J. Comput. Phys. 230 (2011) 7093–7114.

[14] S.E. Hieber, P. Koumoutsakos, An immersed boundary method for smoothed
particle hydrodynamics of self-propelled swimmers, J. Comput. Phys. 227 (2008)
8636–8654.

[15] S.J. Lind, B.D. Rogers, P.K. Stansby, Review of smoothed particle hydrodynamics:
towards converged Lagrangian flow modelling, Proc. R. Soc. Math. Phys. Eng. Sci.
476 (2020) 20190801.

[16] Moukalled, F., Mangani, L. & Darwish, M. The Finite Volume Method. in The Finite
Volume Method in Computational Fluid Dynamics: An Advanced Introduction with
OpenFOAM® and Matlab (eds. Moukalled, F., Mangani, L. & Darwish, M.) 103–135
(Springer International Publishing, Cham, 2016). doi:10.1007/978-3-319-16874-
6_5.

[17] Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A. & Teschner, M. SPH Fluids in
Computer Graphics - Eurographics State-of-the-art report. (2014).

[18] J.J. Monaghan, Smoothed Particle Hydrodynamics and Its Diverse Applications,
Annu. Rev. Fluid Mech 44 (2012) 323–346.

[19] M.S. Shadloo, G. Oger, D. Le Touzé, Smoothed particle hydrodynamics method for
fluid flows, towards industrial applications: motivations, current state, and
challenges, Comput. Fluids 136 (2016) 11–34.

[20] (叶挺)(潘定一)(黄灿) T Ye, D. Pan, C. Huang, M. Liu, Smoothed particle
hydrodynamics (SPH) for complex fluid flows: recent developments in
methodology and applications, Phys. Fluids 31 (2019) 011301.

[21] Koschier, D., Bender, J., Solenthaler, B. & Teschner, M. Smoothed Particle
Hydrodynamics Techniques for the Physics Based Simulation of Fluids and Solids.
(2019) 10.2312/egt.20191035.

[22] H. Gotoh, A. Khayyer, H. Ikari, T. Arikawa, K. Shimosako, On enhancement of
Incompressible SPH method for simulation of violent sloshing flows, Appl. Ocean
Res. 46 (2014) 104–115.

[23] T. Lopez-Guevara, N.K. Taylor, M.U. Gutmann, S. Ramamoorthy, K. Subr,
Adaptable Pouring: teaching Robots Not to Spill using Fast but Approximate Fluid
Simulation, in: Proceedings of the 1st Annual Conference on Robot Learning,
PMLR, 2017, pp. 77–86.

[24] M. Macklin, M. Müller, Position based fluids, ACM Trans. Graph. 32 (2013) 104, 1-
104:12.

[25] U. Berdica, Y. Fu, Y. Liu, E. Angelidis, C. Feng, Mobile 3D Printing Robot
Simulation with Viscoelastic Fluids, in: 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2021, pp. 7557–7563, https://doi.org/
10.1109/IROS51168.2021.9636114.

[26] E. Angelidis, et al., Gazebo Fluids: sPH-based simulation of fluid interaction with
articulated rigid body dynamics, in: 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2022, pp. 11238–11245, https://doi.org/
10.1109/IROS47612.2022.9982036.

[27] Ö. Ekeberg, A combined neuronal and mechanical model of fish swimming, Biol.
Cybern. 69 (1993) 363–374.

[28] R. Godoy-Diana, B. Thiria, On the diverse roles of fluid dynamic drag in animal
swimming and flying, J. R. Soc. Interface 15 (2018) 20170715.

[29] M. Porez, F. Boyer, A.J. Ijspeert, Improved Lighthill fish swimming model for bio-
inspired robots: modeling, computational aspects and experimental comparisons,
Int. J. Robot. Res. 33 (2014) 1322–1341.

[30] J.P. Morris, P.J. Fox, Y. Zhu, Modeling Low Reynolds Number Incompressible
Flows Using SPH, J. Comput. Phys. 136 (1997) 214–226.

[31] J. Bender, D. Koschier, Divergence-free smoothed particle hydrodynamics, in:
Proceedings of the 14th ACM SIGGRAPH /Eurographics Symposium on Computer
Animation, New York, NY, USA, Association for Computing Machinery, 2015,
pp. 147–155, https://doi.org/10.1145/2786784.2786796.

[32] N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler, M. Teschner, Versatile rigid-fluid
coupling for incompressible SPH, ACM Trans. Graph. 31 (62) (2012) 1–62, 8.

[33] D. Koschier, J. Bender, Density maps for improved SPH boundary handling, in:
Proceedings of the ACM SIGGRAPH /Eurographics Symposium on Computer
Animation 1–10 (Association for Computing Machinery, New York, NY, USA, 2017,
https://doi.org/10.1145/3099564.3099565.

[34] Bender, J., Kugelstadt, T., Weiler, M. & Koschier, D. Volume Maps: an Implicit
Boundary Representation for SPH. in Motion, Interaction and Games on - MIG ’19
1–10 (ACM Press, Newcastle upon Tyne, United Kingdom, 2019). doi:10.11
45/3359566.3360077.

[35] N. Koenig, A. Howard, Design and use paradigms for Gazebo, an open-source
multi-robot simulator, in: 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566) 3, 2004, pp. 2149–2154,
vol.3.

[36] Quigley, M. et al. ROS: an open-source Robot Operating System. in ICRA Workshop
On Open Source Software vol. 3 5 (Kobe, Japan, 2009).

[37] J. Lee, et al., DART: dynamic Animation and Robotics Toolkit, J. Open Source
Softw. 3 (2018) 500.

[38] M. Sherman, A. Seth, S.Simbody Delp, Multibody dynamics for biomedical
research, Procedia IUTAM 2 (2011) 241–261.

[39] A. Crespi, A.J. Ijspeert, AmphiBot II: an Amphibious Snake Robot that Crawls and
Swims using a Central Pattern Generator, in: Proc. 9th Int. Conf. Climbing Walk.
Robots CLAWAR 2006, 2006.

17 https://bitbucket.org/hbpneurorobotics/splishsplash/src/master/

E. Angelidis et al. Robotics and Autonomous Systems 185 (2025) 104885 

11 

http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0001
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0001
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0001
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0002
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0002
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0003
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0003
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0003
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0004
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0004
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0004
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0005
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0005
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0005
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0006
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0006
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0007
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0008
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0008
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0008
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0009
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0009
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0010
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0010
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0010
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0011
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0011
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0012
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0012
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0012
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0013
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0013
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0013
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0014
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0014
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0014
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0015
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0015
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0015
http://10.1007/978-3-319-16874-6_5
http://10.1007/978-3-319-16874-6_5
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0018
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0018
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0019
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0019
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0019
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0020
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0020
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0020
http://10.2312/egt.20191035
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0022
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0022
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0022
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0023
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0023
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0023
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0023
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0024
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0024
https://doi.org/10.1109/IROS51168.2021.9636114
https://doi.org/10.1109/IROS51168.2021.9636114
https://doi.org/10.1109/IROS47612.2022.9982036
https://doi.org/10.1109/IROS47612.2022.9982036
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0027
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0027
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0028
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0028
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0029
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0029
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0029
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0030
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0030
https://doi.org/10.1145/2786784.2786796
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0032
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0032
https://doi.org/10.1145/3099564.3099565
http://10.1145/3359566.3360077
http://10.1145/3359566.3360077
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0035
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0035
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0035
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0035
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0037
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0037
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0038
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0038
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0039
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0039
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0039
https://bitbucket.org/hbpneurorobotics/splishsplash/src/master/


[40] E. Angelidis, et al., A spiking central pattern generator for the control of a
simulated lamprey robot running on SpiNNaker and Loihi neuromorphic boards,
Neuromorphic Comput. Eng. 1 (2021) 014005.

[41] N.B. Tack, K.T. Du Clos, B.J. Gemmell, Anguilliform Locomotion across a Natural
Range of Swimming Speeds, Fluids 6 (2021) 127.

[42] G.V. Lauder, E.D. Tytell, Hydrodynamics of Undulatory Propulsion. in Fish
Physiology, 23, Academic Press, 2005, pp. 425–468.

[43] W. Dehnen, H. Aly, Improving convergence in smoothed particle hydrodynamics
simulations without pairing instability, Mon. Not. R. Astron. Soc. 425 (2012)
1068–1082.

[44] C.F. Jekel, G. Venter, M.P. Venter, N. Stander, R.T. Haftka, Similarity measures for
identifying material parameters from hysteresis loops using inverse analysis, Int. J.
Mater. Form. 12 (2019) 355–378.

[45] S. Adami, X.Y. Hu, N. Adams, Simulating 3D turbulence with SPH, Undefined
(2012).

[46] M. Li, et al., Incremental potential contact: intersection-and inversion-free, large-
deformation dynamics, ACM Trans. Graph. 39 (2020), 49:49:1-49:49:20.

[47] Goswami, P. & Pajarola, R. Time adaptive approximate SPH. in Goswami, Prashant;
Pajarola, Renato (2011). Time adaptive Approximate SPH. In: Workshop on Virtual

Reality Interaction and Physical Simulation VRIPHYS, Lyon, France, 5 December 2011 -
6 December 2011. Eurographics, 19-28. (eds. Bender, J., Erleben, K. & Galin, E.)
19–28 (Eurographics, VRIPHYS 2011, 2011). doi:10.2312/PE/vriphys/vriphys11
/019-028.

Dr. Emmanouil Angelidis holds a PhD from chair of Robotics,
Artificial Intelligence and Embedded Systems of the Technical
University of Munich (TUM), in collaboration with the Bio-
robotics Lab of the École Polytechnique Fédérale de Lausanne
(EPFL). He is currently a principal robotics and simulation
research engineer with Huawei Technologies in Munich, Ger-
many. His research interests include autonomous locomotion,
robotics simulation, multi-physics simulation, neurorobotics
and artificial intelligence.

E. Angelidis et al. Robotics and Autonomous Systems 185 (2025) 104885 

12 

http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0040
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0040
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0040
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0041
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0041
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0042
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0042
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0043
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0043
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0043
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0044
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0044
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0044
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0045
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0045
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0046
http://refhub.elsevier.com/S0921-8890(24)00269-0/sbref0046
http://10.2312/PE/vriphys/vriphys11/019-028
http://10.2312/PE/vriphys/vriphys11/019-028

	A smoothed particle hydrodynamics framework for fluid simulation in robotics
	1 Introduction
	1.1 Previous works

	2 Methods
	2.1 SPH method
	2.2 Software implementation
	2.3 The simulation model

	3 Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


