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Figure 1: Simulation sequence of a crane with an electromagnet picking up 125 nickel cubes and moving them from one box to another.
The crane is simulated as a rigid body system connected with joints and actuated by motors, the electromagnet is attached with a rope to
the crane. The whole simulation system is strongly coupled, that is, the movement and handling of rigid bodies, constraints and magnetic
effects are handled together, leading to a robust and easy to setup simulation without any bouncing artifacts with an average time step size
of ∆t = 1.92ms.

Abstract
We present a strongly coupled method for the robust simulation of linear magnetic rigid bodies. Our approach describes the
magnetic effects as part of an incremental potential function. This potential is inserted into the reformulation of the equations
of motion for rigid bodies as an optimization problem. For handling collision and friction, we lean on the Incremental Potential
Contact (IPC) method. Furthermore, we provide a novel, hybrid explicit / implicit time integration scheme for the magnetic
potential based on a distance criterion. This reduces the fill-in of the energy Hessian in cases where the change in magnetic
potential energy is small, leading to a simulation speedup without compromising the stability of the system. The resulting
system yields a strongly coupled method for the robust simulation of magnetic effects. We showcase the robustness in theory by
analyzing the behavior of the magnetic attraction against the contact resolution. Furthermore, we display stability in practice
by simulating exceedingly strong and arbitrarily shaped magnets. The results are free of artifacts like bouncing for time step
sizes larger than with the equivalent weakly coupled approach. Finally, we showcase the utility of our method in different
scenarios with complex joints and numerous magnets.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Including magnetic forces in rigid-body simulation enables a large
spectrum of interesting effects. These range from simulating simple
permanent magnets sticking notes on a whiteboard across intricate
mechanisms seemingly moving on their own to electromagnetic-
powered machinery, to name a few. Studying magnetic effects re-
mains an interesting and challenging topic in computer graphics
since they exhibit a highly unique motion given their governing
equations. Depending on the orientation of magnets and the mate-

rial properties, magnetic materials either attract or repel each other.
The strength of these forces is strongly dependent on the distance
between magnetic objects, that is, the closer two magnetic bodies
are, the stronger the force becomes.

In computer graphics, magnetic effects have been studied in
the context of rigid-body simulations [TGPS08], the simulation of
ferromagnets [KPH18; KH20], magnetic deformables like mag-
netic silly putty [SNZ*21], thin shells [CNZ*22], or ferroflu-
ids [IYI*12b; HHM19]. While previous approaches have already
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shown the intricacy of magnetic phenomena, there are some unique
properties, especially of the magnetic force that should be con-
sidered when simulating magnetic objects. Primarily, the magnetic
forces drastically increase in strength as the distance between two
magnetic objects approaches zero. Thus, these forces are very sen-
sitive to small displacements in close proximity to other objects.
Additionally, the commonly used magnetic force approximation
[TGPS08; KPH18] is unbounded in strength, resulting in infinite
forces when the distance between the magnetized objects is zero.
Both properties challenge the time discretization of magnetic simu-
lations. Accounting for the magnetic forces explicitly, that is, com-
puting them at the beginning of the time step and keeping them
fixed, will lead to inaccuracies at best, and unrecoverable, near-
infinite forces at worst. Secondly, the magnetic attraction forces
directly oppose the direction of contact forces. Thus, it must be
ensured by the contact solver that magnetic objects never reach a
configuration leading to near-infinite forces while at best providing
an interpenetration-free simulation state.

As a result, providing external magnetic forces to an off-the-shelf
rigid body solver may result in the simulation showing unstable be-
havior like bouncing or explosions. Both can be attributed to the
fact that by iterating between external magnetic forces and colli-
sion resolution, the solver may fail to find an equilibrium of forces.
This approach is known as weakly coupling the magnetic solver
with the rigid body solver. Further, this may result in lower com-
putational performance of the system, if we need to increase the
temporal resolution to reduce the effects of jittering or to correctly
handle strong magnetic attractions. For complex and large simula-
tions featuring many strong magnets and complex collisions, the
weakly coupled approach will struggle to remain stable, even for
small time steps.

We propose a strongly coupled method for handling linear mag-
netic effects to solve these issues. To this end, we reformulate
the equations of motion as a minimization problem, turning the
magnetic effects into an Incremental Potential (IP) formulation.
Thus, we present a magnetic potential formulation that is guar-
anteed to find a stable equilibrium. The resulting method ensures
an interpenetration-free and robust simulation of magnetic bodies
even in the presence of strong magnets and challenging geometries.
In addition, we present a novel, hybrid time integration scheme
for magnetic forces based on a hybrid explicit / implicit scheme.
Thus, the implicit time integration of the magnetic forces is only
used between object pairs close enough to be in the sensitive re-
gion of the forces. This allows us to ensure, by construction, that
sudden motions, in the form of large correction updates, within
the iterative non-linear solution do not disturb the stability of the
overall system. Furthermore, magnetic pairs far away from each
other are handled explicitly. The forces between these objects are
still necessary to capture but are much less sensitive to the cor-
rections that occur during the iterations of the non-linear solver.
Handling these forces explicitly results in no contribution to the
second-order derivatives, reducing the otherwise 100% fill-in of the
global linear system solver. The resulting method allows for a sta-
ble and interpenetration-free simulation of strong, linear magnetic
rigid bodies with large time step sizes. Thus, our method can suc-
cessfully simulate a wide range of complex magnetic effects and
mechanisms like the electromagnetic crane in Fig. 1.

2. Related work

Outside of the field of computer graphics, the simulation of mag-
netic fields and their effects have been studied for a long time.
For numerous simple scenarios, the magnetic fields can be found
analytically by solving Maxwell’s equations. While these can be
found in the typical physics textbooks [Jac98], finding the respec-
tive fields for arbitrary geometries, materials. and scene configura-
tion quickly becomes a challenge. A common approach used e.g. in
mechanical engineering [JSS*22], is to use state-of-the-art solvers
like COMSOL or ANSYS MAXWELL. These solve Maxwell’s
equations using different simulation techniques like e.g. the finite
element method [KABA11].

In visual computing, we avoid solving the full set of Maxwell’s
equations for magnetic effects. Thus, we usually solve a simpli-
fied problem, restricting ourselves to the simulation of magneto-
statics. In the pioneering work of Thomaszewski et al. [TGPS08],
the authors simulate rigid bodies by introducing an external mag-
netic force and torque. Their method can simulate permanent and
linear magnets, that is, dia- and paramagnets, and serves as the basis
of our approach. Kim et al. [KPH18] extend this approach by in-
troducing a method for simulating ferromagnetic materials. These
materials remain magnetized after an initial magnetization and thus
feature a non-linear relationship between the magnetization and
the magnetic field. Kim and Han [KH20] derive a surface-only ap-
proach for simulating ferromagnetic materials called the magnetic
boundary method. Their derivation yields a non-diverging mag-
netic force for the simulation of magnetic objects with, e.g., sharp
features. For the volumetric, ferromagnetic model, Kim and Han
[KH22] improve the convergence of the magnetization solver by
including the changes in magnetization and magnetic fields if the
spatial configuration changes. The commonalities of the aforemen-
tioned methods lie in the interplay between the handling of mag-
netic effects and the rigid bodies. These provide the magnetic in-
fluences as forces and torques as input for the rigid body solver.
While this allows the rigid bodies to be simulated with a multitude
of different state-of-the-art methods [BET14], the strong coupling
of our method provides for example better robustness for large time
steps.

Other magnetic effects that have been shown include the field
of magnetic fluids including ferrofluids. Ishikawa et al. [IYI*12b;
IYI*12a; IYI*13] simulate magnetic fluids by introducing an exter-
nal magnetic force to a Smoothed Particle Hydrodynamics (SPH)
framework. They further allow for the visual simulation of ferroflu-
ids by procedurally generating the characteristic spike shape along
the magnetic field lines. Huang et al. [HHM19] provide a phys-
ically accurate depiction of ferrofluids by coupling an SPH fluid
simulation with a least squares solver of the magnetostatic version
of Maxwell’s equations. Following their work, Huang and Michels
[HM20] provide a surface-only formulation of the previous ap-
proach.

Apart from rigid bodies and fluids, the simulation of mag-
netic fields has also been used for the generation of iron-filing
art [YLUH14], for visualizing the magnetic fields in classroom
applications [PLH16], and for the simulation of realistic plasma
filaments of the sun [PGK*22]. Concerning simulation methods
to simulate magnetostatics, Ni et al. [NZWC20] propose a level-
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set method showcasing the applicability to magnetic rigid bod-
ies, deformables and fluids and their two-way coupling. Sun et
al. [SNZ*21] also demonstrate the applicability of Material Point
Method to the aforementioned simulation bodies. They include the
magnetic force externally by computing the Maxwell stress ten-
sor which yields a weakly coupled system. The method of Ni et
al. [NZWC20] is primarily aimed at the simulation of non-linear
magnetic matter using a level-set approach. For magnetoelastic
thin shells, Chen et al. [CNZ*22] provide a differentiable simu-
lation framework based on an optimization integrator to among
other things deform thin sheets of magnetizable foil to a target state.
Similar to our approach, they provide a strongly coupled method.
Their method however exclusively simulates magnetic thin shells
whereas our method is aimed at rigid bodies. Additionally, no pre-
vious method shows the strong coupling of magnetic effects with
the collision solver for rigid bodies.

Our method uses an optimization time integrator [KMOW00;
MTGG11] to achieve a stable simulation. These types of integrators
gained a lot of popularity in computer animation in recent years due
to the possibility to robustly run simulations with large time steps
[GSS*15]. Using these integrators, Li et al. [LFS*20] introduced
the IPC method for the handling of contacts and friction, which we
lean on in our method. While we showcase the applicability of a
magnetic potential with the contact handling of IPC, other works
also include the application of IPC to rigid bodies [FLS*21], affine
bodies [LKL*22] as well as multibody dynamics [CLL*22].

3. Method

In this section, we present our method for robustly simulating lin-
ear magnetic effects in the context of computer graphics. First, we
describe the time integration discretization as an incremental po-
tential (IP) problem. Then, we introduce the magnetic potential we
employ to simulate permanent and linear magnets and their rela-
tion to the IPC-inspired contact potential. Finally, we present the
discretization used to evaluate such a magnetic potential in arbi-
trarily shaped rigid body objects.

3.1. Incremental Potential

For our goal of a stable rigid body simulation, we pose the un-
derlying equations of motions as a minimization problem as it has
been done in current state-of-the-art methods [GSS*15; MEM*20;
LFS*20]. This reformulates the equations of motions discretized in
time by backward Euler as an incremental potential E, which shall
be minimized for the desired degrees of freedom u:

un+1 = argmin
u

E(u). (1)

Here, the superscript n denotes the n-th time step. Solving the min-
imization problem can be done by finding the root of the derivative
function which equals the equilibrium of forces, that is: ∑ f = 0.
The root-finding process is usually done by Newton’s method, for
which we need the Hessian Hess(u) = ∂

2E
∂u2 , the gradient grad(u) =

∂E
∂u and the update of our degrees of freedom ∆u. We iteratively
update u← u+∆u by solving:

Hess(u)∆u =−grad(u), (2)

for each update step until ∥grad(u)∥ approaches 0.

For rigid bodies, we follow the method of Macklin et
al. [MEM*20] and formulate the optimization problem in terms
of velocities and angular velocities. Let v = (v1, . . . ,vN) ,ω =
(ω1, . . . ,ωN) be the stacked vector of velocities and angular veloc-
ities of all N rigid bodies respectively, then our problem definition
is given as:(

vn+1,ωn+1
)
= argmin

v,ω
E(v,ω) (3)

E(v,ω) = Einertia(v,ω)+Eother(v,ω) (4)

Einertia(v,ω) = ∑
a

1
2

[
∆vT

a Mmass,a∆va +∆ω
T
a Ja∆ωa

]
, (5)

where a is iterating over the index set of all N rigid bodies,
∆v= vn+1−

(
vn +∆t(g+ F

m )
)

is the difference between the veloc-

ity in the next time step and the predicted velocity, ∆ω = ω
n+1−(

ω
n +∆tJ−1

τ

)
the equivalent for angular velocity, Mmass = mI3

the mass matrix and J the inertia tensor. Additionally, F denotes
external forces excluding gravity g and τ the external torques.

Oftentimes, a potential is posed in terms of the translation tn+1

and orientation qn+1 of a rigid body in the next time step. In this
case, we use the following relations: tn+1 = tn +∆tvn+1, qn+1 =

qn + 1
2 ∆tω̃n+1qn, where ω̃ =

(
0,ω(n+1)

x ,ω
(n+1)
y ,ω

(n+1)
z

)
is the ex-

tension of the angular velocity to a quaternion and ω̃
n+1qn de-

notes the quaternion product. For stating the energies in our de-
sired degrees of freedom, we will sometimes refer to the trans-
lation and orientations as tn+1(v) and qn+1(ω). Furthermore, we
will also use the rotation matrix derived from quaternions, denoted
as Rn+1 = R(qn+1).

The remaining potential Eother contains the contact potential
Econtact, a frictional potential Efriction, a potential energy to handle
constraints for joints Econstr, and the magnetic energy Emagn. The
contact potential Econtact and frictional potential Efriction are derived
from Li et al. [LFS*20] and are used for the contact and collision
resolution. The contact potential increases non-linearly in strength
once the distance between two rigid bodies becomes smaller than a
given distance threshold d̂. We will go into further detail on solving
collisions while discussing the implications of combining it with
the magnetic energy. Constraints are handled by the potential en-
ergy function for constraints [MEM*20; CLL*22]:

Econstr =
1
2 ∑

c
kcC2

c , (6)

where c iterates over the set of all constraints and k denotes the
stiffness parameter for each constraint. Thus, we are able to simu-
late joints and motors.

3.2. Magnetic Potential

In this section, we describe the derivation of the magnetic potential.
Our method addresses the simulation of magnetostatic effects, that
is the study of magnetic fields, forces, and torques of only bound
charges. This restriction allows us to circumvent solving the full set
of Maxwell’s equations while still covering and well approximat-
ing a broad range of magnetic effects like permanent magnets and
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slowly changing electromagnets. The correct depiction of magneto-
statics for our method relies on the correct handling of the magnetic
potential. In contrast to e.g. the gravitational potential, which al-
ways exerts an attraction between two points of mass, the magnetic
potential is not only dependent on its strength given by the ele-
mentary units but also the direction of said units in the surrounding
magnetic fields. The origin of the magnetic field is usually depicted
as a vector m, called the magnetic dipole moment. The direction of
the magnetic dipole moment reflects the orientation of the magnetic
field created by it and the magnitude states the resulting strength.

From a physical viewpoint, we know that the magnetic dipole
moments tend to align with the magnetic flux density field B, which
in 3D is a three-dimensional vector field indicating the direction
and strength of the magnetic force. This field is closely related to
another vector field, the magnetic field H. In vacuum, the magnetic
fields B and H are related by the vacuum permeability µ0:

B = µ0H. (7)

Inside a magnetizable material, the fields change by the magne-
tization M stemming from the orientation of the magnetic dipole
moments m:

B = µ0 (H+M) , M =
dm
dV

. (8)

Note, that the magnetization is the volume derivative of the mag-
netic dipole moments inside a magnetic material. For non-magnetic
and non-magnetized materials the magnetization is close to zero
since either their magnetic response to an external magnetic field is
negligibly low or the orientations of the magnetic dipole moments
cancel themselves out to a net-zero magnetization. In our work, we
will only concern ourselves with permanent and linear magnets.
The latter are characterized by a linear relationship between the
magnetic field and the magnetization M = χH, which using Eq. (8)
yields:

B = µH, µ = µrµ0, µr = (1+χ). (9)

Here, χ denotes the magnetic susceptibility, and µr, µ the relative
magnetic and magnetic permeability, respectively.

Following the derivations of Jackson [Jac98], the potential en-
ergy needed to fully capture the magnetostatic processes includes
the work needed to preserve the strength of the magnetic dipoles
and their alignment to the magnetic flux density field. Jackson de-
rives the change in work δW needed as:

δW =
∫

V
δB ·HdV, (10)

where V denotes the occupied volume of all magnetic bodies. Note
that Eq. (10) is a general energy description for all magnetic phe-
nomena. Assuming linear materials, the energy potential can be
further simplified, yielding the following magnetic potential Emagn
and energy density function Ψmagn:

Ψmagn =−
1
2

M ·Bext, Emagn =
∫

V
ΨmagndV, (11)

where Bext denotes the external magnetic flux density, that is, the
magnetic flux density at the integration point without the influences
of the body containing said point. Note that Chen et al. [CNZ*22]

Figure 2: Magnetic sampling of rigid bodies using a regular
spherical sampling. Initially, permanent magnets (grey) are with a
magnetic moment from the beginning, while magnetizable objects
(white) have a zero magnetic dipole moment. During simulation,
the latter receive a non-zero magnetic dipole moment given by the
present magnetic fields.

derive a similar potential. Unlike their approach however, we use a
volumetric discretization for the goal of simulating rigid bodies.

In the following, we use Eq. (11) as the basis for the simulation
of linear magnetizable and permanent magnetic rigid bodies. To be
able to integrate our magnetic potential into the optimization-based
time integrator, we need to discretize the volume of each rigid body
to numerically solve the volume integral.

3.3. Discretization

We denote the stacked vector of the translations and orientations
represented as quaternions of the N rigid bodies present in our
simulation as t = (t1, . . . , tN) and q = (q1, . . . ,qN). For comput-
ing the magnetic quantities, we have to sample the volume of each
rigid body to solve Eq. (11). To this end, we approximate the vol-
ume of each rigid body using spheres at whose center we place a
magnetic dipole moment, following the approach of Thomaszewski
et al. [TGPS08]. As the authors denote, using spheres as the dis-
cretization primitive has the advantage that the external magnetic
flux density induced at any point Bext can be expressed by a sim-
ple analytical equation and if we increase the resolution of the dis-
cretization, we converge to the correct field in the limit. Note that
from the discretization, it is assumed that all magnetic fields like
B and M are constant over the sphere’s volume. Depending on the
amount of samples we want to take for each rigid body, they form a
(not-necessarily tight) sphere packing as can be seen in Fig. 2. The
spheres are attached to the rigid body at a fixed position using con-
nectors, which are determined at the beginning of the simulation
in local coordinate space. Thus, for the rigid body a with ∥Ma∥
samples, whereMa denotes the indices of samples for body a, the
vector of the local sampling positions is given by (r1, . . . ,rM)a.

The local sampling positions can be transformed into world
space, yielding the global position x of sphere i inside rigid body a
as:

xi(ta,Ra) = Rari + ta. (12)

Each point’s magnetic influence is determined by its magnetic
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dipole moment. With our assumption that the fields are constant
over the sphere’s volume, we can finally discretize the magnetic
potential Eq. (11). The magnetic potential between just two sam-
ples i and j simplifies to:

Emagn,i j =−
1
2

ViMi ·Bext, j(xi) =−
1
2

mi ·Bext, j(xi), (13)

where Vi is the volume of the sphere of sample i and m =∫
Vi

MidV =ViMi. Bext, j denotes the external magnetic flux density
created by sample j, that is given by:

Bext, j(xi j,m j) =
µ0
4π

3x̂i j
(
x̂i j ·m j

)
−m j

∥xi j∥3 , (14)

where xi j = xi− x j and x̂ = x/∥x∥. Now, a single sampling point
inside a rigid body will create a potential, which should provide an
influence towards all samples of the other rigid bodies. Addition-
ally, this point will be influenced by the potentials of all samples of
other rigid bodies. Thus, the resulting total energy is the superpo-
sition of the magnetic potentials of all pairs (i, j) where i and j are
sampling spheres of distinct rigid bodies, which we index by the
set P:

Emagn = ∑
(i, j)∈P

Emagn,i j. (15)

From this formulation, we observe that every magnetized rigid
body influences every other magnetized rigid body. A direct conse-
quence is that the Hessian of the potential function will become a
dense matrix.

3.3.1. Permanent magnets

We model permanent magnets by having a constant local magnetic
dipole moment, that is mloc,i = const. Thus, they produce a differ-
ent magnetic response based on their direction. Consequently, the
global magnetic dipole moment is dependent on the orientation of
the associated rigid body, that is, if sample i belongs to rigid body
a: mi = Ramloc,i. Thus, our magnetic potential in Eq. (13) is de-
pendent on both the distance of two rigid bodies as well as their
orientation, that is:

Emagn,i j =−
1
2

Ramloc,i ·Bext, j(xi j,Rbmloc, j). (16)

Note the rotation matrices and global sampling positions de-
pendency on the degrees of freedom Ra = R(q(ωa)) and xi j =
x(t(va),R(q(ωa)))−x(t(vb),R(q(ωb))).

3.3.2. Linear magnets

As outlined before, linear magnets possess a linear relationship be-
tween their magnetic flux density B and magnetic fields H. This
relationship stems from the ability of the magnetic dipole moments
inside the material to align with the external magnetic field, re-
sulting in an intensification or weakening of the external magnetic
field. The alignment happens nearly instantaneously for the time
scales we are interested in. Thus, also the history of the magnetic
moments is irrelevant for us, which would not be the case for fer-
romagnetic materials.

Now, the direction of the magnetic dipole moments is dependent
on the external magnetic flux density at their position Bext(x). Since

there might be multiple linear magnetizable rigid bodies present in-
side a scene, their magnetic fields will influence each other, which
results in a cyclical dependency on each other’s magnetization. One
can solve this dependency by including the magnetic dipole mo-
ments of linear magnets as degrees of freedom. The resulting opti-
mization problem then becomes:(

vn+1,ωn+1,mn+1
)
= argmin

v,ω,m
E(v,ω,m). (17)

Since the Hessian matrix for permanent magnets alone is already
dense, adding more degrees of freedom, which will also form a
dense matrix, will further impair the performance of our method.
Thus, we decouple the magnetization process from solving the opti-
mization problem. That means, we compute the strength and direc-
tion of the magnetic dipole moments beforehand and only update
the direction in response to the rigid bodies orientation in the op-
timization step. In that sense, we handle linear magnets as perma-
nent magnets from the viewpoint of the optimization solver, which
is the same as in Eq. (16). Note that we update the direction of the
magnetic dipole moments before they are used to calculate the new
values in the next time step.

The magnetic dipole moment mi of rigid body a is computed
analogously to Thomaszewski et al. [TGPS08], that is:

mi =Vi
χa

1+χa/3 ∑
j

Bext, j
(
xi j,m j

)
, (18)

where j is iterating over all samples not belonging to rigid body a.

3.4. IPC-based contact

The robustness of our solver can be traced back to the interplay be-
tween the magnetic energy and the IPC-based contact and collision
model [LFS*20]. Going into detail, collisions in IPC are handled
by defining an energy potential for contact. That is, if two objects
come too close to each other, a contact potential is activated which
continuously and smoothly increases its strength from zero at the
contact thickness d̂. For our method, we use a cubic penalty func-
tion p(d, d̂):

p(d, d̂) =

{
k
(
d̂−d

)3
, if d < d̂

0, otherwise
. (19)

Turning the penalty function into a potential for rigid bodies, we
firstly find the set of collision primitive pairs (ca,cb) ∈ C, that is,
point-triangle and edge-edge pairs, whose distance falls below the
collision thickness in the optimization step. For the optimization
step, we formulate the distance distca,cb of the collision primitives
ca,cb in terms of the translation and orientation of the rigid body:

distca,cb(ta,Ra, tb,Rb) = ∥Rarca −Rbrcb + ta− tb∥, (20)

where rca and rcb are the local vectors from the collision point to
the rigid bodies local origin. The contact potential now becomes the
sum of the penalty function evaluations for all collision primitive
pairs [FLS*21], that is:

Econtact = κ ∑
(ca,cb)∈C

p(distca,cb(ta,Ra, tb,Rb), d̂), (21)

where κ is the stiffness of the contact potential and distca,cb de-
scribes the distance between the collision primitives ca and cb of
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Figure 3: Plot of potentials against distance. The shape of the total
potential E is dependent on the magnetic Emagn and contact poten-
tial Econtact. The contact thickness is indicated by the dotted ver-
tical line. For a well-chosen contact stiffness κ, the total potential
exhibits a local minimum near the contact thickness the optimizer
will converge to in 1D.

rigid bodies a and b. Note that the distance is defined between the
collision primitives. For the goal of optimization, the distance will
be expressed in the desired degrees of freedom using the same con-
nector formula as used for fixing the positions of the magnetic sam-
ples in Eq. (12).

Now, the previously defined magnetic potential Emagn decreases
in value inverse cubically with respect to distance when two mag-
netic bodies attract each other. The contact potential will increase
cubically once the distance falls below the contact thickness d̂. We
analyze the resulting potential function in one dimension to give us
an indication of the behavior of the full-dimensional case. The mag-
netic potential falls to −∞ for distances approaching zero, while
our cubic potential has a well-defined function value for d = 0.
Thus, the choice of a good stiffness parameter κ is crucial. Note
that it is dependent on both the strength of the magnetic attraction
as well as the contact thickness. If the stiffness of the penalty func-
tion is too low, the strength of the magnetic potential overshadows
the total potential energy function. In case this leads to an invalid
simulation step like a non-convergent Newton step or an interpen-
etration, we revert to the current step and double the contact stiff-
ness.

For a properly tuned stiffness parameter κ, we observe that the
contact potential rises faster than the magnetic potential falls lead-
ing to a local minimum close to the contact thickness, which can
be seen in in Fig. 3. The minimum represents the equilibrium of
forces between the collision resolution and the magnetic attraction,
leading to a robust and intersection-free simulation state.

3.5. Optimizations

Approaching ∥xi j∥→∞ the change in magnetic energy for a small
perturbation approaches zero. Thus, in the far distance, we can ar-
gue, that the contribution of the magnetic energy hardly changes
with respect to distance, that is Emagn(x) ≈ Emagn(x+∆x). As a

consequence, we can model the magnetic influence as a constant
force from the current state of the simulation and add its influence
to the inertia term.

Fmagn,exp = ∑
(i, j)∈P

Fmagn,i j (22)

Fmagn,i j =
µ0

8π∥xi j∥4

[
−15x̂i j

((
mi · x̂i j

)(
x̂i j ·m j

))
+ 3x̂i j

(
mi ·m j

)
+3mi

(
m j · x̂i j

)
+3m j

(
mi · x̂i j

)]
.

(23)

For the torque, we need to differentiate between the mechanical
torque τmech,i j, stemming from an application of the magnetic force
away from the center of gravity, and the magnetic torque τmagn,i j,
which aligns the magnetic moments towards the external magnetic
flux density:

τtotalmagn,exp = ∑
(i, j)∈P

[
τmagn,i j + τmech,i j

]
(24)

τmech,i j = Rari×Fmagn,i j (25)

τmagn,i j =
µ0

8π∥xi j∥3

[
3
(
x̂i j ·m j

)
mi× x̂i j−mi×m j

]
. (26)

As a criterion for switching between the explicit and implicit for-
mulation, we use a distance threshold ϑ. Thus, if the distance be-
tween two magnetic samples is greater than ϑ, we assume the
change in magnetic energy over the state path to be insignificantly
small and use the force formulation. In the other case, that is, if
∥xi j∥< ϑ we register the pair (i, j) for the optimization integrator.

The advantage of switching between the explicit and implicit for-
mulation lies in the connectivity of the Hessian matrix. Since the
explicit formulation is handled as a constant force, it does not cre-
ate a non-zero contribution to the energy Hessian. Thus, we only
spend time computing the magnetic forces and torques at the be-
ginning of the time step, while for the implicit formulation, the
entries of the energy Hessian and gradient must be computed for
each Newton iteration.

Finally, a full algorithmic outline of our method can be found in
Alg. 1.

4. Results

Our results are simulated on a machine with an AMD Ryzen
Threadripper PRO 5975WX CPU with 32 cores and 3.60 GHz base
core frequency and 256 GB of RAM. We use OpenMP for paral-
lelization using all threads if possible.

For minimizing the incremental potential, the Newton-type
solver requires the gradient and the Hessians of all potentials we
have outlined. We integrate our method into STARK by Fernández-
Fernández et al. [FLL*24] which includes a symbolic differentia-
tion framework [FLW*23] to derive the expressions for all poten-
tials. Furthermore, we project our Hessian to the cone of positive
definite matrices. Thus, we can safely use Conjugate Gradient (CG)
with a block-diagonal preconditioner to solve the linear system.
If not stated otherwise, we used a residual for the conjugate gra-
dient solver of 10−12 and stopped the Newton iteration once the
acceleration derived from the gradient, i.e: ∥ 1

∆t M−1grad(v,ω)∥∞
was smaller than 1m/s2 In our experiments, the contact stiffness κ
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Algorithm 1: Magnetic Strong Coupling Algorithm

1 for all magnetizable rigid bodies a do
2 for all samples i ∈Ma do
3 Compute magnetic dipole moment mi.

4 for all magnetic rigid bodies a do
5 for all magnetic rigid bodies b ̸= a do
6 for all samples i ∈Ma do
7 for all samples j ∈Mb do
8 if ∥xi j∥< ϑ then
9 Register the pair (i, j) for the

optimization integration.
10 else
11 Calculate the magnetic force between i

and j and add the force Fi j and torque
τi j as external contributions.

12 while ∥ 1
∆t M−1grad(v,ω)∥∞ > threshold do

13 Assemble Hessian Hess(u)
14 Solve Hess(u)∆u =−grad(u)
15 Perform line search α← line_search(∆u)
16 if step is valid then
17 u← u+α∆u
18 else
19 κ← 2κ

20 ∆t← ∆t
2

21 Update simulation state t,q,v,ω

Energy-Based Force-Based

Figure 4: Magnetic Fields: We compare our potential-based ap-
proach with a force-based one [TGPS08]. Our method converges
faster to a static equilibrium due to the implicit handling of the
magnetic effects. These differences can be noticed for example af-
ter 6.6 s of simulated time in the outlined regions.

varies between 107 and 1014, and in the case where the line search
does not yield a valid configuration, we also half the time step size.
An overview of the scenes and their simulation statistics can be
seen in Tab. 1.

4.1. Magnetic Fields

Firstly, we check whether our magnetic potential correctly handles
the depiction of the underlying magnetic fields. Thus, we compare
the differences of our implementation with a strictly force-based
implementation [TGPS08]. To this end, we set up a strong perma-
nent magnet surrounded by 118 tiny magnetic compass needles.
The former is sampled by 988 spheres (∥m∥ = 25 J/T) while each
needle is sampled by 4 (∥m∥ = 0.05 J/T). The needles are initially
aligned in a single direction and shall indicate the direction of the
magnetic field created by the permanent magnet. Both the force-
based and the energy-based implementation converge to the correct
solution, but there are differences in the dynamic behavior between
both. Primarily, the energy-based implementation reaches the static
equilibrium of forces in a shorter time since the compass needles
spin less back and forth during the simulation. That fact can be at-
tributed to the implicit integration of the magnetic effects, since we
respect how these are changing throughout the time step with our
method.

4.2. Optimizations

We evaluate our hybrid explicit / implicit magnetic energy scheme
by looking at the computational performance. Concerning the for-
mer, we set up a synthetic scenario with two permanent magnets
sampled by a total of 10000 magnetic samples. The samples are
arranged in a single dimension, such that decreasing the distance
threshold directly and linearly corresponds to the number of mag-
netic pairs that are handled explicitly instead of implicitly. In order
to record the difference in computational time, we vary the dis-
tance threshold ϑ from handling all sample pairs fully implicitly
to fully explicitly. From the experiment, we deduce that the max-
imum speedup factor gained in our implementation is around 31.
Note that this speedup is just a theoretical upper bound for our im-
plementation, since the fully explicit approach may fail to find a
stable configuration. In practice, we choose a distance parameter
between two and five times the maximum diameter of any moving
object in the scene giving us a good trade-off between stability and
efficiency.

The speedup can be attributed to the decrease in non-zero entries
in the Hessian matrix while using the explicit / implicit integra-
tion scheme. We investigate the extent of our schemes by analyz-
ing the amount of entries in the simulation of a single frame of a
non-magnetic bowl filled with 64 weakly permanently magnetized
spheres. The scene setup and the associated fill-in patterns of the
energies’ Hessians can be seen in Fig. 5. The left-most pattern de-
picts the non-zero Hessian entries related to the contact handling.
These amount to 246 non-zero entries which will not change while
varying the magnetic threshold. Resolving magnetic interactions
implicitly only while they are near a close contact, yields the left-
most of the magnetic Hessian matrices. Here, ϑ is slightly larger
than 2R, where R is the radius of the magnetic balls. This Hessian
contains 312 non-zero entries, which are only 66 additional entries
in comparison to the contact Hessian. While this is close to the low-
est bound of non-zero entries that are achievable, it is not advisable
to choose the threshold this small since the change from the explicit
to implicit integration here leads to a rather harsh jump in the po-
tentials. A more reasonable value we have found experimentally is
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Scene #Magnetic Samples #Bodies Avg. Newton Iter. Avg. CG Iter. ∆t[ms] Tstep [ms] Ttotal [s]

Magnetic Fields 1460 119 1.34 2.7 10* 2135.87 3206.011
Collision Resolution 2 2 1.008 3.85 1 1.19 1.784

Strong Magnetic Forces 2 2 1.003 12.19 1 1.87 18.670
Perpetuum Motion Simulator 401 4 1.049 1.39 1* 26.36 790.938

Magnetic Crane 167 132 26.28 7364.2 1.92* 1943.98 22307.2
Sphere of Magnetic Objects 31 28 10.19 538.82 1* 174.02 4351.453

Table 1: Simulation statistics of our method. This includes the number of magnetic samples, amount of rigid bodies, the average number of
Newton iterations, the average number of CG iterations, the time step size ∆t, the time per step Tstep and the total time the simulation took
Ttotal. The asterisk denotes that for the simulations, we allow the time step size to vary. Thus, the entry denotes the average time step size of
the simulation.

(a) (b) (c)

Figure 5: Evaluation of hybrid explicit / implicit optimization in terms of Hessian fill-in: (a) Static scenario including a non-magnetic bowl
and permanently magnetized ball magnets. (b) The non-zero entries of the Hessian matrix resulting from the contacts. Each black square
represents a non-zero entry between the rigid bodies associated with the pixel coordinates. (c) The non-zero entries of the Hessian matrix
from the magnetic potential with different thresholds. The thresholds ϑ are expressed in the radius R of the magnetic spheres. The left-most
pattern represents the smallest threshold while still maintaining a strongly coupled simulation, the middle one a good approximation and the
right-most one the fully implicit simulation.

to set ϑ = 5R. This results in 1302 non-zero entries and still yields
a speedup of 1.24 in this small scale example in comparison to the
fully implicit scenario. The associated Hessian is depicted as the
right-most one and contains 4032 entries.

4.3. Weak vs. Strong Coupling

4.3.1. Collision Resolution

As we have previously outlined, weak coupling may lead to jit-
tering or explosions when strong magnetic forces and large time
step sizes are present. We showcase this issue by simulating the
following synthetic scenario. Two cube-shaped permanent mag-
nets (∥m∥ = 5 J/T) with a volume of (0.1m)3 sampled by a sin-
gle magnetic sampling point centered in the cube are placed 0.25m
apart on the x-axis. Their magnetic dipole moment is aligned with
the x-axis leading to a strong attraction between the magnets. For
this setup, we compare our implementation with the weakly cou-
pled approach from Thomaszewski et al. [TGPS08] implemented in
Bullet3 [Cou15]. While their method was originally implemented
into the Open Dynamics Engine (ODE) [Smi06], Bullet3 also im-
plements the same MLCP solver for collision resolution as ODE,
which we use for our experiments. We provide the magnetic effects
as external forces and torques which are calculated at the begin-

ning of a time step. Note that for our implementation in Bullet3,
we have set contact damping to zero and increased the contact stiff-
ness to the largest possible value. For both approaches, we have no
restitution. The remaining values like positions, masses, and inertia
tensors are chosen to be identical between both implementations.

We compare both approaches for a fixed time step size of ∆t =
1ms and a moderate attraction strength. Evaluating this scene, we
keep track of the distance between both magnetic cubes over time,
for which the result is shown in Fig. 6. It shows the magnetic force
and collision resolution working against each other in the weakly
coupled approach. Since the magnetic force increases cubically in
strength in relation to the inverse distance, the collision resolution
was not able to find the force equilibrium right away at t = 0.79s.
This results in an overly strong collision response leading to a small
bounce between the magnetic bodies even if the restitution is set to
zero. Note that this behavior stems only from the weak coupling be-
tween both systems. We further tried exchanging the MLCP solver
of Bullet3 with the sequential impulse and NNCG solver, which
yielded similar results. In any case, the weakly coupled approach
however finds the balance of forces at around t = 1s. The strongly
coupled approach finds the balance of forces right away at the first
impact since the energy-based solver finds the energetically mini-
mal configuration between the decreasing magnetic energy and the
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Figure 6: Collision Resolution: Distance between two cuboidal
permanent magnets with a side length of 0.1m attracting each other.
Comparing the weakly coupled and strongly coupled approach, we
observe that the former experiences some bouncing before coming
to rest. The strongly coupled approach converges safely to the cor-
rect configuration without bouncing or jittering.

Strong Coupling
∆t 1 ms

Weak Coupling
∆t 1 ms

Weak Coupling
∆t 10 µs

Figure 7: Strong magnetic forces: In the presence of strong mag-
netic forces, the weakly-coupled approach fails to exhibit stable
contact behavior. Our strongly-coupled approach remains stable
throughout.

increasing barrier energy. While it may also be possible to find a
satisfactory result with a weakly coupled approach, this will re-
quire additional effort in terms of stabilization and finding the cor-
rect equilibrium of forces right away, which comes naturally with
the strongly coupled method.

4.3.2. Strong Magnetic Forces

Next, we test both methods for exceedingly strong magnetic forces.
Again, we use two cuboidal permanent magnets (∥m∥ = 500 J/T),
but this time spaced 2m apart. Furthermore, we increase the mag-
netic dipole moment’s strength by a factor of 100 in comparison to
the previous scene. For this scene, we compare the weakly cou-
pled approach in Bullet3 using ∆t = 1ms and ∆t = 10µs with
our strongly coupled approach with a maximum time step size of
∆t = 1ms. The results can be seen in Fig. 7. The weakly coupled
approach fails to correctly handle the collision with the larger time
step size since the magnetic attraction is too strong for the colli-
sion resolution. Thus, we need to lower the time step size. But also
for the extremely low time step size of 10µs, the collision reso-
lution may lead to issues like interpenetration. While these inter-
penetrations may be attributed to a possibly asymmetrical collision
handling of Bullet3 [CLW24], the simulation of strong magnets
with large time steps remains infeasible for the weakly coupled ap-

proach. By strongly coupling the magnetic effects to the collision
solver, we can correctly simulate the collision without any inter-
penetration or other visual artifacts.

4.4. Complex scenarios

4.4.1. Perpetual Motion Simulator

This scene depicts a metal ball track which gives the illusion of run-
ning indefinitely without any outer influences. The mechanism con-
sists of a nickel ball (µnickel = 1.26 ·10−4Hm−1) which drops from
a funnel into a track of practically non-magnetizable metal which
loops the ball back into the funnel. Since the metal ball could not
loop back into the funnel through the gravitational potential alone,
it is being accelerated by an electromagnet (∥m∥ = 13.75 J/T)
which switches off the moment the ball passes by. This gives the
ball enough momentum to follow the track and fall into the funnel
repeating its motion indefinitely. The mechanism is a finely tuned
system between gravitational energy, magnetic energy, and friction.
Simulating it is a challenging task with previous approaches, since
we not only need a well-tuned solver for each effect stemming from
the previous potentials but also a robust collision solver to handle
the nickel ball running along the track. As shown in Fig. 8, our
method successfully simulates this scenario leading to an accurate
depiction of the real-life equivalent. Thus, our method not only han-
dles the interplay between strong magnetic forces, collisions, and
friction but can also be used for slowly switching electromagnets
where the resulting electromagnetic effects are negligibly small.

4.4.2. Magnetic Crane

In this experiment, we showcase the the applicability of our method
to larger scenarios as well as the interaction with constraints and
subsequently joints. The scene in Fig. 1 depicts an electromag-
net attached to a crane by a rope, moving 125 magnetizable nickel
cubes from one box to another. The electromagnet contains 42 mag-
netic samples with a magnetic dipole moment of 250J/T pointing
in the upwards direction. The magnetizable cubes are sampled with
one sphere each. After the crane lowers the electromagnet towards
the first box, it is turned on leading to a rapid magnetization and
attraction of all cubes. The following collision is handled robustly
leading to a fast orientation of the cubes onto the magnet without
excessive bouncing. In the end, the crane moves over to a second
box, where we turn off the electromagnet, dropping the cubes.

4.5. Sphere of Magnetic Objects

Finally, we show that our method can robustly handle arbitrar-
ily shaped magnetic objects and the complex interaction between
them. Thus, we place a mix of 27 magnetizable nickel armadillos
and bunnies into a closed glass sphere and let them drop into a
pile. Next, we activate a magnet placed below the pile, letting all
objects attract each other. Afterwards, we drag the magnet across
the sphere’s surface until all objects stick to the top of the sphere.
Lastly, we deactivate the magnet, letting the objects pile up at the
bottom again. This sequence is depicted in Fig. 9. In this example,
we show that our solver stably handles this scenario leading to no
inter-penetrations.
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Figure 8: Perpetual Motion Simulator: A magnetizable ball is running indefinitely from the funnel into the tracks and loops back into the
funnel. The additional momentum for the ball to loop back into the funnel is provided by turning on and off an electromagnet at the correct
time.

Figure 9: Sphere of Magnetic Objects: A glass sphere contains a multitude of magnetizable objects of arbitrary shapes. A magnet in close
proximity around the sphere, attracting objects and moving them around until the objects appear to stick to the ceiling of the sphere. Then
the magnet is turned off and the objects fall back to the ground.

5. Conclusion

We presented a strongly coupled method for the simulation of lin-
ear magnets with rigid bodies. The basis of our method relies on the
magnetic potential discretized by spherical sampling points. This
potential is added to the ones gained by restating the backward Eu-
ler discretized equations of motion for rigid bodies as an optimiza-
tion problem. For contact, we used an IPC-like collision resolution.
Additionally, we provided insights into why this coupling works re-
markably well from a theoretical standpoint. Furthermore, we op-
timized the system with a distance-based, hybrid explicit / implicit
magnetic potential approach to alleviate the computational effort
by reducing the non-zero Hessian entries. Finally, we have shown
the stability and robustness of our solver in multiple challenging
scenarios ranging from strong magnetic forces to arbitrarily shaped
collision geometries. Thus, by strongly coupling magnetic effects,
we obtain a method, which allows for the interpenetration-free and
robust simulation of magnets while keeping large time step sizes.

5.1. Limitations & Future Work

In our work, we have shown our method in conjunction with rigid
bodies. However, the magnetic potential should also be usable for
magnetic deformables like volumetric deformable magnets, mag-
netic cloth, and thin shells. Using IPC to simulate the aforemen-
tioned objects as magnets should be entirely possible given our ex-

ploration of the interaction of the magnetic potential and contact
potential in Sec. 3.4.

One stepping stone to achieve this goal is also to refine the op-
timization we provided. While the distance-based criterion works
great for speeding up many scenes with distant magnetic effects,
our heuristic is purely distance-based. A better alternative would
be to incorporate the information of change in the magnetic en-
ergy to argue when we can safely use an explicit or similarly fast
approximation of the magnetic influences. Further integrating opti-
mization methods like the Fast Multipole Method [Rok85; GR87]
are also possible improvements.

Finally, adapting our magnetic potential to include ferromagnetic
and electromagnetic effects remains an interesting avenue for fu-
ture research.
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