
STARK: A Unified Framework for Strongly Coupled Simulation of
Rigid and Deformable Bodies with Frictional Contact

José Antonio Fernández-Fernández1 Ralph Lange2 Stefan Laible2 Kai O. Arras2,3 Jan Bender1

Abstract— The use of simulation in robotics is increasingly
widespread for the purpose of testing, synthetic data gener-
ation and skill learning. A relevant aspect of simulation for
a variety of robot applications is physics-based simulation
of robot-object interactions. This involves the challenge of
accurately modeling and implementing different mechanical
systems such as rigid and deformable bodies as well as their
interactions via constraints, contact or friction. Most state-of-
the-art physics engines commonly used in robotics either cannot
couple deformable and rigid bodies in the same framework,
lack important systems such as cloth or shells, have stability
issues in complex friction-dominated setups or cannot robustly
prevent penetrations. In this paper, we propose a framework
for strongly coupled simulation of rigid and deformable bodies
with focus on usability, stability, robustness and easy access
to state-of-the-art deformation and frictional contact models.
Our system uses the Finite Element Method (FEM) to model
deformable solids, the Incremental Potential Contact (IPC)
approach for frictional contact and a robust second order
optimizer to ensure stable and penetration-free solutions to
tight tolerances. It is a general purpose framework, not tied to
a particular use case such as grasping or learning, it is written
in C++ and comes with a Python interface. We demonstrate our
system’s ability to reproduce complex real-world experiments
where a mobile vacuum robot interacts with a towel on
different floor types and towel geometries. Our system is able
to reproduce 100% of the qualitative outcomes observed in the
laboratory environment. The simulation pipeline, named Stark
(the German word for strong, as in strong coupling) is made
open-source.

I. INTRODUCTION

Simulation has become an increasingly important part of
robot learning, design, and testing. Examples range from cor-
ner case identification for self-driving cars, data generation
for robot reinforcement learning, or shorter development and
testing cycles for consumer robots. One aspect to this end
is accurate simulation of robot-object interaction for which
a number of popular physics engines can be used: ODE [2],
Bullet [3], MuJoCo [4], Dart [5], Chrono [6], and PhysX [7].
Here, we are interested in the simulation of deformable
objects as they are an integral part of everyday life. Robotic
bin picking systems in intra-logistics, for example, must be
able to handle a variety of flexible, fabric or limp objects and
robot vacuum cleaners have to deal with household objects
from plants, clothing to carpets. Precise models for contact,
friction and material response, together with adequate solvers

1RWTH Aachen University, Computer Animation Group, Germany
� lastname@cs.rwth-aachen.de

2Bosch Research, Renningen, Germany
� firstname.lastname@de.bosch.com

3Socially Intelligent Robotics Lab, University of Stuttgart, Germany

0

20

40

60

T
or

q
u

e
[m
N
·m

]

left wheel

right wheel

0 1 2 3 4 5 6

Simulation Time [s]

−0.4

−0.3

−0.2

−0.1

S
u

sp
en

si
on

[N
]

left wheel

right wheel

Fig. 1: Simulation of a vacuum cleaning robot (rigid body system)
driving straight into a (deformable) towel rolled on the floor. The
robot drives over the loose end of the towel and then deforms
it but cannot progress, which is the typical behavior obtained in
our lab experiments. Important metrics gathered during simulation
are shown below: on top, the motor torque, relevant to study the
robot power limits and battery consumption, and below, suspension
compression, related to the robot’s ability to adapt to obstacles.

for systems of deformables and rigid bodies are essential to
simulate such interactions accurately.

Often, simulation of different mechanical systems
(e.g. cloth, volumetric deformable objects, rigid bodies, etc.)
is handled in two stages: the different systems are first con-
sidered in isolation, sometimes even with different simulation
frameworks, followed by the inter-system interactions, such
as the interaction between the wheel and the towel in Fig. 1.
Such weak coupling can lead to inaccurate results, or even ro-
bustness issues, as errors are not minimized in a global sense
and might be simply transferred between systems during the
coupling iterations. This problematic is magnified in the pres-
ence of complex and stiff interactions between the different
systems – such as the soft cloth being squeezed between the
robot and the floor in Fig. 1. In contrast, strongly coupled
simulations handle all the systems in a single stage, including
the interactions between them. This often results in more



stable results in challenging scenarios, but usually comes at
a higher computational cost. Second-order methods, which
use second-order derivative information, are often preferred
in this context as they provide better guarantees than first-
order methods, which only use gradient information, such
as Position Based Dynamics [8] or Projective Dynamics [9].
Especially when simulating stiff materials or complex contact
configurations, the convergence of first-order methods can
grind to a halt [10]. Implementation complexity however
is typically significantly higher in second-order methods
since global data structures, representing all the involved
physical systems and interactions, must be built to solve
large linear systems of equations. This complexity is further
exacerbated in simulations of multiple interacting systems as
an increasing number of different types of primitive pairs for
collision and friction must be accounted for.

We use a unified global potential energy formulation
to model all phenomena in the simulation, from internal
mechanical stresses to joints and collisions, for which a min-
imizer represents a configuration where the global balance of
forces is satisfied. Such approach is well-established and can
be found in related works such as [11], [12], [13]. Beyond the
benefits it provides in terms of robustness, this formulation
has the additional advantage that it concentrates the definition
of the problem into a single global expression. Our proposed
simulation pipeline leverages this to its advantage and uses
SymX, a symbolic differentiation tool [14], to automate the
generation of first- and second-order derivatives of all energy
potentials in the simulation, which otherwise would be a
rather time intensive task to do manually. Very importantly,
the differentiation pipeline is also made available to users,
facilitating expanding on the default capabilities and ensuring
that new models will be resolved in a strongly coupled
manner together with the existing ones.

In detail, our contributions are:
1) A complete simulation pipeline named Stark with sup-

port for rigid body systems with joints and non-linear
deformable materials (volumetric and cloths/shells),
with frictional contacts between all of them. Stark
is open-source, operates under a permissive Apache
2.0 license and it is publicly hosted in GitHub.
The simulation pipeline uses state-of-the-art second-
order optimization time integration techniques, which
coupled with the IPC model for contacts, ensures
penetration-freeness and great stability even for very
challenging simulations. It is shipped with non-linear
constitutive models for strain, integrated with FEM,
and strain limiting, as well as bending for cloths and
shells. The proposed system employs a clean C++ API
with Python bindings for programmatically modeling
robotic systems and environments and it is designed
so that it can be easily expanded with new materials,
joints or constraints.

2) We present simulations involving non-linear materials
undergoing large deformations coupled with rigid body
systems connected with joints and powered by mo-
tors. Most notably, we validate Stark’s capabilities to

reproduce the outcome of different scenarios carried
out in a laboratory setting. In particular, we study the
interactions between a mobile vacuum cleaning robot
and a towel in different configurations and types of
floor. In a second experiment we simulate a parallel jaw
gripper grasping a deformable plastic cup, and verify
that the simulation follows the outcome predicted by
static friction analysis.

The paper is structured as follows: we discuss related
work in Sec. II, highlight the main components used in our
framework in Sec. III, present our validation experiments in
Sec. IV and conclude the paper in Sec. V.

II. RELATED WORK

ODE [2], Bullet [3], MuJoCo [4], Dart [5], Chrono [6], and
PhysX [7] are amongst the most commonly used physics en-
gines for simulating entire robotic applications. They are also
used in robotics simulators like Gazebo [15], Webots [16],
CoppeliaSim (formerly V-Rep) [17], and Isaac Sim [18]
that provide further visualization, sensor simulations, and
interfaces to robotic software frameworks. Liu et al. [1]
recently presented a discussion on the importance of physics-
based simulators in robotics. Körber et al. [19] and Erez
et al. [20] carry our experimental comparisons of these
physics engines and simulators, in the context of rigid body
simulation.

Simulators with focus on real-time performance (all of the
above except Chrono) do not provide the required features to
run the complex simulations we aim for. The lack of proper
continuum mechanics based material modeling or the very
limited self-collision resolution guarantees for deformable
objects makes it impossible to handle a simulation like
the one shown in Figure 1. While it is possible to couple
deformable and rigid bodies simulators [21], such coupling
approaches require expert knowledge not only of the me-
chanics of the problem but also of the simulators themselves,
potentially involving significant internal modifications to
achieve true strong coupling.

Recently, PhysX has been integrated in a larger proprietary
GPU-based physics simulation environment for reinforce-
ment learning research, called IsaacGym, and support for
linear continuous materials with FEM is added [22]. Huang
et al. [23] demonstrate that the FEM model provided in
IsaacGym performs well on a variety of grasping simulations
validated with real-world experiments, although it does not
provide very accurate results with shell-like objects. Fur-
ther, it was recently demonstrated that the IPC model for
frictional contact outperforms the contact model provided
by IsaacGym [24] in a collection of grasping simulations
validated with real world experiments. Chrono [6] supports
simulation of deformable solids via linear and non-linear
FEM for volumetric objects and shells, rigid body systems
and frictional contact, which makes it the natural choice
for our target simulations from the aforementioned available
solutions. However, we were unable to obtain satisfactory
results when using Chrono to simulate contacts between



deformable objects as penetrations would occur. Severe pene-
trations, especially in simulations of shells or garments, often
have a catastrophic effect in the outcome of the simulation
due to mesh entanglement. This was observed already in
simulations less complex than the ones we aim for (e.g.
Fig. 1 and Fig. 4). As far as we can tell, Chrono does not
provide strong guarantees of penetration-freeness for such
cases of contact [6] which in turn rendered it unsuitable
for our applications. Finally, systems based on the same
simulation techniques than Stark have been discussed in the
literature, e.g. [13]. However, actual open-source code has
not been made available and evaluations of such systems
in reproducing real-world complex scenes has not been
presented.

In this landscape of simulation solutions, when available
options are insufficient, researchers are left with the option
of developing their own code or, most often, modifying
other researchers’ reference implementations. This typically
leads to new or rehashed implementations tailored to specific
types of problems with little regard for further development.
For instance, the authors of the IPC method have provided
reference implementations of their contact model in dif-
ferent contexts including volumetric deformables [12], co-
dimensional objects [25] and rigid bodies [26] as well as
releasing a toolkit [27] with a set of common functionalities
to assist with the implementation of their method. These
reference implementations have already been adopted by
researchers to solve specific robotics problems. For example,
Kim et al. [24] propose IPC-GraspSim that extends the
original IPC reference implementation to model the specific
problem of parallel-jaw grasping. While the conclusion of
their studies is positive, as these new contact models do
indeed outperform existing solutions, the community is now
left with two different reference implementations: the origi-
nal simulator that can handle contacts accurately, but does not
support grippers out-of-the-box, and the new simulator that
is effectively a fork specialized for a single type of problem.

Stark is designed to address this issue by providing a
comprehensive platform for state-of-the-art techniques in
simulation in the context of optimization time integration.
Crucially, Stark is built on top of well-studied and tested
simulation techniques and is itself, as a system, validated
with real-world experiments. Additionally, Stark is designed
to facilitate adding new components, such as controllers, and
new materials, allowing researchers to test their models with
ease in an rich featured environment.

III. CONCEPT

In this section, we very concisely highlight the most im-
portant concepts upon which our framework is built. We
refer the reader to the foundational works of the individual
components as they are topics of great complexity and it is
beyond the scope of this paper to present them in detail.

A. Optimization Time Integration

We use an optimization time integration scheme in order
to model the implicit time stepping of the simulation as a

minimization problem. This has the advantage of allowing
the use of robust, well-studied, minimization techniques
which have stronger convergence guarantees than typical
non-linear system solvers [28], [11], [12]. Let us first estab-
lish the relation between a potential energy source Ψi and
its corresponding force f i as

f i = −GT ∂Ψi

∂x
, (1)

where G is the kinematic map (ẋ = Gv) [29]. For particle
systems and mesh discretizations potentials, G is the identity
matrix. For rigid bodies, x is the generalized position vector
which commonly is the concatenation of translations and
rotations (as a quaternion) and v is the generalized velocity
vector which contains the linear and angular velocities. For
particle systems and mesh discretizations, x and v are the
positions and velocities of the discretization points or mesh
vertices. A set of values for the degrees of freedom u
(typically positions or velocities) that fulfills the balance of
forces is therefore a minimizer of the global potential energy∑

i

f i(u) = 0 ←→ u = argmin
u

∑
i

Ψi(u), (2)

which can be found using Newton’s method

∂2Ψ(uk)

∂u2
(uk+1 − uk) = −∂Ψ(uk)

∂u
, (3)

for a sequence u0...m until the residual of the balance of
forces is below a threshold ∥∂Ψ(um)

∂x ∥inf < ϵ, which we set
to ϵ = 1× 10−6 N for the experiments shown in this paper.

The goal of Stark is to reliably reach accurate balance
of forces in tough non-linear problems with potentially
bad conditioning due to stiff non-linear materials or strong
contacts. We use Newton’s method due to the strong conver-
gence guarantees and super-linear convergence close to the
solution. Support for projections to positive-definiteness of
the local Hessians is provided.

B. Rigid Bodies and Implicit Constraints

We use the inertial energy for rigid body dynamics as defined
by Macklin et al. [30]:

ΨRB =
1

2
(vn+1 − v̂)TMn(vn+1 − v̂), (4)

where M is the generalized mass matrix which contains the
mass and the inertia tensors of the rigid bodies. The super-
scripts indicate the time step, v̂ is the inertial generalized
velocity of the rigid bodies v̂ = vn+∆tan, where an is the
generalized acceleration which includes linear accelerations
and torque. Damping is also provided.

In order to allow for the composition of rigid body
systems, Stark implements a collection of constraints, such
as ball joints, hinges, sliders, dampers and motors, all of
which are handled implicitly within the optimization time
integration in order to unconditionally ensure stability. We
point the reader to the Stark repository for a comprehensive
description of all the joints, including how they are formu-
lated. Further, an implicit controller is also provided which



Ψl =
1
2
k∆ω2∆t Ψr = τmax(∆ω − θ)∆t

fl = −k∆ω fr = −τmax

δ

ωmax

∆ω

Torque
Potential

Fig. 2: Torque profile of an implicit motor controller provided in
Stark. The input is ∆ω which is the difference between the target
and the current angular velocity of the bodies connected by the
motor in the direction of the motor axis. There are two regimes
separated by ∆ω = δ: on the left, the application of the torque
is progressive and proportional to how far from the target velocity
the motor is and on the right, the maximum torque is applied. The
rate of application k = τmax

δ
and the offset θ = δ

2
are given by δ,

which controls the sensitivity of the torque application.

enables smooth application of forces with limits. We employ
this controller in the motors of the vacuum cleaning robot
to smoothly maintain the robot’s operational velocity while
ensuring the motors respect the maximum stall torque given
by the specifications, and in the gripper hand to ensure that
it operates at a target close-in velocity but that cannot deliver
more than a certain grip pressure. Fig. 2 shows the power
profile of the implicit motor.

C. Deformable Solids with FEM

Stark uses non-linear hyperelastic constitutive models, e.g.,
Neo-Hookean, to model embedded (shells and cloths) and
volumetric deformable objects. These material models can
be included in the global formulation by using the Finite
Element Method and integrating the strain energy density
over the deformable objects. Bending is modeled with the
method of Bergou et al. [31]. Using continuous models
provides more controllability and higher fidelity than mass-
spring systems or networks of chained rigid bodies. Together
with the tight balance of forces that the Newton solver
can achieve, Stark guarantees that material deformations are
convergent under space and time refinement, which is an
important property that many popular frameworks used in
robotics do not provide. This approach has the important
property of allowing to use finer meshes or to reduce the
time step size of a simulation to improve the resolution of the
material response without the need to find a new parametriza-
tion due to changes in the material behavior. Additionally,
inertial- and strain-based damping is incorporated in order to
improve the solution for materials that are more dissipative,
such as cloth.

D. IPC Contact and Friction

Stark supports implicit frictional contact for rigid bodies and
deformables, volumetric and embedded, including collisions
between them, and self-collisions, which no other open-
source simulation currently offer. We use the IPC contact

and friction models [12] since they meet the robustness
requirements of the applications Stark aims to provide so-
lutions for. The high level idea of this contact approach is
that when a pair of surface primitives (triangles, edges and
points) are closer to each other than a very small user-defined
contact distance d̂, separation contact forces are applied. A
crucial characteristic of the model is that the stiffness of the
contact force response is adapted throughout the simulation
to guarantee that enough force can be built up to resolve
all the contacts in a given time step, ensuring, in turn,
penetration-freeness. Intersection tests are carried out in the
line search of Newton’s method to guarantee that no invalid
configuration is ever considered. In regards to friction, IPC
proposes a smoothed unified potential based on Coulomb’s
friction that transitions between stick and slide within a
small velocity threshold ϵv . While perfect sticking cannot be
captured in this solution, the error induced by the smoothing
can be severely reduced by choosing a small ϵv , at the cost
of higher runtime.

IPC was originally developed in the context of computer
graphics simulations but it has been already employed with
success in the context of robotics [24].

IV. EXPERIMENTS

In this section, we first validate our simulator by reproduc-
ing real-world laboratory experiments of a mobile vacuum
cleaner robot interacting with a towel on the floor in different
configurations. Then, to demonstrate the general purpose
nature of Stark, we show a simulation of a Franka robotic
gripper grasping a deformable plastic cup. These simulations
can be reproduced using the models included in Stark by
default. See the attached video for the real-world experiments
as well as the visualization of all simulations.

A. Validation of Robot-Cloth Interactions

We validate our simulator in a robot-cloth interaction sim-
ulation, a challenging yet relevant use-case driven by the
vision of domestic robots that can better deal with everyday
household environments.

We run 16 different variations of a vacuum robot driving
towards a towel on the floor, in eight towel configurations
and 2 different floor types: carpet (high friction) and polished
(low friction). See Fig. 3 for each variation in simulation
and the lab experiment. The goal is to evaluate whether the
simulation can reproduce the qualitative outcome of each
experiment, categorized as the robot pushing the towel (P),
driving over the towel (O) or getting stuck (S). Note that
success or failure does not depend on how geometrically
similar lab and simulation results look at the end of each
run, which is notoriously hard and not necessarily a good
categorization for all applications. For the purpose of robot
interaction and learning, we evaluate that the outcome is
reproduced and that it happened due to the same mechanical
interaction. The results for all the cases are shown in
TABLE I.

In both, real-world experiments and simulations, we notice
how the type of floor is a crucial factor that influences the



1 2 3 4 5 6 7 8

Real
(Carpet)

Sim
(Carpet)

Real
(Polished)

Sim
(Polished)

Fig. 3: Real and simulated outcomes of the 16 runs in the robot-towel interaction experiment. The columns correspond to the configurations
1 to 8 in TABLE I. Simulation results visualized with Blender’s Eevee renderer.

Carpet Polished floor
Towel config 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Lab outcome O O O S S S S S O O P* P P* P O* S

Stark outcome O O O S S S S S* O O P P P P O S

TABLE I: Outcomes of the 16 setups of the robot-towel experiments, categorized as (P) robot pushing the towel, (O) driving over the
towel or (S) getting stuck. Each lab experiment has been ran 5 times and the most frequent outcome is taken. Simulations are deterministic.
In setup Polished-3, marked with *, the robot made it over the towel twice. In Polished-5 and -7 it got stuck twice. In setup Carpet-8
the simulation successfully replicates the real-world outcome (robot gets stuck due to the same underlying interactions) but there are
discrepancies in the intermediate results as the towel doesn’t bend.

outcome. While the robot cannot push the towel on the
carpet floor in any instance due to the higher friction, it
is able to push it in four occasions on the polished floor
(cases 3 to 7). The robot can drive over the towel on the
polished floor when the towel is more extended (cases 1
and 2) due to larger contact area with the floor and lower
stacked thickness. Deformations also play an central role
as they influence the robot’s pose, lifting it from the front
(cases 4 to 8 for both floor types) or providing uneven and
changing resistance (case 8 for the polished floor). This has a
direct effect in the wheels positioning and how much contact
pressure there is, which relates to the available traction via
friction. This, combined with the motor’s power delivery,
determines the robot’s reaction and ultimately the outcome
and how much energy is required during the interaction. This
complex chain of interactions highlight the motivation to
use strong coupling with tight residuals. Otherwise errors
due to low tolerances quickly accumulate, severely reducing
confidence in the simulation results. Despite the complexity
of the models employed and their intricate interactions, Stark
can reproduce the outcome of the experiments in 100% of the
cases for the established criteria given a fixed parametrization
of the floors, towel and robot across all simulations.

Here we list the most relevant parameters for the simula-
tions. We model the robot as specified in the open-source
Kobuki repository [32]. The body is approximated by a

cylinder with radius 17.5 cm and height 7 cm although a
better fit mesh is used for collision. The powered wheels have
a radius of 3.5 cm, while the radius of the non-powered front
wheels is 1.35 cm. The total mass of the robot is 2.951 kg
and the clearance to the floor is 1.35 cm. The robot is put
together using joints provided by Stark. The free-spinning
front and back wheels are attached to the body using hinge
joints. A motor is used to attach each powered wheel to a
suspension arm, which is in turn attached to the body by
a damped spring. The motors deliver a maximum torque of
66.6mNm (as in spec) and a maximum angular velocity of
7.43 rad s−1 to match the peak robot velocity of 0.26m s−1.

The strain of the towel is modeled using FEM with
the Neo-Hookean constitutive model and linear Lagrangian
triangular elements. We use E = 1.5×104 Pa for the Young’s
modulus and ν = 0.3 for Poisson’s ratio. The low Young’s
modulus reproduces well that the cloth opposes nearly no
resistance to in-plane compression. Additionally as fabric
is almost inextensible, we employ edge-length based strain
limiting to give increased resistance to overstretches beyond
10%. We use a bending stiffness ratio of kb = 5 × 10−6.
Without damping, the simulation would result in an almost
perfectly elastic piece of soft rubber, far from the real-
world cloth behavior which is very energy dissipative. We
use Rayleigh damping with an inertial damping factor of 2
and a 0.1 ratio relative to the stiffness for both the strain



Fig. 4: Simulation of a Franka Emika Hand grasping a plastic cup
with weights. Results visualized with Blender’s Cycles path tracer.

and bending damping. The total mass of the towel, which
is lumped to the nodes, is 0.484 kg and its dimensions are
1.75m by 0.75m. All the parameters are set based on hands-
on experimentation with the real towel, such as waviness
when held by one corner or stack height when folded. The
parametrization is transferable to other simulations using the
same material and frictional contact models.

The thickness of the towel is 3.25mm, which we con-
veniently use as the contact distance of d̂. We use the a
friction of µt = 0.4 for the towel self-contacts, µk = 1.0 for
the robot-towel and -floor contacts and µc = 1.0, µp = 0.2
for the towel-floor contacts, carpet and polished, respectively.
The friction parameters are used as the degrees of freedom
of this experimentation setup and fit to match the simulation
outcomes to the real experiments. All parameters have been
kept constant over the entire experiment. The total runtime
for the 16 simulations is roughly 6 hours on a AMD Ryzen
Threadripper PRO 5975WX CPU with 32 cores @ 3.60GHz.

B. Grasping of a Plastic Cup

We also showcase a grasping simulation to demonstrate
that Stark can be used in other challenging scenarios, such
as grasping of deformable objects (see Fig. 4). Although not
compared to real-world experiments, the simulation follow
the expected results dictated by static friction analysis.

We model the parallel-jaw gripper Franka Emika Hand
according to the manufacturer specifications [33]. We employ
Stark’s implicit joint controller to model the gripper with
a target closing velocity of 100mms−1 and a maximum
grip force of 5N. The contact distance for this simulation
is d̂ = 0.5mm and the friction between the gripper and
the cup is µ = 0.5. The plastic cup, approximately 10 cm
tall, uses the same shell/cloth models than the towel from
the previous experiment but significantly stiffer in order to
faithfully represent the behavior a of thin PET plastic sheet
(see also the experiment’s source code in Stark’s repository
for further details).

First, the jaws close to grab the plastic cup (Fig. 4
left), which is then deformed. Once the gripper and the
deformed cup come to an equilibrium, steel balls of 14 g
each are poured into the cup. Static grasping breaks when
20 balls are inside the cup (Fig. 4 center), as the vertical

pull reaches 2.8N, surpassing the theoretical 2.5N static
friction threshold given by the 5N contact pressure and the
µ = 0.5 Coulomb’s friction. Due to the large deformations
of the plastic shell and the reinforcement at the cup’s lips,
the cup is held for longer as it latches onto the jaws (Fig. 4
right). It takes 60 minutes to compute the 16 seconds of
simulation on the aforementioned hardware, mostly due to
the simulation length and amount of collisions between
spheres. The simulation of the grasp itself, which happens in
the first 2 seconds of the simulation, takes 5 minutes. This
type of simulations, which are relevant to a wide range of
robotic grasping tasks such as bin picking, are notoriously
difficult since they require accurate and robust methods for
both materials and contacts, and good coupling between the
deformable and rigid body systems.

V. CONCLUSIONS

In this paper we presented Stark, a framework to simulate
strongly coupled mechanical systems, including rigid and
deformables, with frictional contact. The goal of our system
is to incorporate recent advances in simulation to provide
not only a larger set of supported phenomena than the
most used frameworks currently available, but also a higher
degree of modeling accuracy and robustness. We demon-
strate the capabilities of Stark in simulations featuring non-
linear materials undergoing large deformations, rigid body
systems with implicit joints and motors, and complex contact
configurations with friction. Stark simulations are able to
match the outcome of all 16 simulations carried out in a
lab setting where a vacuum cleaning robot interacts with a
towel on the floor. Available simulation solutions lacked the
required features to model such simulations or did not have
the required accuracy, especially when handling frictional
contacts with deformable objects. Stark is therefore posed
to fill a gap in the current landscape of available simulation
software and empower researchers with easy access to state-
of-the-art simulation solutions.

As for limitations, Stark inherits the conditionals of the
underlying models it uses, the most prominent one being
the imposition for the models to have a variational form,
which makes dissipative effects such as friction or damping
more challenging to account for. Besides, there are paths
for improvements within Stark. First, introducing additional
mechanical effects, like plasticity for instance, is an in-
teresting direction. Second, although the present optimizer
implementation has shown its effectiveness in the provided
examples, refining its performance would be beneficial as
it is the current bottleneck of the simulation execution. Fi-
nally, adopting standard scene description files would further
bolster its adoption.

ACKNOWLEDGEMENTS

We would like thank to Rupert Kinzler for his knowledgable advice in
the development of Stark. We also thank Tobias Mauk for his support in
carrying out the real-world experiments with the vacuum cleaner robot.



REFERENCES

[1] C. K. Liu and D. Negrut, “The role of physics-based simulators
in robotics,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 4, no. 1, pp. 35–58, 2021.

[2] R. L. Smith, “Ode: Open dynamics engine,” https://www.ode.org,
accessed on 10 September 2022.

[3] E. Coumans and Y. Bai, “PyBullet, a Python module for physics
simulation for games, robotics and machine learning,” http://pybullet.
org, accessed on 10 September 2022.

[4] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2012.

[5] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa,
M. Stilman, and C. K. Liu, “DART: dynamic animation and robotics
toolkit,” Journal of Open Source Software, vol. 3, no. 22, 2018.

[6] A. Tasora, R. Serban, H. Mazhar, A. Pazouki, D. Melanz, J. Fleis-
chmann, M. Taylor, H. Sugiyama, and D. Negrut, “Chrono: An
open source multi-physics dynamics engine,” in High Performance
Computing in Science and Engineering, T. Kozubek, Ed. Springer,
2016.

[7] R. L. Smith, “Ode: Open dynamics engine,” https://developer.nvidia.
com/physx-sdk, accessed on 10 September 2022.

[8] J. Bender, M. Müller, M. A. Otaduy, and M. Teschner, “Position-based
methods for the simulation of solid objects in computer graphics.” in
Eurographics (State of the Art Reports), 2013, pp. 1–22.

[9] S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly, “Projective
dynamics: Fusing constraint projections for fast simulation,” ACM
Trans. Graph., vol. 33, no. 4, 2014.

[10] L. Lan, M. Li, C. Jiang, H. Wang, and Y. Yang, “Second-order stencil
descent for interior-point hyperelasticity,” ACM Trans. Graph., vol. 42,
no. 4, 2023.

[11] T. F. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J. M. Teran,
“Optimization integrator for large time steps,” IEEE Transactions on
Visualization and Computer Graphics, vol. 21, no. 10, 2015.

[12] M. Li, Z. Ferguson, T. Schneider, T. Langlois, D. Zorin, D. Panozzo,
C. Jiang, and D. M. Kaufman, “Incremental potential contact:
Intersection-and inversion-free, large-deformation dynamics,” ACM
Trans. Graph., vol. 39, no. 4, 2020.

[13] Y. Chen, M. Li, L. Lan, H. Su, Y. Yang, and C. Jiang, “A unified
Newton barrier method for multibody dynamics,” ACM Trans. Graph.,
vol. 41, no. 4, 2022.

[14] J. A. Fernández-Fernández, F. Löschner, L. Westhofen, A. Longva,
and J. Bender, “Symx: Energy-based simulation from symbolic ex-
pressions,” arXiv preprint arXiv:2303.02156, 2023.

[15] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2004.

[16] Cyberbotics Ltd., “Webots,” http://www.cyberbotics.com, accessed on
10 September 2022.

[17] Coppelia Robotics, Ltd., “CoppeliaSim,” https://www.
coppeliarobotics.com, accessed on 10 September 2022.

[18] Nvidia Corporation, “Isaac Sim,” https://developer.nvidia.com/
isaac-sim, accessed on 10 September 2022.

[19] M. Körber, J. Lange, S. Rediske, S. Steinmann, and R. Glück,
“Comparing popular simulation environments in the scope of robotics
and reinforcement learning,” 2021, preprint arXiv:2103.04616 [cs.RO].

[20] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-based
robotics: comparison of Bullet, Havok, MuJoCo, ODE and PhysX,”
in IEEE Int. Conf. on Robotics and Automation (ICRA), 2015.

[21] Y. Bai and C. K. Liu, “Coupling cloth and rigid bodies for dexterous
manipulation,” in 7th Int. Conf. on Motion in Games. New York, NY,
USA: Association for Computing Machinery, 2014.

[22] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, et al., “Isaac gym:
High performance gpu-based physics simulation for robot learning,”
arXiv preprint arXiv:2108.10470, 2021.

[23] I. Huang, Y. Narang, C. Eppner, B. Sundaralingam, M. Macklin,
R. Bajcsy, T. Hermans, and D. Fox, “DefGraspSim: Physics-based
simulation of grasp outcomes for 3d deformable objects,” IEEE
Robotics and Automation Letters, vol. 7, no. 3, 2022.

[24] C. M. Kim, M. Danielczuk, I. Huang, and K. Goldberg, “IPC-
GraspSim: Reducing the sim2real gap for parallel-jaw grasping with
the incremental potential contact model,” in IEEE Int. Conf. on
Robotics and Automation (ICRA), 2022.

[25] M. Li, D. M. Kaufman, and C. Jiang, “Codimensional incremental
potential contact,” ACM Trans. Graph., vol. 40, no. 4, jul 2021.
[Online]. Available: https://doi.org/10.1145/3450626.3459767

[26] Z. Ferguson, M. Li, T. Schneider, F. Gil-Ureta, T. Langlois, C. Jiang,
D. Zorin, D. M. Kaufman, and D. Panozzo, “Intersection-free rigid
body dynamics,” ACM Trans. Graph., vol. 40, no. 4, 2021.

[27] Z. Ferguson et al., “IPC Toolkit,” 2020. [Online]. Available:
https://ipc-sim.github.io/ipc-toolkit/

[28] M. Ortiz and L. Stainier, “The variational formulation of viscoplastic
constitutive updates,” Computer Methods in Applied Mechanics and
Engineering, vol. 171, no. 3, 1999.

[29] J. Bender, K. Erleben, and J. Trinkle, “Interactive simulation of rigid
body dynamics in computer graphics,” Comput. Graph. Forum, vol. 33,
no. 1, 2014.

[30] M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and
T. Y. Kim, “Primal/dual descent methods for dynamics,” in ACM
SIGGRAPH/Eurographics Symp. on Computer Animation. Goslar,
DEU: Eurographics Association, 2020.

[31] M. Bergou, M. Wardetzky, D. Harmon, D. Zorin, and E. Grinspun, “A
Quadratic Bending Model for Inextensible Surfaces,” in Symposium
on Geometry Processing, A. Sheffer and K. Polthier, Eds. The
Eurographics Association, 2006.

[32] Yujin Robot, “Kobuki description model,” https://github.com/
yujinrobot/kobuki description, accessed on 10 September 2022.

[33] Franka, “Franka Hand: Product Manual,” https://download.franka.de/
documents/220010 Product%20Manual Franka%20Hand 1.2 EN.pdf,
2022, [Online; accessed Sept 2023].

https://www.ode.org
http://pybullet.org
http://pybullet.org
https://developer.nvidia.com/physx-sdk
https://developer.nvidia.com/physx-sdk
http://www.cyberbotics.com
https://www.coppeliarobotics.com
https://www.coppeliarobotics.com
https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/isaac-sim
https://doi.org/10.1145/3450626.3459767
https://ipc-sim.github.io/ipc-toolkit/
https://github.com/yujinrobot/kobuki_description
https://github.com/yujinrobot/kobuki_description
https://download.franka.de/documents/220010_Product%20Manual_Franka%20Hand_1.2_EN.pdf
https://download.franka.de/documents/220010_Product%20Manual_Franka%20Hand_1.2_EN.pdf

	INTRODUCTION
	RELATED WORK
	CONCEPT
	Optimization Time Integration
	Rigid Bodies and Implicit Constraints
	Deformable Solids with FEM
	IPC Contact and Friction

	EXPERIMENTS
	Validation of Robot-Cloth Interactions
	Grasping of a Plastic Cup

	CONCLUSIONS
	References

