
Implicit Surface Tension for SPH Fluid Simulation
STEFAN RHYS JESKE, RWTH Aachen University, Germany
LUKAS WESTHOFEN, RWTH Aachen University, Germany
FABIAN LÖSCHNER, RWTH Aachen University, Germany
JOSÉ ANTONIO FERNÁNDEZ-FERNÁNDEZ, RWTH Aachen University, Germany
JAN BENDER, RWTH Aachen University, Germany

Fig. 1. Left: A dripping water faucet showing realistic stream and droplet formation for small scale water effects. Middle: A child’s toy in which droplets fall
through a maze of obstacles due to gravity. A reservoir at the top of the toy causes droplets to be formed through funnels, falling through the maze and
recombining into a single fluid mass at the bottom. Right: A water-bell, which is formed due to surface tension when two opposite and vertical water streams
meet. Our surface tension method force is able to maintain the shape, while the surface at its thinnest point is just 2-3 particles thick.

The numerical simulation of surface tension is an active area of research in

many different fields of application and has been attempted using a wide

range of methods. Our contribution is the derivation and implementation

of an implicit cohesion force based approach for the simulation of surface

tension effects using the Smoothed Particle Hydrodynamics (SPH) method.

We define a continuous formulation inspired by the properties of surface

tension at the molecular scale which is spatially discretized using SPH.

An adapted variant of the linearized backward Euler method is used for

time discretization, which we also strongly couple with an implicit viscosity

model. Finally, we extend our formulation with adhesion forces for interfaces

with rigid objects.

Existing SPH approaches for surface tension in computer graphics are

mostly based on explicit time integration, thereby lacking in stability for

challenging settings. We compare our implicit surface tension method to

these approaches and further evaluate our model on a wider variety of
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complex scenarios, showcasing its efficacy and versatility. Among others,

these include but are not limited to simulations of a water crown, a dripping

faucet and a droplet-toy.
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1 INTRODUCTION
Surface tension effects can be readily observed in everyday situa-

tions at home or in nature. A dripping water faucet, the formation

and merging of soap bubbles or the movement of water striders

on a pond are just a few examples which are impossible without

surface tension. There exist many use cases for simulating these

effects in the field of computer animation, whether it is for small

scale water features, or artistic effects like droplets running down a

soda can. Even outside these applications, modeling surface tension

is crucial for specific engineering problems, for example in additive
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manufacturing. Overall, the numerical simulation of surface tension

is an active area of research in various fields.

At its core, surface tension is the result of unbalanced molecular

attraction forces at the fluid interface. This imbalance results in

forces minimizing the surface area of the fluid and tensile stresses

parallel to the surface, which can roughly be compared to a kind of

“elastic” membrane. Of course this is a highly simplified description

and actually incorporating surface tension in continuummechanical

fluid simulations poses several challenges. First of all, surface ten-

sion is not inherent to models based on the Navier-Stokes equations

and has to be modelled explicitly in contrast to molecular simula-

tions, where surface tension arises directly from the intermolecular

potentials. Furthermore, depending on the choice of the numerical

discretization method, the obvious fact that surface tension effects

specifically apply to the surface of the fluid can cause nontrivial

accuracy or stability issues as well as complicate the coupling with

the rest of the fluid model.

Previous SPH surface tension methods in computer graphics have,

for the most part, used explicit time integration. This becomes an

issue when aiming to simulate cases with large surface tension

coefficients, as they end up requiring small time steps in order to

obtain a stable simulation. In addition, the simulation of certain

effects containing surface tension, such as the formation of thin

sheets during splashing, requires a delicate balance of forces and

stability of surface tension that has not yet been shown using explicit

SPH surface tension methods. As such, we aim in this paper to

develop an implicit scheme for computing surface tension forces in

order to improve simulation stability and to enable the use of large

force coefficients without resorting to reducing time step sizes. To

this end we present the following contributions.

First, we derive a cohesion force which is inspired by the balance

of forces at the molecular scale. This force is defined such that it

only acts on the surface of the fluid while cancelling out in the

interior. This property is fulfilled by making use of the symmetric

SPH kernel function, enabling our model to seamlessly integrate

with existing SPH solvers. After discretizing with SPH we apply the

backward Euler method for time integration, yielding a non-linear

system of equations. For the system we subsequently propose a

non-trivial linearization for improved solver performance.

Second, we extend our surface tension force by an adhesion term

for interaction with rigid objects and further strongly couple it with

a state-of-the-art implicit viscosity force [Weiler et al. 2018]. The

strong coupling is achieved by solving a single monolithic linear

system. This results in more stable simulations compared to solving

surface tension and viscosity sequentially by avoiding coupling

artifacts, which become more noticeable for cases with both larger

surface tension and viscosity coefficients. The monolithic solver is

able to directly find a solution satisfying both equations, instead of

having to iterate between them or favoring one over the other by

solving them in succession.

Finally, we demonstrate that using our method, we are able to

simulate a large variety of surface tension effects. These range from

cohesion dominant cases, such as droplet formation and fluid crowns,

to adhesion dominant cases, such as covered spheres and surface

wetting, as well as cases requiring a delicate balance between the

two, such as a catenoid between two rigid tori. In Fig. 1, a selection

of these complex surface tension effects is shown.

2 RELATED WORK
Over the years a number of different approaches have been devel-

oped to simulate surface tension using a variety of different dis-

cretizations. As the goal of our work is to present an improved and

implicit surface tension model for SPH simulation, we first present

a brief review of SPH surface tension approaches. Afterwards, we

outline the broader context of how surface tension can be simulated

using different discretization and simulation methods. Finally, we

summarize the findings most relevant to our work.

2.1 Particle-Based Surface Tension
To this day, SPH fluid simulation [Desbrun and Gascuel 1996; Gin-

gold and Monaghan 1977; Lucy 1977; Monaghan 1992] is an estab-

lished method in a wide variety of fields, ranging from computa-

tional physics and engineering [Farrokhpanah et al. 2021; Jeske

et al. 2022; Komen et al. 2020] to physical simulation and animation.

Recent advances include the simulation of snow [Gissler et al. 2020],

the simulation of deformable objects [Kugelstadt et al. 2021; Peer

et al. 2018], and the strong coupling between fluids and rigid bodies

[Gissler et al. 2019]. SPH simulation methods have made significant

progress over the years, and as such there have also been a variety of

methods attempting to capture the effects of surface tension. For a

general overview of SPH methods in computer graphics, the reader

is referred to the state-of-the-art reports by Koschier et al. [2022]

and Ihmsen et al. [2014b]. An overview of surface tension formu-

lations, as well as resulting numerical models is given by Popinet

[2018].

At a microscopic scale, surface tension is known to originate from

an imbalance of molecular forces at fluid interfaces [Nelkon 1969].

As SPH is a particle based Lagrangian discretization method, some

works have attempted to emulate this molecular force by introduc-

ing attractive forces between particles [Becker and Teschner 2007;

Clavet et al. 2005; Tartakovsky and Meakin 2005; Yang et al. 2016b,

2017]. These works have partially been documented to suffer from

increased particle clustering at the surface [Huber et al. 2015]. Yang

et al. [2016b; 2017] show that using a significantly larger support

radius can alleviate the particle clustering problems in some of the

previous works and propose an improved particle-particle inter-

action force for surface tension. They use a Jacobi iteration-based

strong coupling between pressure and non-pressure forces (includ-

ing surface tension). This however comes at the cost of significantly

increased computational complexity.

At the macroscopic scale, surface tension is generally derived

through the thermodynamic equilibrium across the fluid interface

[Landau and Lifshitz 2013]. Derived from this is the Young-Laplace

equation that describes forces acting on the surface of the fluid.

Brackbill et al. [1992] reformulated this equation using a mollifier

function for volumetric simulations. This is called the Continuum

Surface Force (CSF) approach. This approach was initially adopted

for SPH simulations by Morris [2000], and subsequently by several

others [He et al. 2014; Hu and Adams 2006; Müller et al. 2003; Zhang

2010; Zorilla et al. 2020]. It integrates well with the SPH framework
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and is able to produce comparable results to cohesion based ap-

proaches when tuned correctly. Nevertheless, the computation of

the curvature with SPH is known to be prone to errors [Morris 2000],

especially in the interior of the fluid, requiring the usage of non-

trivial thresholds or explicit surface classification to alleviate this.

Notably, Zorilla et al. [2020] present an improved, but computation-

ally expensive approach for computing accurate curvature values.

Finally, Akinci et al. [2013] present a hybrid approach utilizing both

curvature (through non-normalized normal vectors) and cohesion

forces aiming to combine the best of both methods. This method is

further built upon by X.K. Wang et al. [2017], by coupling it with the

IISPH method [Ihmsen et al. 2014a]. Comparisons of select models

based on the microscale considerations (inter-particle force) and

models based on the CSF approach are presented by Huber et al.

[2015] and Yang et al. [2019].

2.2 Further Approaches
Grid-Based. Similar to Lagrangian particle methods, the fluid

interfaces which are required for surface tension are often only

implicitly defined in grid-based methods. The surfaces can be re-

constructed by using an interface tracking technique such as the

level-set method [Aanjaneya et al. 2013; Kang et al. 2008; Ni et al.

2020; Patkar et al. 2013; Zheng et al. 2009] or the volume of fluid

method [Albadawi et al. 2013; Hong and Kim 2003, 2005]. However,

while grid-based Eulerian methods allow for changing topology, the

resolution is often constrained by the necessity to discretize a very

large region outside of the actual region of interest. A recent work

by Chen et al. [2020] addresses this issue by proposing a cut-cell

method able to resolve the liquid surface at sub-grid scale. The level-

set method has also been successfully applied to the simulation of

soap bubbles [Kang et al. 2008] as well as air bubbles and bubble

clusters [Zheng et al. 2009].

Mesh-Based. Lagrangian mesh based approaches typically facil-

itate accurate computation of surface tension forces by explicitly

modeling the surface of the fluid. There are a number of mesh-based

approaches incorporating surface tension effects focusing on sur-

face only (non-volumetric) discretizations of fluids. These include

the simulation of droplets covering other objects [Zhang et al. 2012],

the simulation of viscous thin sheets [Batty et al. 2012] and threads

[Bergou et al. 2010], thin films on other surfaces [Azencot et al.

2015] and surface only discretizations of bubbles and thin films [Da

et al. 2015; Ishida et al. 2020, 2017]. Zhu et al. [2015; 2014] propose

a codimensional simulation method to allow for changing surface

topology. Finally, Misztal et al. [2014, 2012] derive and implement

a fully coupled solver containing pressure, viscosity and implicit

surface tension on moving unstructured tetrahedral meshes.

Hybrid. Hybrid methods typically aim to make use of Lagrangian

particles and Eulerian grids together, combining benefits of both

approaches to capture incredibly diverse effects. Zheng et al. [2015]

apply a hybrid particle marker-and-cell grid to better capture free

surface flows. Hong et al. [2008] propose a novel approach of using

SPH to simulate air bubbles within an Eulerian grid based simulator.

A versatile surface tension approach based on the minimization of

an energy which is proportional to the surface area of the liquid is

proposed by Hyde et al. [2020]. This approach can be used within the

material-point method or particle-in-cell approach and has been fur-

ther extended to model phenomena with spatially varying surface

tension coefficients [Chen et al. 2021]. Boyd and Bridson [2012] pro-

pose a FLIP method which explicitly reconstructs the fluid surface

for accurate surface tension computation. A hybrid method which

uses a Lagrangian surface mesh instead of particles is introduced by

Schroeder et al. [2012], in which the surface mesh is coupled to an

Eulerian discretization. A similar approach has also been proposed

by Ruan et al. [2021] and has been extended to strongly couple with

solid objects interacting with the surface.

Recently, Xing et al. [2022] introduced a hybrid position-based

method for simulating small-scale surface tension phenomena, by

detecting surface particles, reconstructing a local triangle mesh and

formulating surface tension constraints.

2.3 Summary
While a number of particle-based surface tension models have al-

ready been proposed, there have always been drawbacks and limi-

tations to what effects a single method was able to capture. Most

previous SPH based methods modelled surface tension with ex-

plicit forces, which can cause stability issues with large parameter

values or large time steps. We propose an implicit surface tension

method in SPH-based fluid simulation to address this problem. This

includes an implicit approach for boundary adhesion, as well as

strong coupling with an implicit velocity solver.

As opposed to the very recently published method of Xing et al.

[2022], we do not have to resort to detecting surface particles explic-

itly, or potentially costly reconstructions of local meshes. Surface

particles are implicitly detected using our proposed cohesion kernel

and surface forces constructed such that surface area is reduced.

Compared to the approach of Yang et al. [2016b, 2017], we are able

to implicitly integrate surface tension forces using comparatively

small particle neighborhoods of only 30-40 particles. We also use

conjugate gradient (CG) iteration to solve a linear system instead

of nonlinear Jacobi iteration, which also has some more favorable

convergence properties.

Ultimately, we show that the implicit nature of our method en-

ables us to plausibly simulate a wide variety of surface tension

phenomena within a purely particle-based surface tension model.

3 METHOD
As surface tension is fundamentally an effect caused by unbalanced

molecular forces at the micro-scale (see Fig. 2), this results in a net

force at the fluid interface. This can be thought of as “tightening”

the surface, forming a kind of elastic membrane with the tendency

to reduce the surface area of the interface.

In the following, we will derive our surface tension force from

continuum micro-scale considerations. We chose this approach as

the transfer of surface tension originating from molecular cohesive

forces to the domain of SPH particle simulation is the more natural

transition, resulting in a native formulation. Meanwhile, curvature

based approaches require specialized solutions to prevent non-zero

curvature values in the interior of the fluid. Inspired by themolecular

cohesive forces we define a continuous model for surface tension
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Air

Water

Fig. 2. Surface Tension force as a result of micro-scale force imbalances.
Interior particles are completely surrounded in all directions, so that pairwise
cohesive forces (grey arrows) add up to zero. Particles at the surface have no
neighboring particles in a specific region, such that summation of pairwise
cohesive forces (grey arrows) causes a net force (red arrow) in the direction
of the fluid interior.

forces, which we discretize in space using SPH. For discretization

in time we propose an adapted variant of the linearized backward

Euler method. We strongly couple this linear system with implicit

viscosity forces and further extend it to be able to include adhesion

effects at solid boundaries.

We use the well-established operator splitting approach for SPH,

which means that we separately compute and integrate pressure

and non-pressure forces. This weak coupling between pressure and

non-pressure forces is the current standard for SPH simulation

[Ihmsen et al. 2014b; Koschier et al. 2022], and we have not found

it to be prohibitive for the effects we aimed to simulate with our

method, especially when using the implicit pressure solver DFSPH

[Bender and Koschier 2017]. Nevertheless, we also present a short

description of an iteration-based strong pressure coupling approach,

as well as how it relates to the weak pressure-coupled algorithm in

Sec. 3.5. A comparison and brief discussion between the coupling

schemes is then provided in Sec. 4.1.

Finally, we propose a particular weighting function for our cohe-

sion force approach, which relates how strongly particles interact

with each other depending on their distance vector. We construct it

in a way to prevent previously mentioned clustering artifacts at the

surface.

3.1 Derivation
For our method we adopt the micro-scale assumption that the sur-

face tension force results from a force imbalance at the fluid interface

as shown in Fig. 2. We formalize this in the continuum as

𝒇𝑠𝑡 (𝒙) = −𝜎
∫
Ω

𝒙 −𝒚
| |𝒙 −𝒚 | |𝑊 (𝒙 −𝒚;

˜ℎ)𝑑𝒚, (1)

where𝑊 is a compactly supported weighting function on the in-

tegration domain Ω, and 𝜎 ∈ R+ denotes the surface tension co-

efficient. Note that 𝜎 is not directly proportional to the otherwise

commonly used surface tension parameters derived for curvature-

based surface tension, although it shares the same units [N m
−1
].

𝑊 further depends on the distance vector between evaluation point

𝒙 and integration point 𝒚, and the smoothing length
˜ℎ (which is

equivalent to the corresponding SPH quantity).

Intuitively speaking, this integral accumulates force contributions

of all points 𝒚 in the domain in the direction of evaluation point 𝒙
and weights them through evaluation of the function𝑊 . As long as

𝑊 is an even function, the total force will be zero when integrating

over a symmetric domain, e.g., the interior of the fluid. Only when

integrating over non-symmetric domains, e.g., at the fluid surface,

does the integral evaluate to a non-zero value. In addition,𝑊 can

be adjusted to exhibit different attractive or repulsive properties.

For example, at the molecular level𝑊 might be chosen such that

the net force correspond to the force resulting from the Lennard-

Jones [1931] potential. This potential is an even function yielding an

attractive force when molecules are further than some molecule spe-

cific distance apart, diminishing smoothly with increasing distance.

For smaller distances it results in a rapidly increasing repulsive

force, proportional to the inverse distance.

In our work we choose𝑊 cubic
to be the cubic spline kernel [Mon-

aghan 1992] often used in SPH simulations, with a small modifica-

tion resulting in

𝑊 (𝒙 −𝒚; ˜ℎ) = | |𝒙 −𝒚 | |𝑊 st (𝒙 −𝒚; ˜ℎ), (2)

𝑊 𝑠𝑡 (𝒙 −𝒚; ˜ℎ) = 𝜃

{
𝑊 cubic (𝒙 −𝒚; ˜ℎ), for | |𝒙 −𝒚 | | > 𝑑

𝑊 cubic

(
𝒙−𝒚
| |𝒙−𝒚 | |𝑑 ;

˜ℎ

)
, otherwise .

(3)

Here 𝑑 denotes the particle diameter, such that the value of𝑊 st
,

and implicitly also the value of𝑊 , is clamped to a constant value

as the distance between particles decreases below 𝑑 . In all of our

simulations we set
˜ℎ = 2𝑑 . The additional factor 𝜃 = 10

7
(for 3D

simulations) is derived, such that the modified cubic-spline kernel

function is again normalized, i.e. the integral of the kernel over the

compact support is equal to one.

The multiplication by the distance | |𝒙 −𝒚 | | and the clamping of

the cubic-spline kernel ensures, that the attraction is maximal at one

particle diameter distance 𝑑 and linearly tends to zero as particles

get closer. As such, the SPH discretization of Eq. (1) is given by

𝒇st (𝒙𝑖 ) = −𝜎
∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗
(𝒙𝑖 − 𝒙𝒋)𝑊 st (𝒙𝑖 − 𝒙𝒋 ; ˜ℎ),

(4)

where 𝑚 𝑗 is the mass and 𝜌 𝑗 is the density of discrete particle 𝑗

in the neighborhood N𝑖 around position 𝒙𝑖 . Note that due to the

dependency on the density 𝜌 𝑗 , the term also depends on all positions

𝒙𝑘 in the neighborhood 𝑘 ∈ N𝑗 , since

𝜌 𝑗 =
∑︁
𝑘∈N𝑗

𝑚𝑘𝑊
cubic (𝒙 𝑗 − 𝒙𝑘 ; ˜ℎ) . (5)

This dependency has considerable significance for our implicit inte-

gration scheme which we introduce in the following. The formula-

tion in Eq. (4) is very similar to the surface tension force employed

by Becker and Teschner [2007], yet differs in derivation and con-

struction of the custom clamped kernel function.

In the following, we will use the shorthands𝑊𝑖 𝑗 =𝑊 st (𝒙𝑖 −𝒙 𝑗 ; ˜ℎ)
and 𝒙𝑖 𝑗 = 𝒙𝑖 − 𝒙 𝑗 . In order to symmetrize Eq. (4), we introduce

𝜌𝑖 𝑗 =
1

2
(𝜌𝑖 + 𝜌 𝑗 ) and𝑚𝑖 𝑗 =

1

2
(𝑚𝑖 +𝑚 𝑗 ) as the averaged densities
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and masses. This yields the symmetric force

𝒇
st
(𝒙𝑖 ) = −

∑︁
𝑗∈N𝑖

𝜎
𝑚𝑖 𝑗

𝜌𝑖 𝑗
𝒙𝑖 𝑗𝑊𝑖 𝑗︸         ︷︷         ︸

𝒇 𝑖 𝑗,st

.

(6)

Finally, the acceleration on particle 𝑖 resulting from the discretized

surface tension force can be written as

𝒂𝑖,st = −
1

𝑚𝑖

∑︁
𝑗∈N𝑖

𝒇 𝑖 𝑗,st = −
𝜎

𝑚𝑖

∑︁
𝑗∈N𝑖

𝑚𝑖 𝑗

𝜌𝑖 𝑗
𝒙𝑖 𝑗𝑊𝑖 𝑗 . (7)

Discretizing this equation in time using the forward Euler method

yields

𝒂𝑖,st =
𝒗𝑡+1
𝑖
− 𝒗𝑡

𝑖

Δ𝑡
= − 𝜎

𝑚𝑖

∑︁
𝑗∈N𝑖

𝑚𝑖 𝑗

𝜌𝑡𝑖 𝑗

𝒙𝑡𝑖 𝑗𝑊
𝑡
𝑖 𝑗 , (8)

resulting in a closed expression for 𝒗𝑡+1
𝑖

. Discretizing with the back-

ward Euler method instead, this equation becomes

𝒂𝑖,st =
𝒗𝑡+1
𝑖
− 𝒗𝑡

𝑖

Δ𝑡
= − 𝜎

𝑚𝑖

∑︁
𝑗∈N𝑖

𝑚𝑖 𝑗

𝜌𝑡+1𝑖 𝑗

𝒙𝑡+1𝑖 𝑗 𝑊 𝑡+1
𝑖 𝑗 , (9)

which results in a non-linear system for the velocity 𝒗𝑡+1
𝑖

, since

the (non-linear) kernel function and the density both depend on

𝒙𝑡+1
𝑖

= 𝒙𝑡
𝑖
+ Δ𝑡𝒗𝑡+1

𝑖
.

3.2 Implicit Surface Tension
In the following we describe the implicit time integration in more

detail. Using an implicit method improves the stability significantly

when using large surface tension forces in combination with larger

time steps. This enables the simulation of complex surface tension

effects that explicit methods struggle to handle at typical time step

sizes. The explicit version in Eq. (8) directly yields a closed solution

for velocity 𝒗𝑡+1
𝑖

, while the implicit version in Eq. (9) requires solving

a non-linear system.

The usage of a full non-linear solver, e.g. Newton’s method, is

not well suited for our specific problem. The combination of New-

ton iterations together with a sparse linear system solver quickly

becomes prohibitively expensive, both in terms of computational

complexity as well as potentially memory requirements of storing

the Jacobian and intermediate results for line-search. More crucially,

a full Newton’s method for surface tension would entail many more

iterations over all particles, its neighbors and neighbors of neigh-

bors than just a linear system solve, as well as the need to run the

costly neighborhood search and to evaluate new densities in each

Newton iteration. As such, we instead describe our solution method

for linearized implicit surface tension forces in the following.

Naive Linearization. To be able to solve the non-linear system

we choose to employ a linear approximation. The most obvious

approach to this would be to simply linearize Eq. (9) in velocity

𝒂𝑖,st (𝒙𝑡+1 (𝒗𝑡+1)) = 𝒂𝑖,st (𝒙𝑡+1 (𝒗𝑡 ))
+ ∇𝒗 𝒂𝑖,st (𝒙𝑡+1 (𝒗))

��
𝒗𝑡 (𝒗

𝑡+1 − 𝒗𝑡 )
+ O(Δ𝒗2) .

(10)

Solving this linear system can be viewed as solving the non-linear

system using a single Newton iteration. However, in our exper-

iments we quickly disregarded this approach as untenable. The

derivative has to be computed with respect to the velocities of all

particles in the immediate neighborhood, as well es their immediate

neighbors due to the dependencies mentioned previously. Using

an iterative and matrix-free linear system solver, this led to signifi-

cantly worse performance and scaling, quickly dominating all other

terms in the SPH solver. In addition, we found that the quality and

stability of the simulations using this approach were, if anything,

slightly inferior to the following approach.

Improved Linearization. Instead of directly linearizing Eq. (9) in

velocity, we instead split the term into two parts 𝑔 and ℎ

𝒗𝑡+1
𝑖
− 𝒗𝑡

𝑖

Δ𝑡
= − 𝜎

𝑚𝑖

∑︁
𝑗∈N𝑖

𝑚𝑖 𝑗

𝑔𝑡+1
𝑖 𝑗︷︸︸︷

𝑊 𝑡+1
𝑖 𝑗

𝜌𝑡+1𝑖 𝑗

ℎ𝑡+1
𝑖 𝑗︷︸︸︷

𝒙𝑡+1𝑖 𝑗 , (11)

and linearize them independently with respect to time 𝑡 . Realizing

that the term ℎ only depends linearly on particle positions 𝒙𝑖 and 𝒙 𝑗 ,
it is linearized using backward Euler time integration. This results

in

ℎ𝑡+1𝑖 𝑗 =

(
𝒙𝑡𝑖 + Δ𝑡𝒗

𝑡+1
𝑖 − 𝒙𝑡𝑗 − Δ𝑡𝒗

𝑡+1
𝑗

)
, (12)

preventing any longer range dependencies on velocities outside of

the immediate neighborhood of particle 𝑖 . The other term 𝑔, which

does have dependencies outside of the immediate neighborhood

(see Sec. 3.1) is approximated using a first-order Taylor expansion

at time 𝑡

𝑔𝑡+1𝑖 𝑗 ≈ 𝑔
𝑡+1
𝑖 𝑗 = 𝑔𝑡𝑖 𝑗 + Δ𝑡

𝜕𝑔𝑖 𝑗

𝜕𝑡

����
𝑡

= 𝑔𝑡𝑖 𝑗 + Δ𝑡
(
𝜕𝑔𝑖 𝑗

𝜕𝒙
· 𝒗

)����
𝑡

. (13)

This results in a formulation which only depends on quantities at

time 𝑡 . Therefore, it can be computed in advance of solving the

linear system. The individual terms of 𝑔 are

𝑔𝑡𝑖 𝑗 =
𝑊 𝑡

𝑖 𝑗

𝜌𝑡𝑖 𝑗

, (14)

and (
𝜕𝑔𝑖 𝑗

𝜕𝒙
· 𝒗

)����
𝑡

=
∇𝑖𝑊 𝑡

𝑖 𝑗
· 𝒗𝑡

𝑖
+ ∇𝑗𝑊 𝑡

𝑖 𝑗
· 𝒗𝑡

𝑗

𝜌𝑡𝑖 𝑗

−
𝑊 𝑡

𝑖 𝑗

2

©­«
∑
𝑘∈N𝑖

𝑚𝑘 (𝒗𝑡𝑖 − 𝒗
𝑡
𝑘
) · ∇𝑖𝑊 𝑡

𝑖𝑘

𝜌𝑡𝑖 𝑗
2

+
∑
𝑙∈N𝑗

𝑚𝑙 (𝒗𝑡𝑗 − 𝒗
𝑡
𝑙
) · ∇𝑗𝑊 𝑡

𝑗𝑙

𝜌𝑡𝑖 𝑗
2

ª®¬ .

(15)

The first line in this equation corresponds to the time derivative

of the kernel function 𝑊𝑖 𝑗 , which has been expanded using the

product rule, see Eq. (13), to the spatial derivative of the kernel

function times the velocity. The spatial gradients ∇𝑖 and ∇𝑗 denote
derivatives wrt. particle positions 𝒙𝑖 and 𝒙 𝑗 . The second and third

line correspond to the time derivative of the reciprocal averaged

density 𝜌𝑖 𝑗 , which has been expanded analogously. These terms

ACM Trans. Graph., Vol. 43, No. 1, Article 13. Publication date: November 2023.



13:6 • Jeske, et al.

can be recognized from the continuity equation as the negative

divergence of the velocity field ∇ · 𝒗 times density 𝜌

− (𝜌∇ · 𝒗)𝑖 =
∑︁
𝑗∈N𝑖

𝑚 𝑗 (𝒗𝑖 − 𝒗 𝑗 ) · ∇𝑖𝑊𝑖 𝑗 . (16)

We precompute and store this scalar value per particle and thus

eliminate the need for iterating over neighbors of neighboring par-

ticles in the linear solver. Now that all terms have been identified,

we can assemble the final linearized system

𝒗𝑡+1
𝑖
− 𝒗𝑡

𝑖

Δ𝑡
= − 𝜎

𝑚𝑖

∑︁
𝑗∈N𝑖

𝑚𝑖 𝑗

(
𝒙𝑡𝑖 𝑗 + Δ𝑡𝒗

𝑡+1
𝑖 𝑗

)
𝑔𝑡+1𝑖 𝑗 ,

⇔ 𝒗𝑡+1𝑖 + Δ𝑡2 𝜎

𝑚𝑖

∑︁
𝑗∈N𝑖

𝑚𝑖 𝑗𝒗
𝑡+1
𝑖 𝑗 𝑔𝑡+1𝑖 𝑗 = 𝒗𝑡𝑖 − Δ𝑡

𝜎

𝑚𝑖

∑︁
𝑗∈N𝑖

𝑚𝑖 𝑗𝒙
𝑡
𝑖 𝑗𝑔

𝑡+1
𝑖 𝑗 .

(17)

This can also be written as

(I + Δ𝑡A)𝒗𝑡+1 = 𝒗𝑡 + 𝒃, (18)

where

A𝑖𝑖 = I3
𝜎

𝑚𝑖
Δ𝑡

∑︁
𝑗∈N𝑖

𝑚𝑖 𝑗𝑔
𝑡+1
𝑖 𝑗 , A𝑖 𝑗 = −I3

𝜎

𝑚𝑖
Δ𝑡𝑚𝑖 𝑗𝑔

𝑡+1
𝑖 𝑗 for 𝑖 ≠ 𝑗 ,

𝒃𝑖 = −Δ𝑡
𝜎

𝑚𝑖

∑︁
𝑗∈N𝑖

𝑚𝑖 𝑗𝒙
𝑡
𝑖 𝑗𝑔

𝑡+1
𝑖 𝑗 .

(19)

Here, A𝑖 𝑗 denotes the matrix block corresponding to the entry of

particles 𝑖 and 𝑗 , while A𝑖𝑖 denotes the diagonal matrix element and

I3 the 3x3 identity matrix. The constructed linear system is symmet-

ric positive definite if all particles have equal mass𝑚 =𝑚𝑖 , which

allows us to use the iterative matrix-free Conjugate Gradient (CG)

method to find the solution. Indeed, we only perform simulations

with uniform particle masses. It would however be possible, to use

a different iterative linear solver, such as BiCGStab, to solve the

non-symmetric system for non-uniform particle masses.

The linear system could also be solved as three smaller systems,

as the individual velocity components do not depend on each other.

However, this can only be done when only solving implicit sur-

face tension and is no longer possible when strong coupling with

viscosity is desired, see Section 3.4.

We use a matrix-free CG solver, since it is more efficient both in

terms of memory as well as computation time, as the linear system

never actually has to be fully assembled. We also use the previous

change in velocity to compute a prediction to warmstart the linear

solver

𝒗
pred

= 𝒗𝑡 +
(
𝒗𝑡 − 𝒗𝑡−1

)
. (20)

We have found this to significantly reduce computation time by

decreasing the number of required solver iterations. Yet in our ex-

periments we have not found a diagonal preconditioner to yield any

tangible improvement over using no preconditioner, although this

may be a possible direction for further study.

3.3 Adhesion
Wehave formulated an implicit linear system allowing us to compute

cohesive surface tension forces within the fluid itself. We extend

this by defining an additional force which allows us to describe

the surface tension properties between a fluid and a rigid object in

contact. To achieve this we use an analogous formulation as for the

previous cohesion model and introduce an adhesion coefficient 𝜎𝑏 ,

which defines how strongly the fluid is drawn to the rigid object. We

further assume the usage of the Volume Maps boundary handling

method [Bender et al. 2019]. Within this method, boundaries are

simply defined by the volume 𝑉𝑏
𝑖

occupied within the compact

support of particle 𝑖 , the closest point on the boundary 𝒙𝑏
𝑖
, and

the velocity of the boundary 𝒗𝑏
𝑖
. All other properties, such as rest

density, are assumed to be identical to the fluid properties. The

system in Eq. (19) can easily be extended to incorporate adhesion

A𝑖𝑖 = I3
Δ𝑡

𝑚𝑖

©­­«
∑︁

𝑏∈N𝑏
𝑖

𝑚𝑏
𝑖 𝜎

𝑏𝑔
𝑏,𝑡+1
𝑖

+ 𝜎
∑︁
𝑗∈N𝑖

𝑚𝑖 𝑗𝑔
𝑡+1
𝑖 𝑗

ª®®¬ ,
𝒃𝑖 = −

Δ𝑡

𝑚𝑖

©­­«
∑︁

𝑏∈N𝑏
𝑖

𝑚𝑏
𝑖 𝜎

𝑏
(
𝒙𝑡𝑖 − 𝒙

𝑏,𝑡
𝑖
− Δ𝑡𝒗𝑏,𝑡

𝑖

)
𝑔
𝑏,𝑡+1
𝑖

+𝜎
∑︁
𝑗∈N𝑖

𝑚𝑖 𝑗𝒙
𝑡
𝑖 𝑗𝑔

𝑡+1
𝑖 𝑗

ª®¬ ,
(21)

where 𝑏 ∈ N𝑏
𝑖
denotes all neighboring boundaries of particle 𝑖 , and

𝑚𝑏
𝑖 = 1

2
(𝑚𝑖+𝜌0𝑉𝑏

𝑖
) denotes the averagedmass. Here𝑉𝑏

𝑖
corresponds

to the volume occupied by the boundary in the compact support of

particle 𝑖 , as can be obtained from the volume maps approach by

Bender et al. [2019]. Note that A𝑖 𝑗 remains unchanged and that the

linear system remains symmetric for uniform particle masses. The

term 𝑔
𝑏,𝑡+1
𝑖

looks slightly different,

𝑔
𝑏,𝑡+1
𝑖

=
𝑊

𝑏,𝑡
𝑖

1

2
(𝜌𝑡

𝑖
+ 𝜌0)

+
∇𝑖𝑊 𝑏,𝑡

𝑖
· 𝒗𝑡

𝑖
− ∇𝑖𝑊 𝑏,𝑡

𝑖
· 𝒗𝑏,𝑡

𝑖

1

2
(𝜌𝑡

𝑖
+ 𝜌0)

−
𝑊

𝑏,𝑡
𝑖

2

©­­«
∑
𝑘∈N𝑖

𝑚𝑘 (𝒗𝑡𝑖 − 𝒗
𝑡
𝑘
) · ∇𝑖𝑊 𝑡

𝑖𝑘(
1

2
(𝜌𝑡

𝑖
+ 𝜌0)

)
2

ª®®¬ .

(22)

Here the term corresponding to the density gradient of the bound-

ary is dropped, as the density of the boundary volume is assumed to

be constant and equal to the rest density. While we show only the

derivation of the adhesion terms for Volume Maps boundary han-

dling, the formulation can be adapted easily to other implicit bound-

ary representations (e.g., [Koschier and Bender 2017]) or particle-

based approaches (e.g., [Akinci et al. 2012]).

The effect of combining different adhesion coefficients with differ-

ent cohesion coefficients is shown in Fig. 3. This figure shows that

the droplet shape becomes more spherical with increasing surface

tension coefficients. Increasing the adhesion coefficient makes the

droplet flatter and spread out further across the plane, while also

changing the contact angle between the droplet and plane.

3.4 Implicit Viscosity
Having obtained an implicit linear system containing both cohesive

and adhesive surface tension effects, we propose to make one final

modification. In the following, we introduce strong coupling of our

surface tension force with the implicit viscosity force proposed by
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𝜎 = 1625

𝜎𝑏 = 0.0𝜎

𝜎 = 3250

𝜎𝑏 = 0.0𝜎

𝜎 = 6500

𝜎𝑏 = 0.0𝜎

𝜎 = 1625

𝜎𝑏 = 0.7𝜎

𝜎 = 3250

𝜎𝑏 = 0.7𝜎

𝜎 = 6500

𝜎𝑏 = 0.7𝜎

𝜎 = 1625

𝜎𝑏 = 0.9𝜎

𝜎 = 3250

𝜎𝑏 = 0.9𝜎

𝜎 = 6500

𝜎𝑏 = 0.9𝜎

Fig. 3. Effect of droplet adhesion to a flat plane when using different cohesion and adhesion parameters. The columns from left to right show increasing
surface tension coefficients 𝜎 = [1625, 3250, 6500]Nm

−1, while the rows from top to bottom show increasing adhesion coefficients 𝜎𝑏 = [0𝜎, 0.7𝜎, 0.9𝜎 ]Nm
−1

as a fraction of the surface tension coefficient.

Weiler et al. [2018] by solving for both in a single linear system. In

contrast to weak coupling where successive solves of the systems

can be problematic for convergence, we expect the strong coupling

to yield better results. In practice we observed stability benefits as

well as performance benefits since fewer overall CG iterations were

required (cf. Section 4).

Nevertheless, for low-viscosity fluids, the weakly coupled stan-

dard explicit viscosity model performs reasonably well. Compared

to the following strong coupling approach when using surface ten-

sion however, using an explicit viscosity model is not significantly

more computationally efficient. This is due to the very similar ma-

trix structure of our implicit surface tension model and the strongly

coupled viscosity model of Weiler et al. [2018].

Strongly coupling both effects can be accomplished by simply

solving both linear systems simultaneously, i.e.

𝒗𝑡+1
𝑖
− 𝒗𝑡

𝑖

Δ𝑡
= 𝑓 𝑡+1𝑖,st + 𝑓

𝑡+1
𝑖,visc . (23)

Because the implicit viscosity method byWeiler et al. [2018] is given

in very similar notation, we extend the linear system in Eq. (18) by

the contribution of viscosity

(I + Δ𝑡 (Ast + Avisc)) 𝒗𝑡+1 = 𝒗𝑡 + 𝒃st, (24)

where the st subscript denotes the contributions from surface ten-

sion given by Eq. (19) and Eq. (21). The visc subscript denotes the
contribution from viscosity forces

Avisc,𝑖 𝑗 = 2(𝛿 + 2)
𝜇𝑚𝑖 𝑗

𝜌𝑡
𝑖
𝜌𝑡
𝑗

∇𝑊 𝑡
𝑖 𝑗
𝒙𝑡
𝑖 𝑗
𝑇

| |𝒙𝑡
𝑖 𝑗
| |2 + 0.01ℎ2

, Avisc,𝑖𝑖 = −
∑︁
𝑗∈N𝑖

Avisc,𝑖 𝑗 ,

(25)

where 𝜇 is the dynamic viscosity coefficient, 𝛿 the number of spatial

dimensions and
˜ℎ the smoothing length of kernel function𝑊 . As

both linear systems are symmetric positive definite individually —

under the assumption of uniform particle masses — the combined

system inherits this property. Therefore, we make use of the same

iterative CG solver as described previously, with the same initial

guess as warmstart. The full algorithm for our implicit surface ten-

sion method is shown in Algorithm 1. For all experiments we use a

Algorithm 1 Implicit Surface Tension with Viscosity

1: procedure ComputeSurfaceTensionWithViscosity

2: for all particles 𝑖 do
3: (𝜌∇ · 𝒗)𝑡

𝑖
← PrecomputeDivergence ⊲ Eq. (16)

4: 𝒃𝑡
𝑖
← ComputeCohesionAdhesionRHS ⊲ Eq. (21)

5: 𝒗𝑡
𝑖,pred

← ComputeWarmstart ⊲ Eq. (20)

6: 𝒗𝑡+1
𝑖
← SolveCG(𝒃𝑡

𝑖
, 𝒗𝑡

𝑖,pred
) ⊲ Eq. (24)

7: for all particles 𝑖 do

8: 𝒂𝑖 ← 𝒂𝑖 +
𝒗𝑡+1
𝑖
−𝒗𝑡

𝑖

Δ𝑡 ⊲ Add acceleration

relative residual error tolerance 𝑡𝑜𝑙 = 0.001 and a maximum number

of iterations 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 100.

In the supplementary video we show a comparison of using vary-

ing viscosity parameters with a constant surface tension coefficient.

Larger viscosity values result in a smooth surface yet lead to damped

fluid motion. Lower viscosity values are less dissipative, yet result

in more chaotic motion at the fluid surface. This effect can gener-

ally be observed for inviscid fluids using SPH and is already well

documented by Monaghan [1989, 1992], where a proposed solution

is to apply velocity smoothing in order to add coupling between

velocities of neighboring particles.

3.5 Pressure Coupling
Due to the nature of surface tension forces acting in normal direction

to the fluid interface, they are directly opposed to pressure forces.

Surface tension forces lead to a minimization of the surface area of

the fluid, while pressure forces counteract compression and, to a cer-

tain extent, expansion of the fluid. While there have been previous

works investigating strong coupling of pressure and non-pressure

forces [Hopp-Hirschler and Nieken 2019; Liu et al. 2022], we have

not found the weak coupling of our implicit surface tension and

the implicit pressure solver to cause any issues. To verify this, we

extended the “DFSPH-IV” approach of Liu et al. [2022] to strongly

couple the implicit pressure solver by interleaving it with our pro-

posed implicit surface tension solver. The outline of the resulting

ACM Trans. Graph., Vol. 43, No. 1, Article 13. Publication date: November 2023.



13:8 • Jeske, et al.

Algorithm 2 Simulation Step

1: procedure SimStep
2: for all particles 𝑖 do
3: N𝑖 ← FindNeighboringParticles(𝑖)

4: for all particles 𝑖 do
5: 𝜌𝑖 ← ComputeDensity(𝑖)

6: 𝒗∗
𝑖
← 𝒗𝑖 + Δ𝑡𝒈 ⊲ Add gravity accel.

7: 𝒗∗
𝑖
← 𝒗∗

𝑖
+ Δ𝑡𝒂𝑛𝑝

𝑖
⊲ Add explicit non-pressure forces

8: while 𝑖𝑡𝑒𝑟 < 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 do
9: 𝒗∗ ← DFSPHDivergenceFree(𝒗∗)
10: 𝒂𝑠𝑡 ← Algorithm 1 ⊲ Implicit surface tension

11: 𝒗∗ ← 𝒗∗ + Δ𝑡𝒂𝑠𝑡
12: 𝒗∗ ← DFSPHConstantDensity(𝒗∗)
13: for all particles 𝑖 do
14: 𝒗𝑖 ← 𝒗∗

𝑖
⊲ Update velocity

15: 𝒙𝑖 ← 𝒙𝑖 + Δ𝑡𝒗𝑖 ⊲ Update positions

algorithm is shown in Algorithm 2. Weakly coupled operator split-

ting can be recovered when setting 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 1. Results comparing

explicit surface tension, weakly pressure coupled implicit surface

tension and iteration-based strong pressure-coupled implicit surface

tension are presented in Section 4.1.

Only for very large time steps, combined with very large surface

tension coefficients, did the weakly coupled iterative solvers not

converge. These configurations incurred a lot of compression from

the surface tension forces. The subsequent application of the pres-

sure solver to enforce constant density would then result in very

large pressure forces and could then lead to instabilities. This was

however typically easily solvable, by slightly reducing time step size,

particle radius, or both. In addition, weakly coupled pressure and

non-pressure solvers remain the current state of the art for SPH sim-

ulation methods [Ihmsen et al. 2014b; Koschier et al. 2022]. We leave

further and more thorough investigations of strong pressure cou-

pling as a possible direction of future work, as the selection of time

step size was not a constraining factor in any of our simulations.

4 RESULTS
In this section we aim to show the efficacy of our implicit surface

tension method using a wide variety of examples. To begin with,

we investigate comparisons with our method. This includes a com-

parison of the different variations of our proposed method, namely

explicit integration, implicit integration with weak pressure cou-

pling and finally implicit integration with iteration-based strong

pressure coupling. Subsequently, we directly compare our implicit

method with weak pressure coupling to other surface tension meth-

ods for SPH in order to show that we are able to match, if not even

outperform existing approaches.

Afterwards, we show inmore detail the capabilities of our method,

especially with respect to the large surface tension coefficients en-

abled by our implicit method. We were not able to reproduce the

majority of these examples with the other approaches due to stability

issues as a consequence of their explicit integration.

Unless otherwise specified, we use the Divergence-Free SPH pres-

sure solver [Bender and Koschier 2017] and the implicit viscosity

Ours (implicit) Ours (iterative) Ours (explicit)

Fig. 4. Comparison of a droplet forming in zero-gravity. Our implicit method
(left) remains stable and forms a smooth sphere while the explicit version
of our method (right) becomes unstable with increasing surface tension
parameter. The iterative method for strong coupling with pressure forces
(middle) also remains stable.

method of Weiler et al. [2018] in addition to the respective surface

tension model. For all methods we use the implementations avail-

able in the open-source SPH framework SPlisHSPlasH [Bender et al.

2022].

4.1 Sphere Stability
Visual Comparison. To start with, and to further show the stabil-

ity of the implicit formulation, we compare the implicit version of

our surface tension method against the explicit version in a zero-

gravity setting and without viscosity. For implicit surface tension,

we present two versions: one utilizing weak pressure coupling, being

commonly used in recent SPH publications, and another employing

an iterative strong coupling scheme proposed by Liu et al. [2022]

with 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 5 iterations (see Algorithm 2). The lack of viscos-

ity ensures that surface tension and pressure are the only forces

acting on the fluid. Furthermore, we use XSPH velocity smoothing

as described by Monaghan [1989] with a factor of 0.5. The visual

comparison is shown in Fig. 4.

The fluid starts out as a block and the surface tension coefficient

is initialized to a small value. After 2 s, this value is increased con-

tinuously — such that the block should transform into a sphere —

until the explicit method becomes unstable (shown in the figure).

It is clearly observable that the explicit methods forms irregular

clumps at the surface of the fluid, while the implicit methods forms

a smooth and stable sphere. This disparity can be attributed to the

explicit method getting “stuck” in locally optimal configurations,

while the solution of a linear system in the implicit methods is able

to account for the global shape of the fluid. Additionally, the explicit

method seems to “gain” volume, which is another artifact where

the outermost layer of particles detaches from the bulk of the fluid,

to form a kind of “hull”.

Although both implicit methods form a stable sphere, the surface

of the iteration-based strong pressure coupling appears somewhat

“rougher”. We attribute this to the fact, that we had to reduce the

surface tension coefficient to 0.77x the coefficient of the weakly

coupled simulation, to obtain comparable results. This change in
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Fig. 5. Surface energy over time for the simulations in Fig. 4.

Table 1. Comparison of performance metrics for the sphere stability scene.
ST abbreviates “surface tension”, while DFSPH iterations denotes the num-
ber of pressure solver iterations and time coupling the total time needed to
solve both surface tension and pressure.

Explicit Implicit Iterative

Avg. ST Time [ms] 3.95 9.34 31.92

Avg. Time Coupling [ms] 12.61 44.74 154.51

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 [-] 1 1 5

Avg. DFSPH Iterations [-] 4.13 49.89 209.75

𝜎𝑡𝑠𝑡𝑎𝑟𝑡 [N m
−1
] 70000 54000

𝜎𝑡𝑒𝑛𝑑 [N m
−1
] 140000 108000

apparent magnitude of effects was also documented in the work of

Liu et al. [2022].

Surface Energy. The evolution over time of the average free sur-

face energy (see He et al. [2014] and Cahn and Hilliard [1958]), of

the three variations is shown in Fig. 5. For the explicit solver, the

surface energy oscillates in the beginning after settling into a kind

of equilibrium. It slowly starts decreasing until dropping rapidly to

zero as the simulation becomes unstable and particles scatter.

In contrast, both implicit methods drop quickly to a stable energy

level as a sphere is formed. The energy continues to decrease slightly

with increasing surface tension, as some particles in the sphere

rearrange into a more optimal configuration.

Timing. To conclude the comparison, we briefly outline some of

the more descriptive performance metrics in Table 1. It is clear that

the explicit method is computationally the cheapest, followed by

the implicit method with weak pressure coupling and finally the

implicit method with strong pressure coupling. It is notable that 5

strong coupling iterations do not result in 5 times longer runtime

but “only” incurs a factor of roughly 3.4. Also, due to the very large

surface tension coefficient, a lot of pressure iterations and large

pressure values are required to counteract the compression.

Summary. This example shows that the proposed iteration-based

strong coupling between surface tension and pressure forces is

Table 2. Time step sizes and average timings per simulation step of the
surface tension models in two of the comparison cases. All values are given
inms and the runtimes include the implicit viscosity solver. The abbreviations
sc and wc denote strong coupling and weak coupling with implicit viscosity
respectively, while BT denotes the method by Becker and Teschner [2007].

Double Droplet Droplet Crown

Δ𝑡 Avg. Runtime Δ𝑡 Avg. Runtime

Ours (sc) 2.0 1.90 2.0 22.00

Ours (wc) 2.0 3.06 2.0 36.57

Akinci et al. 1.0 2.91 2.0 32.60

BT 0.5 1.51 2.0 21.69

He et al. 0.5 1.92 2.0 32.25

Zorilla et al. 0.8 24.21 2.0 436.10

possible, but not needed to maintain stable interactions between our

implicit surface tension and pressure solvers, even in the absence of

viscosity. Overall, we did not observe any tangible benefits when

using this particular coupling approach. In specific, it did not allow

larger time steps, did not result in more dynamic movement and did

not improve stability over weak pressure coupling. As such, we will

use our implicit solver with weak pressure coupling for all following

experiments, unless otherwise stated.

Further investigation of more advanced methods of coupling pres-

sure and non-pressure forces might yield different results however,

possibly making simulations of even stronger surface tension effects

possible at even larger time steps.

4.2 Comparisons
For the following comparisons the parameters for the pressure and

viscosity solver are kept consistent across the different surface ten-

sion models. The parameters of the other surface tension models

were adjusted to the best of our abilities, to yield the best possi-

ble result in the given situation. Note that here, strong and weak

coupling refers to coupling between surface tension and viscosity.

Double Droplet and Impact. Next, (see Fig. 6) two fluid blocks are

released and kept in zero-gravity until they have (ideally) contracted

into a single stable fluid mass (see Fig. 6a). In this comparison, only

our method (using both strong and weak coupling of viscosity and

surface tension) as well as the method of Zorilla et al. [2020] are

able to obtain an actual fluid sphere from the initial double block

configuration. While the method of Akinci et al. [2013] forms an

ellipsoid, the method of Becker and Teschner [2007] forms almost

two distinct spheres and using the method of He et al. [2014] we

have unfortunately not been able to obtain a stable configuration

as a single fluid mass. The reader is encouraged to refer to the

supplementary video to confirm that our method also produces the

most dynamic behavior during droplet formation.

Once a stable fluid mass has formed, ideally a droplet, gravity is

reactivated and the droplet falls onto a flat plane (without adhesion)

and should form a stable flattened droplet as well (see Fig. 6b). We

can observe all methods being able to form some kind of droplet,

with the exception of the one of He et al. [2014]. Yet again, we

can see that both the shape of the droplets as well as the velocity

distributions on the surface are the most stable for our method. It is
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Ours (strong coupling) Ours (weak coupling) Zorilla et al. [2020]

Akinci et al. [2013] Becker and Teschner [2007] He et al. [2014]

(a)

Ours (strong coupling) Ours (weak coupling) Zorilla et al. [2020]

Akinci et al. [2013] Becker and Teschner [2007] He et al. [2014]

(b)

Fig. 6. Comparison of a variety of state-of-the-art SPH surface tension methods. (a) Two fluid blocks are released in zero gravity and form a droplet. (b) After
reaching a stable configuration, gravity is enabled and the droplets fall onto a flat plane without adhesion. The shading of the particles shows the magnitude
of the velocity, with a lighter color indicating a larger velocity value.

Ours (strong coupling) Akinci et al. [2013]

Becker and Teschner [2007] Zorilla et al. [2020]

Fig. 7. The formation of a fluid crown when a ball of water is dropped into
a container.

also possible to see that the (discouraged) weak coupling of viscosity

with our method introduces some small velocity oscillations in the

regions of largest curvature, while the result with our proposed

strong coupling does not. The parameters of each method were

adjusted such that the simulation is stable and produces droplets of

similar shape on the flat plane at the end of the simulation. For a

more dynamic view of this comparison the reader is referred to the

supplemental video.

Droplet Crown. For the next comparison we show another com-

mon example for surface tension simulations, namely the droplet

crown. A ball of water is dropped into a still pool, which causes a

splash to form in the shape of a crown. The results of this experiment

are shown in Fig. 7. For the comparison themethod of He et al. [2014]

and our method with weak viscosity coupling are disregarded. It can

be seen that all models are able to produce a fluid crown. The model

of Becker and Teschner [2007] and Zorilla et al. [2020] produce more

splashing individual droplets, while our method produces a slightly

more cohesive crown with intricate details and fewer individual

splashes. The crown for Akinci et al. [2013] is more subdued and

spread out wider but still visible. Note however, that there is no

absolute ground truth to what this droplet crown should look like.

As such any one of the methods cannot be said to be better or more

“realistic” than the others.

Table 2 shows a performance comparison of the various methods.

It is evident that our method performs very competitively in terms

of computational efficiency. Strong coupling especially shows signif-

icant performance improvements, which we attribute to the fact that

the surface tension and the viscosity matrix have the same structure.

It should further be noted, that all methods have been parallelized

using OpenMP. However, our method was further optimized using

SIMD vectorization while the explicit methods were not. For the

double droplet comparison, we were able to use larger time steps

than all other explicit methods, while we used the same time step

for all methods in the droplet crown example. For the droplet crown

example the surface tension coefficient was chosen to be an order of

magnitude smaller than for the double droplet comparison, which

is why the other explicit surface tension methods also remained

stable. This comparison shows that our method is already able to

perform very competitively in cases with low to moderate surface

tension forces, while it is able to outperform existing approaches

for larger surface tension forces.

Sphere Adhesion. For a final comparison we set up a scene in

which fluid is emitted onto a sphere, coats the sphere due to ad-

hesion and drips down at the bottom without separating from the

object. We compare our method only with the method of Akinci et

al. [2013] because the methods of Zorilla et al. [2020] and Becker

and Teschner [2007] do not implement adhesion. The comparison

is shown in Fig. 8. We can see that our method is able to cover the

sphere almost perfectly uniformly, dripping down in a thin and

contained stream. For the method of Akinci et al. [2013], however,

we struggled to find a good balance of adhesion and cohesion forces

to achieve the same effect, resulting in the clustering of particles
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Ours (strong coupling) Akinci et al. [2013]

Fig. 8. A stream of fluid is emitted over the top of a sphere, adheres to and
covers the object and drips down in a uniform stream.

Fig. 9. A water bell forms when the streams of two equal and opposite
vertical emitters meet. The particle view is cut open by a clipping plane to
visualize the interior. Parameters: Δ𝑡 = 0.001 s, particle radius = 0.015m,
density = 1000 kgm

−3, 𝜈 = 0.2m2
s
−1, 𝜎 = 7560Nm

−1.

around the bottom of the sphere and a less uniform stream drip-

ping down. In addition, the particle coloring, indicating the velocity

magnitude, shows that our method produces smooth velocity tran-

sitions, while the method of Akinci et al. [2013] produces larger

fluctuations.

4.3 Further Examples
In the previous subsection we compared our method to other SPH

surface tension methods and were able to confirm the effectiveness

and stability of our method on common surface tension benchmarks.

In the following we will instead focus on testing the limits of our

method by showing its full capabilities and versatility in a number

of challenging scenarios.

Water-Bell. First, we investigate two interesting effects which can

be achieved using just two emitters. The first, called the water bell, is
achieved by arranging two emitters vertically facing each other (see

Fig. 1 and Fig. 9). In our example, the fluid streams meet and spread

out horizontally until gravity causes them to drop down vertically.

Due to the surface tension forces acting on the fluid, the vertically

falling ring of fluid contracts before merging into a single stream.

This results in the formation of a stable bell-like shape, which can

also be observed in reality. In our experiments, we have not been

Fig. 10. Two fluid streams causing the formation of a fluid chain. The particle
view is cut open by a clipping plane to visualize the interior. Parameters: Δ𝑡
= 0.001 s, particle radius = 0.01m, density = 1000 kgm

−3, 𝜈 = 0.0125m2
s
−1,

𝜎 = 8400Nm
−1.

able to reproduce this result with any of the other explicit SPH

surface tension methods.

Fluid Chain. The second effect, termed fluid chain, is achieved by

arranging two fluid streams meeting at an angle from above (see

Fig. 10). As the streams meet and first expand into the perpendicular

direction, similar to the water bell in Fig. 9, a first link is formed.

The second link is formed due to surface tension forces contracting

the first chain link and expanding it into a plane perpendicular to

the first chain link. Finally, the surface tension force balances out

and contracts the fluid into a single stable stream. The size and

number of chain links can be varied by changing the angle and

velocity of the inflow. As with the water-bell, we have not been able

to qualitatively reproduce this result with any of the other explicit

SPH surface tension methods. While the method of Akinci et al.

[2013] was able to reproduce a cohesive fluid “string”, the chain

links that formed were barely discernable at best.

Droplet Toy. In Fig. 1 we show the simulation of a child’s toy

containing droplets. A reservoir at the top of the toy causes droplets

to drip down through funnels, entering a maze of obstacles. The

droplets fall through the maze and deform dynamically, bouncing

against obstacles and merging with other droplets to form larger

droplets. This simulation shows the ability of our method to readily

simulate cases with large surface tension coefficients (the droplets

maintain an almost spherical shape at any size) and interactions

with boundary objects. The key parameters for this simulation are:

Δ𝑡 = 0.001 s, particle radius = 0.025m, density = 1000 kgm
−3
, 𝜈 =

0.002m2
s
−1
, 𝜎 = 5 × 105 Nm

−1
, 𝜎𝑏 = 1.25 × 105 Nm

−1
.

Dripping Faucet. Another simulation presented in Fig. 1 is the

simulation of water dripping from a leaky faucet into a glass. The

faucet has a diameter of 2 cm, while the glass is 14 cm tall. The

simulation consists of 250k particles at the end of the simulation,

with a diameter of 0.1mm. Due to the slow emission of fluid, water

gathers at the top of the faucet until the surface tension cannot

counteract the gravitational force anymore. At this point, the water

drips down in a small stream, which breaks up into smaller droplets

due to surface tension. It should be noted that the faucet does not
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contain a so-called “aerator” at the tip, which is why this dripping

behavior is more reminiscent of a garden hose water tap, instead

of a kitchen sink. The key parameters for this simulation are: Δ𝑡 =
7 × 10−5 s, particle radius = 5 × 10−5m, density = 1000 kgm

−3
, 𝜈 =

5 × 10−6m2
s
−1
, 𝜎 = 0.02Nm

−1
, 𝜎𝑏 = 0.01Nm

−1
.

Thin-Films. Using our implicit method and a careful balance of

cohesion, adhesion and viscosity forces, we show the simulation of

a catenoid soap film connecting two tori in Fig. 11 on the left. The

tori are first moved closer together and then apart, causing first an

expansion and then a contraction of the catenoid.

Our model is also capable of simulating “soap” bubbles. The bub-

bles are made up of a thin soap phase, wrapped around a second

much lighter “gas”-phase of particles, to emulate the internal air

pressure of the bubble. For the coupling of the two phases we make

use of the density-contrast multi-phase model from Solenthaler and

Pajarola [2008]. A similar two-phase approach has been used by

Yang et al. [2017] for the simulation of blowing bubbles, yet using

a volume-fraction-based multiphase model instead of two distinct

phases. We show the simulation of two and 27 colliding bubbles in

the middle and right of Fig. 11 respectively.

While our model is able to keep the thin surfaces stable and in-

tact, we have observed that the results generally lack surface detail

(capillary-waves) and appear somewhat “smoothed”. We attribute

this to the problem of using a 3D SPH kernel for simulating a 2D phe-

nomenon. In order to more accurately handle these cases, we believe

combining our method with a co-dimensional model [Wang et al.

2020] to be a promising direction of further research. Nevertheless,

we believe our surface tension method being able to stably simulate

thin-film behavior to be an interesting and worthwhile result. This

type of thin-film simulation is unthinkable with aforementioned

existing explicit SPH surface tension approaches.

5 CONCLUSION
Previous surface tension approaches for SPH have been mostly

explicit [Akinci et al. 2013; Becker and Teschner 2007; He et al. 2014;

Zorilla et al. 2020], requiring small time steps to be able to simulate

complex phenomena including large coefficients and intricate force

interactions. Furthermore, explicit curvature based methods often

suffered from inaccurate curvature computation from the color field,

while explicit cohesion based methods have been known to suffer

from increased particle clustering at the surface (see Sec. 2).

In this paper we have presented our model for computing surface

tension forces implicitly in SPH simulations. We have derived a non-

linear surface tension force from inter-particle cohesion forces, have

proposed a suitable linearization and solution method, and have

described how to incorporate adhesion effects. In addition, we have

shown how to strongly couple our approach with a state-of-the-art

implicit viscosity solver [Weiler et al. 2018].

We have demonstrated the versatility of our approach on a num-

ber of well-known benchmarks, including droplet formation, droplet

impact on a flat plane, fluid crown and sphere adhesion. Going be-

yond these simple benchmarks, we have presented a variety of more

challenging scenarios which typically required a specific balance

between cohesion, adhesion and viscosity forces to function as ex-

pected.

Nevertheless, we have observed our model to also have some

limitations. While we are able to simulate strong surface tension

effects, we sometimes needed to use the momentum-conserving and

non-dissipative XSPH velocity smoothing to avoid overly chaotic

motion at the surface. This however is well established for inviscid

SPH simulations, which naturally decouple velocities of neighboring

particles [Monaghan 1989]. Furthermore, while we were even able to

simulate thin films, these simulations were generally less predictable

and harder to tune. We attribute this to the fact that we attempted to

simulate a 2D phenomenon using a 3D discretization. Especially in

SPH, thin films cause significant particle deficiency with large parts

of the compact support being empty. We believe that combining our

method with existing codimensional [Wang et al. 2020] or thin-film

simulation [Wang et al. 2021] approaches could be interesting for

future work. Finally, we observed some of our simulation results to

appear overly smoothed, most likely due to the dissipative nature

of implicit integration schemes. Possible approaches to reintroduce

details would be the simulation of capillary waves [Yang et al. 2016a],

or the investigation of higher-order and less dissipative integration

schemes [Löschner et al. 2020].
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