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Figure 1: (Left) A coupled simulation using the elasticity model of Peer et al. [2018] and the viscosity model of Takahashi et al.
[2015] with Kernel Gradient Correction. In this simulation an elastic bunny is spun around in a washing machine drum, which
is filled with viscous soap and water. (Right) Viscous buckling being observable when using Kernel Gradient Correction for the
method of Takahashi et al. [2015]. This buckling effect could not be observed for the non-corrected version using the same
parameters.

ABSTRACT
A well-known issue with the widely used Smoothed Particle Hydro-
dynamics (SPH) method is the neighborhood deficiency. Near the
surface, the SPH interpolant fails to accurately capture the underly-
ing fields due to a lack of neighboring particles. These errors may
introduce ghost forces or other visual artifacts into the simulation.

In this work we investigate three different popular methods to
correct the first-order spatial derivative SPH operators up to lin-
ear accuracy, namely the Kernel Gradient Correction (KGC), Mov-
ing Least Squares (MLS) and Reproducing Kernel Particle Method
(RKPM). We provide a thorough, theoretical comparison in which
we remark strong resemblance between the aforementioned meth-
ods. We support this by an analysis using synthetic test scenarios.
Additionally, we apply the correction methods in simulations with
boundary handling, viscosity, surface tension, vorticity and elastic
solids to showcase the reduction or elimination of common numeri-
cal artifacts like ghost forces. Lastly, we show that incorporating the
correction algorithms in a state-of-the-art SPH solver only incurs a
negligible reduction in computational performance.
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1 INTRODUCTION
Smoothed Particle Hydrodynamics established itself in the com-
puter graphics community as an essential method due to its flexi-
bility in simulating various physical phenomena. Recent research
include the simulation of fluids, deformable solids, granular mate-
rials, snow and their interaction with each other. As a meshless,
Lagrangian method, SPH determines the required properties like
density or pressure by interpolating between unstructured sam-
pling points which we call particles. These particles represent a
certain volume of the underlying continuum and thus also carry
our field quantities, which we need to solve the desired differen-
tial equations. The interpolated value is determined by summation
over neighboring particles weighted by their volume and by the
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so-called kernel function which both together form the SPH shape
function.

In practice, the SPH interpolation works well in densely sampled
regions. However, in sparse regions where there are less particles,
the accuracy of the SPH interpolant may deteriorate. This phenom-
enon is known as the neighborhood deficiency problem. Its origin lies
in the shape function employed by SPH, which fails to accurately
restore the underlying fields if not enough particles are present
to meet the normalization condition of the kernel function. As a
consequence, various spurious boundary effects like ghost forces
may appear if the inherent problem is not addressed. These ghost
forces can lead to visual artifacts, artificial damping or hinder a
physical accurate depiction altogether. These issues are especially
prominent in the first-order derivatives from which many forces
are derived.

Different approaches have been proposed to address the neigh-
borhood deficiency problem. Among others, this includes the Kernel
Gradient Correction which reweights the existing sampling points
to reduce the introduced error. Thus, it can be viewed as a correction
function for the SPH interpolant. Additionally, other interpolation
methods have been included into the SPH pipeline like Moving
Least Squares or the Reproducing Kernel Particle Method. Usually,
these are used as drop-in replacements for the SPH interpolant.

In our work, we analyze three important interpolation meth-
ods for first-order derivatives, namely Kernel Gradient Correction
(KGC), Moving Least Squares (MLS) and Reproducing Kernel Parti-
cle Method (RKPM). While many authors already employed these
methods to, e.g., accurately capture rotational motion, our work
provides an in-depth comparison of the aforementioned methods.
This includes the following contributions:

• A mathematical investigation of KGC, MLS and RKPM as
correction methods to the SPH interpolant.
• A derivation of linear consistent, first-order SPH operators
with the aforementioned methods.
• A reduction of visual artifacts stemming from the neighbor-
hood deficiency in application examples of boundary han-
dling, viscosity, surface tension, vorticity and elastic solids
with negligible, additional computational effort.

2 RELATEDWORK
Originally formulated by Gingold and Monaghan [1977], Smoothed
Particle Hydrodynamics is a meshless, Lagrangian simulation tech-
nique which was introduced into the field of computer graphics by
Desbrun and Gascuel [1996]. Since then, many physical effects have
been successfully simulated solely using SPH which include flu-
ids [Bender and Koschier 2015; Ihmsen et al. 2014a], highly viscous
materials [Peer et al. 2015; Takahashi et al. 2015; Weiler et al. 2018],
surface tension effects [Akinci et al. 2013; Becker and Teschner
2007], granular materials [Alduán and Otaduy 2011; Ihmsen et al.
2013], snow [Gissler et al. 2020], turbulent flows [Bender et al. 2017],
and elastic solids [Kugelstadt et al. 2021; Peer et al. 2018]. An ex-
tensive overview over the current research in SPH can be found in
the State-of-the-Art reports of Ihmsen et al. [2014b] and Koschier
et al. [2022].

While SPH works great for simulating the aforementioned ef-
fects, visual artifacts can occur due to the error-prone interpolation

in sparsely sampled regions. An overview of the errors accompany-
ing the different state-of-the-art SPH interpolants can be found in
the work of Price [2012]. Furthermore, Violeau and Fonty [2019]
provide an investigation of the error introduced by the smoothing
in relation to the standard deviation of the kernel. To mitigate these
issues, different correction methods and alternative, meshless shape
functions have been proposed. One approach is to sample the void
region and extrapolate the fluid’s properties on the new sampling
points, which is used by Schechter and Bridson [2012]. However,
this method introduces a significant computational overhead by the
necessity to introduce and distribute additional particles instead of
just using the existing ones. Apart from the correction methods we
will investigate in this work — namely KGC, MLS & RKPM — there
also exists Corrected SPH (CSPH) by Bonet and Lok [1999] which
directly corrects the kernel function instead of its gradient to be
first-order consistent in a similar manner as Liu et al. [1995] propose
for RKPM. Constant rank MLS, also known as Shepard interpola-
tion [Shepard 1968], has been applied to the density computation in
SPH by Reinhardt et al. [2019]. Extensions have also been proposed
like Generalized Moving Least Squares (GMLS) [Atluri et al. 1999]
to MLS and hermite RKPM [Liu et al. 1996] to RKPM. Finally, the
works of Belytschko et al. [1998] and Fries and Matthies [2004]
provide a great overview over other meshless approaches using the
aforementioned shape functions. We focus on using the KGC, MLS
& RKPM since they have efficiently computable, linearized versions
and can be directly integrated into the SPH pipeline.

In computer graphics, many approaches already use the pre-
sented techniques. In SPH, MLS has been used to correct the spuri-
ous interface artifacts towards particle-based boundaries [Akinci
et al. 2012]. Band et al. [2017] propose its application for the normal
calculation of the boundary. Thus, when a particle is close to the
boundary, a prototype particle pattern can be constructed for a
smooth pressure force independent of the underlying particle sam-
pling. Likewise, Band et al. [2018] use MLS to extrapolate the fluid’s
pressure onto boundary particles for a more accurate pressure force.
However, their method requires an additional neighborhood search
on the boundary particles. We will later show that MLS can be di-
rectly integrated into particle-based boundaries without the need of
prototype particle patterns or additional neighborhood information
while retaining the same advantages.

Spurious boundary effects also hinder the simulation of elastic
solids and solid-fluid interaction using SPH. Most authors employ
KGC like in the works of Ganzenmüller [2015] and Peer et al. [2018].
These propose a linear elasticity model which uses a corrected
kernel function for calculating the deformation gradient using SPH.
As we show later, KGC is used to eliminate ghost forces appearing
for rigid-body deformations like rotations. Likewise, Kugelstadt
et al. [2021] apply the same kernel gradient correction matrix to
their corotated elasticity model. For the simulation of snow, Gissler
et al. [2020] follow another approach in advecting the deformation
gradient through time. This requires the estimation of the velocity
gradient which the authors correct using KGC as well. Coupling
fluids and solids, Joubert et al. [2020] also employ KGC to apply
Neumann boundary conditions to couple a DEM simulation with
SPH using pressure fields.

Lastly, MLS and RKPM have already been used in conjunction
with other discretization methods for simulating various effects in



A comparison of linear consistent correction methods for first-order SPH derivatives SCA ’23, August 04–06, 2023, Los Angeles, CA

computer animation. Müller et al. [2004] use MLS for the simulation
of deformable solids and incorporate effects like melting. Pauly et al.
[2005] extend this model to allow the simulation of fracturing. Ad-
ditionally, Adams and Wicke [2009] provide a tutorial on meshless
methods which focuses on the applications of MLS and comparison
to SPH. Outside the research of SPH, first- and second-order MLS
has been used by Wang et al. [2020] for the simulation of surface
tension. Hu et al. [2018] extend the Material Point Method (MPM)
with MLS to simulate effects like cutting and fracturing while being
faster than traditional MPM. Finally, Chen et al. [2020] use RKPM
with a Galerkin discretization for the simulation of various effects
like wetting, fracturing, mixing and for the simulation of snow and
deformable solids.

3 SPH DISCRETIZATION
In this paper we are interested in the simulation of physical phenom-
ena using Smoothed Particle Hydrodynamics. We will introduce
SPH at the example of incompressible fluids and in this context
discuss its issues at the free surface. Note that these effects also
appear when simulating, e.g. , deformable solids which we will also
analyze over the course of this paper.

For the simulation of free-surface flows, we will employ the
Navier-Stokes equations as our mathematical model. These consist
of the continuity equation and the momentum equation. The former
is given for incompressible fluids by

𝐷𝜌

𝐷𝑡
= −𝜌∇ · v = 0, (1)

where 𝜌 is the density of the fluid and v the velocity. Further, Eq. (1)
is given in Lagrangian coordinates, thus 𝐷

𝐷𝑡
denotes the material

derivative. The second Navier-Stokes equation can be derived from
the Cauchy momentum equation by inserting the stress tensor for
Newtonian fluids

𝜌
𝐷v
𝐷𝑡

= ∇ · P + f (2)

P = 𝑝I + 2`E (3)

E =
1
2

(
∇v + (∇v)𝑇

)
. (4)

Here P denotes the Piola-Kirchhoff stress tensor, f external body
forces, 𝑝 the internal pressure, ` the dynamic viscosity and E the
viscous strain rate tensor. Inserting Eq. (3) into Eq. (2) yields thewell-
known second Navier-Stokes equation for incompressible fluids

𝐷v
𝐷𝑡

= −∇𝑝
𝜌
+ a∇2v + f

𝜌
, (5)

where a = `/𝜌 is the kinematic viscosity. The advection of the fluid
is governed by the acceleration terms on the right hand side of
Eq. (5), which represent from left to right the pressure force, the
viscous force and external forces like gravity.

For simulating the fluid flow according to Eqs. (1) and (5), we use
Smoothed Particle Hydrodynamics (SPH) [Gingold and Monaghan
1977]. Discretizing the continuum, SPH samples the desired domain
by particles which represent the body’s volume. Each particle 𝑖
contains data like mass𝑚𝑖 , density 𝜌𝑖 or position x𝑖 . A quantity 𝐴
for particle 𝑖 can be determined by using the SPH interpolation

⟨𝐴 (x𝑖 )⟩ =
∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗
𝐴

(
x𝑗

)
𝑊

(
x𝑖 − x𝑗 , ℎ

)
. (6)

In Eq. (6), the value of 𝐴 (x𝑖 ) is determined as the weighted sum
of the property 𝐴 at neighboring particle positions x𝑗 , where the
weighting is determined by the product of the volume the particle
represents, i.e. 𝑚 𝑗

𝜌 𝑗
, and the kernel function𝑊

(
x𝑖 − x𝑗 , ℎ

)
. The lat-

ter can be understood as a Gaussian-like function with smoothing
length ℎ. N𝑖 denotes the set of particles which are inside the com-
pact support region of particle 𝑖 which is called the neighborhood.
In the following, we will use the abbreviations 𝐴𝑖 = 𝐴 (x𝑖 ) and
𝑊𝑖 𝑗 =𝑊

(
x𝑖 − x𝑗 , ℎ

)
.

Note that apart from the density, which is usually computed
using Eq. (6), the Navier-Stokes equations (see Eqs. (1) and (5)) and
most of the employed non-pressure forces (e.g., surface tension
forces) predominantly contain derivative terms. Focusing on the
spatial derivative operators, the SPH interpolant of the gradient of
a property 𝐴 is given by

⟨∇𝐴𝑖 ⟩ =
∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗
𝐴 𝑗∇𝑊𝑖 𝑗 . (7)

Similarly, one can derive the divergence and curl operator in the
same fashion [Koschier et al. 2019].

The SPH gradient gives a good estimate for densely sampled re-
gions as Koschier et al. [2019] show, but at sparse regions, e.g. near
the free surface, the lack of particles in the neighborhood reduces
the interpolation accuracy. While this is hardly a problem for most
SPH simulations, there are use cases where neglecting the neigh-
borhood deficiency problem can lead to ghost forces and therefore
to visual artifacts. Mathematically, one can derive the interpolation
accuracy according to Price [2012] by using a Taylor expansion of
𝐴 𝑗 around x𝑗 in Eq. (7):

∇𝐴𝑖 ≈ ⟨∇𝐴𝑖 ⟩ =
∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗
𝐴𝑖∇𝑊𝑖 𝑗 +

∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗

𝜕𝐴𝑖

𝜕x𝑖

𝑇 (
x𝑗 − x𝑖

)
∇𝑊𝑖 𝑗

+ O
(
| |x𝑗 − x𝑖 | |2

)
.

(8)
From Eq. (8), it becomes apparent that in order to guarantee an
accurate interpolation estimate, the first and last term of the right
hand side must vanish while the middle term should equal ∇𝐴𝑖 .
The interpolation is called 𝑘-th order consistent if it is exact for
an input field containing a polynomial with maximum degree of
𝑘 . Analyzing Eq. (8), Eq. (7) may not even be 0-th order consistent
depending on the choice of the kernel function and the particle
arrangement. By enforcing∑︁

𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗
𝐴𝑖∇𝑊𝑖 𝑗 = 0 (9)

one can eliminate the constant error, which can be done by sub-
tracting Eq. (9) from Eq. (7), which yields the so-called difference
formula

∇𝐴𝑖 = ⟨∇𝐴𝑖 ⟩ −𝐴𝑖 ⟨∇1⟩ =
∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗

(
𝐴 𝑗 −𝐴𝑖

)
∇𝑊𝑖 𝑗 . (10)

Eq. (10) works well in practice and improves the accuracy.
Another prominent alternative to Eq. (10) is the symmetric

formula

∇𝐴𝑖 = 𝜌𝑖

∑︁
𝑗∈N𝑖

𝑚 𝑗

(
𝐴𝑖

𝜌2
𝑖

+
𝐴 𝑗

𝜌2
𝑗

)
∇𝑊𝑖 𝑗 . (11)
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As Price [2012] shows, Eq. (11) has the advantage of conserving
linear and angular momentum as well as energy.

4 LINEAR CONSISTENT CORRECTION
METHODS

4.1 Correcting the SPH interpolant
In the following we investigate correcting SPH with the approaches
KGC, MLS and RKPM which aim to reduce the errors at the free
surface introduced by the classic SPH interpolation. In detail, SPH
uses the shape function

ΦSPH
𝑗 (x𝑖 ) =

𝑚 𝑗

𝜌 𝑗
𝑊𝑖 𝑗 (12)

for computing interpolated values 𝐴𝑖 =
∑

𝑗∈N𝑖
𝐴 𝑗Φ

SPH
𝑗
(x𝑖 ). How-

ever, Eq. (12) fails to build a partition of unity as shown by Dilts
[1999]. Thus, SPH categorically underdetermines values near the
boundary. This introduces spurious boundary effects into the sim-
ulation which mostly manifest themselves as ghost forces. The
previously mentioned correction algorithms focus on correcting or
replacing the basis functions to achieve a partition of unity with
linear consistency for the gradient operators. One can reformulate
the SPH gradient using its shape function as:

∇𝐴𝑖 =
∑︁
𝑗∈N𝑖

𝐴 𝑗∇ΦSPH
𝑗 (x𝑖 ) (13)

∇ΦSPH
𝑗 (x𝑖 ) =

𝑚 𝑗

𝜌 𝑗
∇𝑊𝑖 𝑗 . (14)

Thus, we can apply many shape functions of other meshless meth-
ods as drop-in replacements for the SPH interpolant as long as
we can formulate the gradient in the same fashion. Furthermore,
we can also write the difference (Eq. (10)) and symmetric formula
(Eq. (11)) using shape functions

∇𝐴𝑖 =
∑︁
𝑗∈N𝑖

(
𝐴 𝑗 −𝐴𝑖

)
∇Φ𝑗 (x𝑖 ) (15)

∇𝐴𝑖 = 𝜌𝑖

∑︁
𝑗∈N𝑖

𝑚 𝑗
©«
𝐴𝑖

𝜌 𝑗

𝑚 𝑗
∇Φ𝑗 (x𝑖 )

𝜌2
𝑖

−
𝐴 𝑗

𝜌𝑖
𝑚𝑖
∇Φ𝑖

(
x𝑗

)
𝜌2
𝑗

ª®¬ . (16)

Note that we derived Eq. (16) to be symmetric and thus it conserves
linear and angular momentum. As possible shape functions, we
will employ KGC for correcting the original SPH interpolant and
MLS and RKPM as replacements.

4.2 Linear consistent shape functions
4.2.1 Kernel Gradient Correction. The kernel gradient correction as
proposed by Bonet and Lok [1999] aims to eliminate the linear error
in SPH formulations while also preserving angular momentum.
Analyzing Eq. (8), one can see that for linear accuracy the middle
term of the right hand site should be equal to ∇𝐴𝑖 . The corrected
interpolant is based on enforcing this condition by multiplication
of the kernel with the matrix L defined by

L (x𝑖 ) =

∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗

(
x𝑗 − x𝑖

)
⊗ ∇𝑊𝑖 𝑗


−1

. (17)

This yields a first-order consistent shape function gradient ∇ΦKGC

compliant to Eq. (14)

∇ΦKGC
𝑗 (x𝑖 ) =

𝑚 𝑗

𝜌 𝑗
L𝑖∇𝑊𝑖 𝑗 . (18)

In 3D, the kernel gradient correction requires to store a 3×3-matrix
per particle. Furthermore, a matrix inversion is required which
fails if the matrix in Eq. (17) becomes singular. This is usually the
case if the particles are arranged in a plane or a line or for single
particles in, e.g., splashes. An approach for tackling this issue which
works well in practice is to perform the inversion only on the non-
singular matrix spanning its associated subspace. Therefore, we use
a singular value decomposition and only calculate the reciprocal
values for singular values 𝜎 which are bigger than a threshold Y. If
a singular value is smaller than Y, then we replace it with a 1 thus
leaving the corresponding directions uncorrected.

4.2.2 Moving Least Squares. First introduced by Lancaster and
Salkauskas [1981], Moving Least Squares replaces the error-prone
interpolants by a shape function which form a partition of unity. An
advantage of MLS over SPH is that the interpolant can be derived to
have the desired consistency given the dimension of the polynomial
basis functions b. Thus, even in sparsely sampled regions, MLS can
reconstruct a reasonable solution. MLS has been widely adopted
in the graphics community by many authors [Adams and Wicke
2009; Band et al. 2018; Hu et al. 2018; Müller et al. 2004].

In detail, the MLS interpolant of a property 𝐴 can be derived as

A𝑖 =
∑︁
𝑗∈N𝑖

ΦCMLS
𝑗 (x𝑖 ) A𝑗 (19)

ΦCMLS
𝑗 (x𝑖 ) =𝑊𝑖 𝑗b (x𝑖 )𝑇 M (x𝑖 ) b

(
x𝑗

)
(20)

M (x𝑖 ) =

∑︁
𝑗∈N𝑖

𝑊𝑖 𝑗b
(
x𝑗

)
b
(
x𝑗

)𝑇 
−1

, (21)

where ΦCMLS
𝑗

denotes the (classic) MLS weighting function and M
the so-called momentum matrix. Note that𝑊𝑖 𝑗 denotes the same
kernel function as for SPH. For linear consistency in 3D, the polyno-
mial basis is given by b (x𝑖 ) = [1 𝑥𝑖 𝑦𝑖 𝑧𝑖 ], where x𝑖 = (𝑥𝑖 𝑦𝑖 𝑧𝑖 )𝑇 .

Similarly to SPH, the gradient operator can be computed by
taking the gradient of the weighting function:

∇A𝑖 =
∑︁
𝑗∈N𝑖

∇ΦCMLS
𝑗 (x𝑖 ) A𝑇

𝑗 . (22)

The lengthy expression for the gradient of the MLS shape function
as well as the MLS interpolants for divergence and curl can be
derived from Eq. (19) and found in the work of Adams and Wicke
[2009].

Computing the MLS gradient requires a substantial amount of
operations and therefore is computationally expensive. Thus for
computer graphics, Müller et al. [2004] propose a linear consistent
alternative:

∇A𝑖 = K (x𝑖 )
∑︁
𝑗∈N𝑖

𝑊𝑖 𝑗

(
A𝑗 − A𝑖

)
x𝑖 𝑗 (23)

K (x𝑖 ) =

∑︁
𝑗∈N𝑖

𝑊𝑖 𝑗x𝑖 𝑗x𝑇𝑖 𝑗


−1

, (24)
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where x𝑖 𝑗 = x𝑖−x𝑗 . Both versions of MLS in Eqs. (22) & (23) visually
yield the same result for linear accuracy. Thus, for the rest of this
work we will only investigate the latter version for performance
reasons. Its shape function gradient ∇ΦMLS is given by:

∇ΦMLS
𝑗 = −K (x𝑖 ) x𝑖 𝑗𝑊𝑖 𝑗 . (25)

4.2.3 Reproducing Kernel Particle Method. Instead of replacing
the SPH interpolant completely, the Reproducing Kernel Particle
Method by Liu et al. [1995] can be viewed as an extension to the
classic SPH formulation. Based on the wavelet analysis of SPH, the
authors suggest a corrected kernel function in a continuous sense.
Discretizing it and choosing a polynomial basis yields the (classic)
RKPM interpolation

A𝑖 =
∑︁
𝑗∈N𝑖

ΦCRKPM
𝑗 (x𝑖 ) A𝑗 (26)

ΦCRKPM
𝑗 (xi) =

𝑚 𝑗

𝜌 𝑗
𝑊𝑖 𝑗b (x𝑖 )𝑇 N (x𝑖 ) b

(
x𝑗

)
(27)

N (x𝑖 ) =

∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗
𝑊𝑖 𝑗b

(
x𝑗

)
b
(
x𝑗

)𝑇 
−1

. (28)

According to Fries and Matthies [2004], RKPM offers the same ad-
vantages as MLS. Note that the choice of nodal volumes𝑉𝑗 is free in
RKPM. For seamless integration into the SPH pipeline, we choose it
to be the same as the SPH volume. The same considerations for sta-
bility and the derivative operators as for MLS also apply to RKPM.
Additionally, we derive the same linearized formulation for the
gradient as we did for MLS. To our knowledge, this formulation
has not been used in computer graphics and offers the same perfor-
mance benefits while still being linearly correct as we will see later.
Analogous to the derivation of Müller et al. [2004] we get

∇A𝑖 = J (x𝑖 )
∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗
𝑊𝑖 𝑗

(
A𝑗 − A𝑖

)
x𝑖 𝑗 (29)

J (x𝑖 ) =

∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗
𝑊𝑖 𝑗x𝑖 𝑗x𝑇𝑖 𝑗


−1

, (30)

which again is our preferred option for linear consistent inter-
polation and what we will investigate in the following sections.
Incorporating it into Eq. (13) yields

∇ΦRKPM
𝑗 = −J (x𝑖 )

𝑚 𝑗

𝜌 𝑗
x𝑖 𝑗𝑊𝑖 𝑗 . (31)

4.3 Comparison of KGC, MLS & RKPM
Inserting these shape functions gradients to, e.g., the difference
formula in Eq. (10) directly yields a first-order consistent solution.
Taking a deeper look at the correction matrices L, K and J for KGC,
MLS and RKPM in Eqs.(17), (24) and (30), respectively, one can
directly draw parallels between the different formulations.

First, when comparing RKPM and MLS, we see that they only
differ by the volume factor used in SPH, i.e. 𝑉𝑖 = 𝑚𝑖

𝜌𝑖
. Note that we

explicitly chose to use the standard SPH volume since the original
formulation of RKPM of Liu et al. [1995] leaves the question for
nodal volumes open. We can also choose 𝑉𝑖 = 1 which results in
MLS and RKPM to be identical. In fact, Aluru [2000] denotes the
following. For any collocation method — which SPH belongs to
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Figure 2: Interpolation errors when computing the gradient
of a linear (Fig. 2a) and non-linear velocity field (Fig. 2b).
Each subfigure shows the following: Left: 2D plot of the ve-
locity field vrot. / vtrigonom.. Middle: Frobenius norm of the
error between the analytical solution and the results of the
difference formula (Eq. (10)). Right: Frobenius norm of the
error between the analytical solution and the results of the
corrected difference formula (Eq. (15)).

as well — the nodal volumes can be chosen completely arbitrarily
since they do not deteriorate the solution. When using different
nodal volumes both methods will yield different corrections, but
they still yield linear correct results.

Second, we compare KGC to RKPM. Inspecting Eqs. (30) and
(17), they differ in the computation of the kernel gradient. While
KGC employs the standard kernel gradient ∇𝑊𝑖 𝑗 , RKPM uses a
first-order approximation, i.e. ∇𝑊𝑖 𝑗 ≈ x𝑖 𝑗𝑊𝑖 𝑗 . This is not a signifi-
cant change since we strive for linear correctness anyway and the
approximation as well as the kernel gradient both point in exactly
the same direction. Thus, both methods also correct the gradient in
a similar way.

Conclusively, all methods perform equally well from a theoret-
ical viewpoint. Although KGC, MLS and RKPM all yield slightly
different results for correcting the underlying fields, in our ex-
periments they all produced mathematically similar and visually
indistinguishable results.

To validate the effectiveness of the aforementioned methods, we
compare them in a synthetic scenario. This consists of a square
domain filled with particles arranged in a dense, square lattice. We
use the difference formula to calculate the values of the gradient of
different velocity fields ∇v (𝑥,𝑦).

First, we analyze the rotational field vrot. (𝑥,𝑦) = (−𝑦, 𝑥)𝑇 de-
picted in Fig. 2a. As already outlined by Weiler et al. [2018], SPH
fails to accurately reconstruct the field at the boundaries, which can
be seen from the plotted error. Using KGC the underlying velocity
field can be perfectly recreated up to numerical precision. Applying
MLS or RKPM yields similar results and validates the first-order
correctness of the approaches.
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Table 1: Timings for the computation of the correction matri-
ces 𝑇mat and the evaluation of the gradient 𝑇grad of 1 million
particles using the difference formula with SPH, KGC and
the classic and linearized versions of MLS and RKPM.

SPH KGC CMLS MLS CRKPM RKPM

𝑇mat [ms] − 11.23 28.98 11.29 29.18 12.31
𝑇grad [ms] 12.08 13.00 41.95 12.42 44.80 13.94

Second, we want to investigate whether the correction methods
also offer an advantage for higher-order functions since fluid be-
havior is usually highly non-linear. Thus, we use vtrigonom. (𝑥,𝑦) =
(cos(2𝑥),− sin(3𝑥) + cos(𝑦)) which can be seen in Fig. 2b. Compar-
ing the results of the standard SPH interpolant with the corrected
one using KGC, one can remark that the errors at the boundary
are drastically reduced. Still, there remains a small, higher-order
error at the boundary. Likewise, using the proposed MLS or KGC
variants produce similar results. For further reducing the error at
the boundary one would need to use a higher-order interpolation
method. These could be achieved by using classic MLS as in Eq. (19)
or RKPM in Eq. (26) with higher-order polynomial basis functions
at the cost of additional computational effort.

Note that for the linear consistency, the classic MLS and RKPM
approaches and their linearized versions produce comparable re-
sults. However, in terms of runtime, the classic formulations of
MLS and RKPM are expected to be significantly slower than their
linearized equivalents. We benchmark their performance using
a synthetic scenario consisting of a cube sampled with 1 million
particles arranged in a regular cubic lattice. The average timings
for evaluating the gradient computation for all particles using the
difference formula in Eq. (10) and its corrected versions can be seen
in Tab. 1. CMLS is 3.22 times slower than the linearized MLS and
CRKPM is 3.61 times slower than the linearized RKPM. Addition-
ally, we remark that there is hardly any runtime difference between
KGC, MLS and RKPM both in terms of the matrix computation
and the gradient evaluation. In particular, the gradient evaluation
is even not significantly more expensive than the standard SPH
interpolant.

Overall, our analysis shows that for correcting the linear error
all investigated methods perform equally well. This result also
corresponds to our mathematical investigation which shows that
all corrections work in a similar fashion.

5 APPLICATIONS
Apart from theoretical and mathematical improvements we ana-
lyzed in the previous section, we now investigate the visual bene-
fits of correcting the derivative operations in SPH to be first-order
correct. We show that correcting the errors arising through the
neighborhood deficiency improves visual fidelity in the application
examples of boundary handling, viscosity, surface tension, vorticity
and elastic solids.

5.1 Boundary Handling
Different boundary handling methods have been proposed for SPH.
These include particle-based approaches [Adami et al. 2012; Akinci

Figure 3: Normal computations of an irregularly sampled
boundary. Top: SPH normal computation using Eq. (33). Bot-
tom: Corrected normal computation using MLS.

et al. 2012; Band et al. 2018, 2017] and implicit boundary represen-
tations [Bender et al. 2019b; Koschier and Bender 2017]. A popu-
lar, particle-based approach is given by Akinci et al. [2012]. Their
method samples boundary models and rigid bodies with particles
which interact with the fluid by being included into the density
and pressure force computation. The authors derive the boundaries
contribution to the pressure force as

f𝑝
𝑖←𝑘

= −Ψ𝑘
𝑝𝑖

𝜌2
𝑖

∇𝑊𝑖𝑘 , (32)

where 𝑘 denotes a boundary particle, Ψ𝑘 = 𝜌0𝑉𝑘 its pseudo-mass
and 𝑉𝑘 = 1/∑𝑘 ′𝑊𝑘𝑘 ′ the boundary particle’s volume. While this
directly allows for rigid-fluid coupling, using the same error-prone
SPH interpolant leads to artifacts in the computation. These errors
become apparent when taking a look at the direction of the pressure
force contribution, which is indicated by the normal field. As Band
et al. [2017] derive from Eq. (32), the normal of the boundary is
computed as

n𝑖 =
∑︁
𝑘

Ψ𝑘∇𝑊𝑖𝑘 . (33)

In a regularly ordered, symmetric scenario, SPH calculates the
correct normal using Eq. (33), but even a small misalignment or
non-regular particle sampling of the boundary will lead to errors.
This behavior can be seen in Fig. 3 which depicts the computation
of the normal of an exemplary boundary sampling using Eq. (33).
The introduced errors lead to a normal estimate deviating from the
correct normal of the boundary and thus create ghost forces leading
to drift or bouncing [Bender et al. 2019b; Koschier and Bender 2017].
We now replace the SPH interpolation with the MLS shape function.
To account for the contributions of the boundary, we subsequently
have to include the boundary particles into the computation of the
correctionmatrix Eq. (24) and theMLS interpolant . As a linear, least-
squares method, the MLS interpolation can be treated like fitting
a hyperplane through the boundary sampling. Since all particles
of the boundary object lie in one plane, the fit exactly equals the
surface. Thus, the resulting normal direction also equals the normal
of the underlying geometry. To be specific, the accurate normal field
in Fig. 3 is constant for any particle on top of it. Since the corrected
interpolants have linear consistency, we receive the correct normal
estimate.

Applying the shape function in Eq. (14) to Eq. (32) yields

f𝑝
𝑖←𝑘

= −𝜌0
𝑝𝑖

𝜌2
𝑖

∇Φ𝑘 (x𝑖 ) . (34)
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On flat surfaces, this completely eliminates any non-physical drift
or jumping introduced by the particle-based sampling.

5.2 Viscosity
To simulate viscous flow, one needs to solve the viscous force in the
second term of Eq. (5). There are two state-of-the-art approaches
in computing this force. These include either evaluating the diver-
gence of the viscous strain rate tensor, i.e. avisco = 2a∇·E [Takahashi
et al. 2015] or directly computing the Laplacian of the velocity field,
i.e. avisco = a∇2v [Müller et al. 2003; Weiler et al. 2018]. Weiler
et al. [2018] report that the former approach may introduce visual
artifacts since the strain rate tensor is often computed with an
error-prone SPH formulation.

As an example, we will analyze the implicit, strain rate-based ap-
proach of Takahashi et al. [2015]. Their model solves the backward
Euler equation for the current velocities advected by the viscous
acceleration. Let v∗

𝑖
denote the velocities after applying external

forces like gravity, then the implicit system is given by

v(𝑡+Δ𝑡 )
𝑖

= v∗,(𝑡+Δ𝑡 )
𝑖

+ 2a Δ𝑡
𝜌𝑖
∇ · E𝑖

(
v(𝑡+Δ𝑡 )

)
, (35)

where the viscous stress rate tensor E is given by Eq. (4). To fully
build the linear system, ∇ · E and ∇vmust be determined for which
the authors employ the symmetric and difference formula, respec-
tively:

∇ · E𝑖 = 𝜌𝑖

∑︁
𝑗∈N𝑖

𝑚 𝑗

(
E𝑖
𝜌2
𝑖

+
E𝑗
𝜌2
𝑗

)
∇𝑊𝑖 𝑗 (36)

∇v𝑖 =
𝑚 𝑗

𝜌 𝑗

(
v𝑗 − v𝑖

)
∇𝑊𝑇

𝑖 𝑗 . (37)

Both equations are subject to errors at the free surface as we have
shown in Sec. 4.1. Using the corrected formulations in Eqs. (16),
(15) and applying them on Eqs. (36) and (37) yields

∇ · E𝑖 = 𝜌𝑖

∑︁
𝑗∈N𝑖

𝑚 𝑗

(
𝜌 𝑗E𝑖∇Φ𝑗 (x𝑖 )

𝑚 𝑗𝜌
2
𝑖

−
𝜌𝑖E𝑗∇Φ𝑖

(
x𝑗

)
𝑚𝑖𝜌

2
𝑗

)
(38)

∇v𝑖 =
∑︁
𝑗∈N𝑖

(
v𝑗 − v𝑖

)
∇Φ𝑗 (x𝑖 )𝑇 . (39)

Since both formulations are first-order consistent, they eliminate
all ghost forces introduced by rotational motion, which makes the
resulting model momentum conserving. Additionally, the double
smoothing employed by Takahashi’s model propagates and ampli-
fies any error present after the first interpolation. Further reducing
these errors by the correction reduces numerical artifacts like tear-
ing which have also been reported by Weiler et al. [2018].

5.3 Surface Tension
Another important phenomena to capture while simulating fluids is
surface tension. This effect is particularly interesting for simulating
fluid droplets, soap bubbles or adhesion effects between a fluid
and a solid surface. Since surface tension forces arise near the free
surface, the neighborhood deficiency problem also affects their
computation using SPH. Many popular approaches use the normal
field for calculation [Akinci et al. 2013; He et al. 2014; Morris 2000],
which is needed to, e.g., calculate the mean curvature [Müller et al.
2004]. As we have seen in Sec. 5.1, the normal field computation

using SPH is particularly error-prone. Here, we will analyze the
surface energy approach at the example of the method of He et al.
[2014]. This uses the surface tension energy created by the local
surface area approximation:

𝐸surface =

∫
𝑉

^

2
∥ ∇𝑐 ∥2 𝑑𝑉 , (40)

where ^ denotes the surface tension coefficient and 𝑐 the color
field, i.e. a field that is 1 inside and 0 outside the fluid domain. The
authors propose to compute the color field as the interpolation of
the constant field of unity:

𝑐𝑖 =
∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗
𝑊𝑖 𝑗 . (41)

Note that this representation of the color field relies on the neigh-
borhood deficiency problem. Taking the gradient of it is similar to
calculating the normal with Eq. (33) and thus also inherits all of
its accompanying issues. Thus, the authors propose to include a
renormalization factor in computing the gradient:

∇𝑐𝑖 =
∑

𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗
𝑐 𝑗∇𝑊𝑖 𝑗∑

𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗
𝑊𝑖 𝑗

, (42)

which accounts for the missing contributions near the free surface.
While this reweighting of the particles helps to adjust for the miss-
ing contribution, the direction and the norms are still erroneous.
Finally, spatially deriving and discretizing Eq. (40) yields the surface
tension force, for which the authors use the following, symmetrized
version:

fST𝑖 =
^

2

∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗

∥ ∇𝑐𝑖 ∥2 + ∥ ∇𝑐 𝑗 ∥2

2
∇𝑊𝑖 𝑗 . (43)

In summary, the model requires two SPH gradient operations which
are both subject to errors at the free surface. The authors try to
mitigate these issues by the inclusion of an atmospheric pressure
computation. During the rest of this work, we will exclude this
correction and focus on correcting the underlying model by the
introduced correction methods.

Similar to the computation of the boundary pressure force, the
gradient of the color field can be computed as

∇𝑐𝑖 =
∑︁
𝑗∈N𝑖

𝑐 𝑗∇Φ𝑗 (x𝑖 ) . (44)

Note that we exclude the renormalization factor used in Eq. (42)
since the corrected shape functions already account for missing
particles. Thus, we achieve a linear accurate color field gradient
which also propagates less errors to the second interpolation. For
the force formulation we use Eq. (13) with the averaged norm of
the neighboring color field gradients as in Eq. (43)

fST𝑖 =
^

2

∑︁
𝑗∈N𝑖

∥∇𝑐𝑖 ∥2 +
∇𝑐 𝑗 2

2
∇Φ𝑗 (x𝑖 ) . (45)

These changes enable us to, e.g., recreate a fluid droplet in zero
gravity without needing an additional atmospheric pressure since
we account for the neighborhood deficiency in the desired formulas.
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Figure 4: Interpolation errors when computing ∇ × v of a
linear velocity field. Left: 2D plot of the velocity field vrot..
Middle: Vector norm of the error between the analytical solu-
tion and the results of the difference formula (Eq. (46)). Right:
Vector norm of the error between the analytical solution and
the results of the corrected difference formula (Eq. (47)).

5.4 Vorticity
Recent advancements in SPH also include the preservation and aug-
mentation of turbulent motion created by unsteady vorticies. These
are needed since SPH suffers from numerical diffusion and thus
looses vorticity over time. Therefore, models have been proposed
that employ an additional, velocity adjustment based on the current
vorticity [Liu et al. 2021; Peer and Teschner 2016] or replace the
stress tensor of the Navier-Stokes equations with a micropolar one
[Bender et al. 2017]. Both models have in common that the vorticity
𝝎 is explicitly computed using SPH:

𝝎𝑖 = ∇ × v𝑖 =
1
𝜌𝑖

∑︁
𝑗∈N𝑖

𝑚 𝑗

(
v𝑖 − v𝑗

)
× ∇𝑊𝑖 𝑗 . (46)

Note that the vorticity directly relates to the angular velocity by a
scalar factor. As Bender et al. [2019a] denote, Eq. (46) and its corre-
sponding symmetrically discretized formulation using Eq. (11) are
subject to errors at the free surface. With the introduced correction
methods, we can account for these errors by replacing the shape
function with the linear accurate ones, which yields

∇ × v𝑖 =
∑︁
𝑗∈N𝑖

(
v𝑖 − v𝑗

)
× ∇Φ𝑖

(
x𝑗

)
. (47)

This is shown in Fig. 4.

5.5 Elastic Solids
Exchanging the Piola-Kirchhoff stress tensor P for fluids in Eq. (2)
by

P = 2`𝜺 + _tr(𝜺)I (48)

𝜺 =
1
2

(
F + F𝑇

)
− I, (49)

where Y is the Cauchy strain measure and F the deformation gradi-
ent, yields the formulation for linear elastic materials. This enables
us to simulate deformable solids using SPH. However, as we have
seen in the case of viscosity in Sec. 5.2 the inability of the SPH
interpolant to capture rotational motion introduces the same ghost
forces into the simulation of elastic solids. There have been multiple
methods proposed for elastic solids. Popular approaches include a
corotated material model which allows the usage of a linear ma-
terial model for better computational efficiency. Since extracting
the rotation using solely SPH yields erroneous results, previous
methods either compute the rotation using shape matching [Becker
et al. 2009] or extract it from the deformation gradient while already

applying KGC as a correction method [Kugelstadt et al. 2021; Peer
et al. 2018]. We will investigate the latter using the approach of
Peer et al. [2018]. In particular, we investigate which errors appear
if the correction step is omitted.

In each time step, the authors extract the rotation from the de-
formation gradient by a polar decomposition and then calculate
the elastic force from the linear Cauchy strain measure using an
updated, co-rotated deformation gradient. Thus, for the first step
the deformation gradient must be calculated from the deviation of
the rest configuration x0 to the current one x

F𝑖 =
∑︁
𝑗∈N0

𝑖

𝑉 0
𝑗

(
x𝑗𝑖

) (
∇𝑊 0

𝑖 𝑗

)𝑇
, (50)

where 𝐴0 denotes a property 𝐴 in rest configuration. Since Eq. (50)
cannot capture rigid body rotations, which requires first-order con-
sistency, one can apply our shape functions which yields

F𝑖 =
∑︁
𝑗∈N0

𝑖

x𝑗𝑖∇Φ0
𝑗

(
x0𝑖

)𝑇
, (51)

from which the rotation matrix R can be successfully extracted.
Next, the evaluation of the strain measure requires the updated
deformation gradient F∗

𝑖
. A generalization of Peer et al.’s method

with the generalized corrected kernel gradients can be determined
as

F∗𝑖 = I +
∑︁
𝑗∈N0

𝑖

(
x𝑗𝑖 − R𝑖x0𝑗𝑖

) (
R𝑖∇Φ0

𝑗

(
x0𝑖

))𝑇
. (52)

With the evaluated strain measure, the Piola-Kirchhoff stress tensor
can be evaluated for the final force computation. Inserting Eq. (48)
into Eq. (2) yields the elastic body force which the authors discretize
in accordance to Ganzenmüller [2015]. Using the corrected kernel
gradients yields the general formulation:

felastic𝑖 =
∑︁
𝑗∈N0

𝑖

(
P𝑖R𝑖∇Φ0

𝑗

(
x0𝑖

)
− P𝑗R 𝑗∇Φ0

𝑖

(
x0𝑗

))
. (53)

6 RESULTS
In this section we will analyze and compare the efficacy of applying
any correction algorithm in regard to the neighborhood deficiency
problem. Thus, we provide practical insights by showcasing the
reduction of various spurious artifacts appearing in the computa-
tion of boundary handling, viscosity, surface tension, vorticity and
elastic solids. Furthermore, we show that the increased runtime of
computing the correction matrices is negligible in comparison to
the whole SPH pipeline.

The following example scenes and benchmarks have been sim-
ulated on an AMD Ryzen Threadripper PRO 5975WX CPU with
32 cores and 3.60 GHz equipped with 256 GB of RAM. Further, we
used the open-source SPH framework SPlisHSPlasH [Bender 2023],
and the contained implementations of the previously presented
methods, in conjunction with TreeNSearch [Fernández-Fernández
et al. 2022] for the neighborhood search. We also optimized the
computation of the correction algorithms using OpenMP for paral-
lelization and AVX2 for vectorization. If not otherwise stated, we
employed Divergence-Free SPH (DFSPH) [Bender and Koschier
2017] as our pressure solver and the viscosity model of Weiler et al.
[2018] for every scene.
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Grid Model. To showcase the efficacy of the corrected boundary
pressure force in Sec. 5.1, we analyze the trajectories of single fluid
particles using Akinci’s boundary handling approach [Akinci et al.
2012]. The test scene consists of fluid particles arranged in a 20× 20
grid dropping onto an inclined plane which can be seen in Fig. 5.
Apart from itself, the neighborhood of each particle consists of
only boundary particles. As we have already outlined, the normal
computation using the standard SPH interpolant leads to tiny imper-
fections in the direction of the boundaries normals which manifest
themselves in drift and small particle jumps which can be seen in
the leftmost image. Applying any of the aforementioned correction
algorithms yields a perfect recreation of the flat surface and thus
the grid model stays intact while sliding down. Note that we see no
difference between KGC, MLS and RKPM in the remaining images
since although the correction methods all work slightly different,
the resulting plane normals are identical.

Rotating Cubes. In this experiment we showcase the effect of ghost
forces caused by the neighborhood deficiency. Thus, we placed a
particle-sampled cube in a rotational velocity field and only applied
Takahashi et al.’s viscosity model which we analyzed and corrected
in Sec. 5.2. Since the cube is advected inside a linear velocity field,
any linear errors introduced by the evaluation of the gradient and
the divergence operator will cause a force to be applied to the
particles. Fig. 6 shows the results of this experiment. As can be seen
in the left most image, the uncorrected viscosity model introduces
non-physical drift which leads to a disintegration of the cube’s
shape over time. The corrected versions in the remaining images
correctly reconstruct the underlying velocity field. This yields a
viscous strain rate which is zero and thus no force is applied during
the simulation. As a result for all corrected methods, the cube spins
indefinitely while conserving angular momentum.

Buckling. This scene shows the buckling behavior exhibited by
highly viscous fluids. We again employ the model of Takahashi et al.
[2015]. Note that the authors show that simulating the buckling ef-
fect is entirely possible with their method. However, we deliberately
chose a set of parameters and input geometry for which this effect
fails to be simulated due to the errors arising at the free surface. The
buckling is dependent on the ability to fold the highly viscous fluid
stream which includes rotational motions. As we mentioned before,
these get damped using an uncorrected model. Thus by applying,
e.g., KGC we can restore the buckling effect and thus extend the
parameter range of Takahashi et al.’s model. A comparison between
corrected and uncorrected results can be seen in Fig. 7.

Zero Gravity Droplet. In this experiment we show that we can form
a water droplet in zero gravity while using He’s surface tension
model by solely using corrected SPH interpolants. The original
method — as we have discussed in Sec. 5.3 — includes a renor-
malization of the color field gradient and an atmospheric pressure
computation to reduce errors stemming from the free surface. This
allows the original authors to also simulate droplets as well as other
surface tension effects. However, omitting the additional, atmo-
spheric pressure computation reveals the errors introduced by the
underlying SPH operators. Fig. 8 shows the uncorrected solution
which indicates numerical errors introduced by the erroneous color
field gradient estimation as well as double interpolation. Applying

Table 2: Average timings per step for the computation of
the washing machine scene. This includes the timings for
the neighborhood search 𝑇ns, the non-pressure forces 𝑇np,
the pressure solver 𝑇p, the computation of the correction
matrices 𝑇mat and the total time for a single simulation step
𝑇total.

𝑇ns [𝑚𝑠] 𝑇np [𝑚𝑠] 𝑇p [𝑚𝑠] 𝑇mat [𝑚𝑠] 𝑇total [𝑚𝑠]
8.86 58.52 5.74 0.23 83.19

any correction algorithm significantly reduces these errors and
thus permits the model to form a sphere, even without atmospheric
pressure.

Spinning Top. While Peer et al. [2018] already show the influence
of their co-rotated, corrected kernel function, we are particularly
interested in the function of the kernel gradient correction applied
throughout the model. Thus, we simulate a spinning top visible in
Fig. 9 with and without applying the kernel gradient correction.
The results are depicted in Figs. 9a & 9b. When omitting the cor-
rection, we notice that the top loses angular momentum and will
eventually stop rotating. The reason for this behavior is twofold.
Firstly, the deformation gradient computed in Eq. (50) fails to cap-
ture the rotational motion near the free surface. This leads to an
erroneous, extracted rotation matrix which secondly is propagated
to the computation of the updated deformation gradient and the
force formulation. Altogether, the resulting ghost forces counteract
the spinning motion which violates the conservation of angular
momentum. In contrast to the results of the aforementioned investi-
gations of Peer et al. [2018] and also Becker et al. [2009], the rotation
of the elastic bodies is not completely hindered since in densely
sampled regions, the rotation matrix is still correctly computed.

Washing machine. Finally, we showcase the corrected methods of
Peer et al. [2018] and Takahashi et al. [2015] in a coupled multi-
phase simulation, as seen in Fig. 1. This simulation contains an
elastic bunny, viscous soap, water and a rotating washing machine
drum. The bunny is dropped into a pool of water and subsequently
the washing machine starts rotating while water and soap are
continuously added. This shows that it is still possible to use the
corrected methods in complex and versatile ways. Furthermore, the
additional computational overhead through the matrix computation
only accounts for 0.27% of the total runtime for this particular
scenario as can be seen in Tab. 2. Note that the computation is
heavily dominated by the non-pressure force evaluations. However,
we notice that the computation of the correction matrices only
take around 4% of the time of the pressure solver. With an average
of 3.77 iterations for the constant density and 1 iteration for the
divergence-free solver of DFSPH in this scene, we deduce that the
overhead of our first-order corrections is negligible in comparison
to the full SPH simulation loop.

7 CONCLUSION & FUTUREWORK
We analyzed the benefits of correcting the spatial first-order deriva-
tives using KGC, MLS and RKPM up to linear consistency. In con-
text of the neighborhood deficiency problem, we reduced the ghost
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Figure 5: A grid of particles dropped on an inclined plane. Their movement is influenced by the particle-based boundary
handling in Eqs. (32) and (34). From left to right, the results are shown using the uncorrected and corrected versions with KGC,
MLS and RKPM, respectively. While the corrected versions compute the correct normals, the uncorrected version introduces
non-physical drift.

Figure 6: A particle sampled cube placed in an external, rotational velocity field. Only the viscous force model by Takahashi et al.
[2015] affects the particle’s motion. From left to right: uncorrected, KGC, MLS, RKPM. Only the uncorrected version introduces
ghost forces which disintegrate the cube. The particles are shaded according to the velocity magnitude, with increasing values
from dark to light.

forces and numerical artifacts which usually appear when using the
standard SPH interpolant. Furthermore, we provided a thorough
comparison showcasing the similarities between the different ap-
proaches. Analyzing the corrections in different synthetic scenarios,
we concluded that all methods perform equally well in reducing the
errors near the free surface, even for non-linear fields. The appli-
cation of the methods showed a significant improvement in visual
fidelity. Finally, we discovered that the additional overhead of com-
puting the corrected interpolants in comparison to the uncorrected
ones is negligibly small.

Since the neighborhood deficiency problem is fundamentally
linked to SPH, current and future methods may benefit from adopt-
ing a linear consistent formulation. In that regard, our work pro-
vides theoretical and practical insights when and how to apply any
of the aforementioned correction methods. Compared with replac-
ing the erroneous interpolants with other meshless methods like
classic MLS, the presented methods can be easily integrated into
the SPH pipeline and do not require substantially more computa-
tional effort. However, investigating these methods in the context of
higher-order interpolants to further reduce the remaining artifacts
appearing at the free surface remains an interesting future research
avenue to the graphics community.
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