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Figure 1: We use higher-order time integration together with our constraint-based contact model to robustly simulate complex scenes with
many interactions. This allows us to more accurately capture and control detail inherent to low damping of deformable dynamic motion.

Abstract
Visually appealing and vivid simulations of deformable solids represent an important aspect of physically based computer ani-
mation. For the temporal discretization, it is customary in computer animation to use first-order accurate integration methods,
such as Backward Euler, due to their simplicity and robustness. Although there is notable research on second-order methods,
their use is not widespread. Many of these well-known methods have significant drawbacks such as severe numerical damping
or scene-dependent time step restrictions to ensure stability. In this paper, we discuss the most relevant requirements on such
methods in computer animation and motivate the interest beyond first-order accuracy. Keeping these requirements in mind, we
investigate several promising methods from the families of diagonally implicit Runge-Kutta (DIRK) and Rosenbrock methods
which currently do not appear to have considerable popularity in this field. We show that the usage of such methods improves
the visual quality of physical animations. In addition, we demonstrate that they allow distinctly more control over damping at
lower computational cost than classical methods. As part of our theoretical contribution, we review aspects of simulations that
are often considered more intricate with higher-order methods, such as contact handling. To this end, we derive an implicit
linearized contact model based on a predictor-corrector approach that leads to consistent behavior with higher-order integra-
tors as predictors. Our contact model is well suited for the simulation of stiff, nonlinear materials with the integration methods
presented in this paper and more common methods such as Backward Euler alike.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

The dynamic simulation of deformable solids is a core compo-
nent in animation, special effects, virtual prototyping, video games
and many other applications in computer graphics. At the heart of
this task is the time integrator, which is responsible for advanc-
ing the simulation from one time step to the next. The choice of

time integrator is fundamentally a balancing act between stability
and numerical accuracy, and the right choice is highly application-
dependent.

In order to help both practitioners and researchers in picking
the right integrator for their application, we consider integrators in
terms of the following quality criteria:
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• Stability, which prevents spurious, unnatural oscillations or total
explosions, particularly in challenging scenarios.
• Reliability, which indicates whether the subproblems (e.g., non-

linear equations) associated with the integrator can be reliably
solved.
• Performance, the expected computational cost of the method.

For interactive applications especially, it is also of crucial con-
cern to have predictable performance.
• Accuracy, which measures the degree of convergence towards a

ground truth solution, as well as visual plausibility for approxi-
mate solutions.
• Energy conservation, the ability of the integrator to preserve the

inherent underlying energy in the dynamical system.

The first-order Backward Euler integrator is arguably the
most popular choice in computer graphics (e.g. [BW98, MG04,
MTGG11, KBT17, KKB18]) owing to its reliability even in very
demanding scenarios. However, its stability comes at the cost of
excessive numerical dissipation, which in many cases precludes
fine, local details such as folds and wrinkles in cloth, or produces
strongly globally damped motion for otherwise vividly animated
objects. While some researchers in graphics have employed se-
lected higher-order time integrators, a more systematic investiga-
tion into their use in graphics applications is not available.

Our main contribution is a discussion and comparison of promis-
ing higher-order time integrators for the simulation of deformable
solids in computer graphics. We study the family of implicit Runge-
Kutta (RK) methods (Section 3), and from the vast amount of possi-
ble choices, we identify a small selection of promising higher-order
methods that are expected to perform well across all our quality cri-
teria (Section 5). We evaluate the selected integrators on problems
in numerical benchmark simulations arising from finite element
discretizations (Section 5.3), as well as in more complex scenar-
ios with contacts (Sections 5.4 and 5.5). Through our review and
test scenarios, we demonstrate that several of the selected integra-
tors, most notably the SDIRK2 integrator, clearly outperform Back-
ward Euler in most scenarios by remaining stable, yet at the same
time much more faithfully reproducing the dynamics of the system
without the excessive numerical dissipation that plagues Backward
Euler. The drastically reduced numerical damping furthermore en-
ables much greater control over damping behavior, which is crucial
to both plausibly and accurately simulate motion for real-world ma-
terials.

As discussed later, many existing constraint-based contact han-
dling schemes use a particular linearization of the nonlinear internal
forces, essentially precluding the use of higher-order integrators.
Our second contribution is a robust predictor-corrector constraint-
based contact model that is designed to work well in synergy with
higher-order predictors (Section 4). Due to our particular choice of
linearization, it avoids unduly affecting the predicted dynamics of
the system when correcting for contacts. We demonstrate our con-
tact solver in conjunction with the second-order method SDIRK2
in multiple scenes.

2. Related work

Solving ordinary differential equations (ODE) is important in many
scientific disciplines. The book of Hairer and Wanner [HW96] of-

fers a good introduction, especially for implicit Runge-Kutta and
Rosenbrock methods which are well suited for stiff problems.

In computer graphics the numerical integration of ODEs plays
an important role in the simulation of deformable solids. In their
seminal work, Terzopoulos et al. [TPBF87] introduce the Back-
ward Euler method to the graphics community. In later works
from the 90s most authors prefer explicit methods like symplectic
Euler [VCM95] or Runge-Kutta [EWS96] because of their com-
putation speed. However, for stiff materials which are common,
e.g., stiff springs in cloth simulations, explicit methods quickly be-
come unstable when large time steps are used. Baraff and Witkin
[BW98] demonstrate that the stability issues can be remedied by
using implicit methods such as linearized Backward Euler. This
enables stable and efficient simulations by using large time steps.
However, numerical errors lead to undesired numerical damping
which cannot be controlled by the user. Since then, improving
the performance, stability, and reducing the numerical damping
of implicit integration methods is ongoing research. Several au-
thors propose to use higher-order multi-step methods like BDF2
[HE01, HES03, CK02, BMM17] which suffer less from numerical
damping. However, they rely on the polynomial interpolation of
states from the previous time steps. Multi-step methods and their
stability properties are derived based on the assumption that the
interpolated trajectory is sufficiently smooth [HW92]. In general,
however, contact forces that are necessary to prevent interpenetra-
tion are inherently non-smooth. Violating these assumptions could
lead to visual artifacts or even a breakdown of the simulation.

Integrators which preserve the symplectic structure of the me-
chanical system are attractive candidates for reducing numerical
damping [LMOW04,KWT∗06,SD08,SG09]. Further examples are
Verlet, implicit midpoint [HEE∗02] and Newmark methods which
use the trapezoidal rule [BMF03, GHDS03]. These methods have
good energy conservation properties and the energy oscillates about
its correct value [HLW06]. However, it has been pointed out by
several authors that these oscillations can be quite drastic such that
simulations with large time steps become unstable [XB17,RLK18].

Another approach to prevent numerical damping is the use of
asynchronous integrators which use smaller time steps in regions
where more accuracy is required [TPS08, SKZF11, ZLB16]. How-
ever, these methods require significant implementation overhead
and so far only explicit or first-order implicit methods have been
explored. Other authors propose integrators that conserve energy
exactly. This can be achieved by enforcing a constant energy con-
straint using Lagrange multipliers [SSF13]. Another approach is to
track the total energy of the system and blend between the solu-
tions of implicit midpoint and Backward Euler such that the energy
is conserved [DLK18]. Dinev et al. [DLL∗18] use an optimization
procedure to project the state of the physical system such that en-
ergy, linear and angular momentum are conserved. Note that this
post-processing step can also be combined with the proposed im-
plicit Runge-Kutta and Rosenbrock methods.

The recently introduced exponential integrators [MSW14,
MLT17, CAP17] also provide good stability and energy conserva-
tion properties. They solve the linear part of the ODE exactly by
computing a matrix exponential and treat the remaining nonlinear
part numerically. This is especially beneficial when stiff compo-
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nents of the system are contained in the linear part. However, these
methods are quite involved and they are only applicable when mass
lumping is used which is not always possible, e.g., in higher-order
or embedded finite element simulations.

In recent years, there has been a lot of research on optimization
based integrators. Martin et al. [MTGG11] show that the Back-
ward Euler method can be formulated as an optimization prob-
lem. This enables to speed up computations by using efficient op-
timization methods like alternating local-global solvers [LBBK13,
BML∗14], Newton’s method with sophisticated line search strate-
gies [GSS∗15], the Chebyshev Semi-Iterative approach [Wan15],
ADMM [OBLN17], L-BFGS [LBK17], or domain decomposition
[LGL∗19]. Moreover there are specialized material models which
are well suited to be used with optimization integrators [KKB18].
It has been pointed out that there is a connection between compli-
ant constraint systems and optimization based integration of Back-
ward Euler [TNGF15]. This connection can be also shown for the
position based dynamics method [MMC16]. All of these methods
solve Backward Euler as an optimization problem with the goal of
solving the involved (non-)linear systems faster and more robustly.
They are orthogonal to our work since each stage of the higher-
order DIRK methods can be formulated as an optimization problem
as well (as long as the forces are derived from a potential energy).

In summary, implicit higher-order single-step methods, like
Runge-Kutta and Rosenbrock, have not gained much attention in
the graphics community. They are mentioned in the works of Hauth
et al. [HE01, HES03] as being too costly for animation purposes.
However, they do not discuss which methods they used nor show
any experiments to prove this statement. One other example of
Runge-Kutta methods can be found in the work of Xu and Bar-
bič [XB17]. They use a variant of the TR-BDF2 method which is
a combination of the trapezoidal rule and BDF2 and they report
good stability with low numerical damping. As the method uses
BDF2 only internally, it is still a single-step method and therefore
does not necessarily suffer from the same problems as a multi-step
method. Accordingly, this method can be rewritten as a second-
order implicit Runge-Kutta method. In the following we will dis-
cuss several modern implicit higher-order Runge-Kutta and Rosen-
brock methods which are specifically designed for the integration
of stiff systems and show that they are well suited for animation
tasks like simulations of deformable solids.

3. Runge-Kutta methods

In this section, we review Runge-Kutta methods (RK) applied to
the dynamical systems associated with deformable solids, with a
special focus on the subclasses DIRK and Rosenbrock methods.

3.1. Dynamical systems for deformable solids

We consider the solution of dynamical systems in the time interval
t ∈ [tn, tn+1], i.e. the solution of a single time step, described by
differential equations of the form

Müuu(t) = fff ext(t)+ fff int(uuu(t))−Du̇uu(t) . (1)

Here M is the positive definite mass matrix of the system, fff ext rep-
resents the time-dependent external forces acting on the system,

fff int represents the state-dependent internal forces of the system and
D is a symmetric positive semi-definite matrix that encodes the ma-
terial damping behavior of the system. For the damping model that
we consider, D is constant in the time interval, but it can take differ-
ent values for different time steps. We focus on dynamical systems
that arise from the discretization of deformable solids with finite
elements. In this case, uuu represents the degrees of freedom for the
displacement field of the solid. We consider both fully nonlinear
and linearized corotational material models, and employ Rayleigh
damping D = αM + βK(uuun), where K(uuun) is the tangent stiffness
matrix evaluated at the beginning of the time step. For nonlinear
material models, K is not in general semi-definite. We therefore
modify K such that it becomes semi-definite by clamping negative
eigenvalues to zero during element matrix assembly, similar to the
approach of Teran et al. [TSIF05].

3.2. Integration methods

Stability is perhaps the foremost criterion in picking an integra-
tor for most computer graphics applications. Therefore, we restrict
ourselves to methods that are L-stable. L-stability essentially means
that a given stability function decays to 0 as the time step goes to
infinity [HW96], when applied to a linear model problem. In prac-
tice, this means that the method has a tendency towards a numeri-
cally damped response rather than blowing up when the time step is
large. Essentially all real-world materials in graphics applications
exhibit some degree of damping in their elastic response. There-
fore, we eschew perfect energy conservation in favor of sufficiently
good energy conservation, and similarly exclude symplectic meth-
ods, since their energy conservation properties tend to translate into
instabilities for highly nonlinear problems. Finally, we only con-
sider single-step methods. This excludes multi-step integrators like
BDF2. Multi-step methods are somewhat less suitable for systems
with discontinuous events, such as collisions. They also have higher
implementation complexity, as one needs to track the state of the
previous simulation step.

3.2.1. Backward Euler

To introduce notation and further motivate the investigation we start
with the well-known Backward Euler method. Let us first consider
the first-order system of ODEs

ẏyy = ggg(t,yyy) , (2)

with ggg(t) ∈ Rd . From an initial value yyyn = yyy(tn) the Backward Eu-
ler method approximates the solution of this system at the next step
yyyn+1 = yyy(tn +∆t) as

yyyn+1 = yyyn +∆tggg(tn+1,yyyn+1) , (3)

which, in general, requires the solution of a nonlinear system. It
is well known that Backward Euler is probably the most stable in-
tegration method but this comes at the cost of strong numerical
damping.

Equations of motion To apply the method to the dynamical sys-
tem in (1), we rewrite it as a first-order system

Mv̇vv = fff (t,uuu,vvv), u̇uu = vvv, (4)
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where fff (t,uuu,vvv) contains all forces in the system. Then, the equa-
tions for vvv and uuu can be discretized followed by substituting the
latter into the former. The resulting implicit system can then be
solved using Newton’s method which results in the update(

M−∆t
∂ fff
∂vvv
−∆t2 ∂ fff

∂uuu

)
∆vvvk+1 =∆t fff (tn+1,uuun+1

k ,vvvn+1
k )

−M(vvvn+1
k − vvvn) ,

(5)

where k denotes the iteration index and ∆vvvk+1 = vvvn+1
k+1 − vvvn+1

k . In
general, the Jacobians ∂ fff/∂vvv and ∂ fff/∂uuu have to be evaluated in every
iteration for an exact Newton method.

In the context of deformable solids, the Jacobians in Equation (5)
are given by ∂ fff

∂vvv =−D and ∂ fff
∂xxx (uuu) =−K(uuu). As introduced in Sec-

tion 3.1, we defined the damping matrix D to be constant over a
time step. Therefore, it is only evaluated once for our choice of
model. This also applies to the methods introduced in the follow-
ing sections.

3.2.2. General Runge-Kutta methods

A large and well-studied class of single-step methods that offers
many candidates with high orders of accuracy are Runge-Kutta
(RK) methods [HW92]. RK methods compute the solution at the
next step yyyn+1 as a linear combination of intermediate stage val-
ues that are obtained by evaluating the right hand side ggg(t,yyy). Any
s-stage RK method can be written as

yyyn+1 = yyyn +∆t
s

∑
i

biGGGi ,

GGGi = ggg(tn + ci∆t,yyyn +∆t
s

∑
j=1

ai jGGG j) ,

(6)

for i = 1, . . . ,s, and GGGi are the aforementioned stage values. In the-
ory, they can be derived with arbitrary order of accuracy and the
set of coefficients leave a large design space to enforce different
properties on construction. A specific integration scheme is then
identified by the set of coefficients ai j , bi, ci. The pattern of the
coefficient matrix A = (ai j) affects the numerical properties of the
method and how involved the procedure to compute yyyk+1 is. This
leads to the distinction of three main categories of RK methods.

Explicit methods A strictly lower triangular matrix A yields fully
explicit methods known as explicit RK methods (ERKs). Explicit
methods are only conditionally stable depending on the time step
size, and therefore only have niche use cases in computer graphics.

Fully implicit methods Methods with a (nearly) full matrix A are
known as fully implicit RK methods (FIRKs). In general, FIRKs re-
quire the solution of nonlinear systems of dimension sd× sd where
s is the number of stages of the method and d the dimension of the
ODE system. The cost and difficulty associated with solving these
non-linear equations often outweigh their benefits. We did not pur-
sue the direction of FIRKs further.

The third category of methods, known as Diagonally implicit
Runge-Kutta (DIRK) methods, will be introduced in the next sec-
tion.

3.2.3. Diagonally implicit Runge-Kutta methods

The third category of Runge-Kutta methods is identified by a lower
triangular coefficient matrix A, which are called diagonally implicit
RK (DIRK) methods. These methods are still implicit but the stages
only depend sequentially on each other. They offer a promising
combination of computational efficiency and stability, and there-
fore they are of particular interest for our investigation. For a s-
stage DIRK method, s systems of size d× d have to be solved in
succession instead of a single large system. Following this defini-
tion, the formula for a general RK method given in Equation (6)
can be simplified to

yyyn+1 = yyyn +∆t
s

∑
i

biGGGi ,

GGGi = ggg(tn + ci∆t,yyyn +∆t
i−1

∑
j=1

ai jGGG j +aii∆tGGGi) .

(7)

A thorough review of the theoretical background, implementation
details and numerical experiments w.r.t. DIRK methods was pre-
sented by Kennedy and Carpenter [KC16].

Equations of motion We want to apply a general DIRK method
to the equations of motion (4). For stage i, let UUU i and VVV i denote
the stage values of the displacement and the velocity, respectively.
Then, the implicit equations for the stage values are

UUU i = ṽvvn
i +aii∆tVVV i , (8a)

MVVV i = fff (tn + ci∆t, ũuun
i +aii∆tUUU i, ṽvv

n
i +aii∆tVVV i) , (8b)

where ũuun
i and ṽvvn

i denote the already known part of the system state
at stage i given by

ũuun
i = uuun +∆t ∑

i−1
j ai jUUU j and ṽvvn

i = vvvn +∆t ∑
i−1
j ai jVVV j . (9)

Substituting Equation (8a) into (8b) and applying Newton’s method
yields the sequence of linear systems(

M−aii∆t
∂ fff
∂vvv
− (aii∆t)2 ∂ fff

∂uuu

)
∆VVV i,k+1 =−MVVV i,k

+ fff (tn + ci∆t, ũuun
i +aii∆tUUU i,k, ṽvv

n
i +aii∆tVVV i,k) ,

(10)

where k denotes the Newton iteration index and ∆VVV i,k+1 =VVV i,k+1−
VVV i,k. The corresponding displacement stage values are obtained
with back-substitution into Equation (8a). The evaluation of the
Jacobians is treated, per stage, analogous to Backward Euler, as
described in Section 3.2.1. As an initial guess for the Newton itera-
tions, we use VVV i,0 = 0. Note that the stage values for the velocities
have to be interpreted as a form of acceleration, not velocity, which
is why the previous stage value is not necessarily a good choice.
Alternatively, it is possible to derive a more accurate initial guess
using interpolation that could save some iterations (see [HW96]).

3.2.4. Rosenbrock methods

In computer animation it is also common, for performance reasons
or for solving linear problems (e.g. when using an approximate
corotational model), to use a linearization of the Backward Euler
method. Rosenbrock methods extend this idea to arbitrary order
and can be used to obtain a linearized solution to any nonlinear
ODE system. Rosenbrock methods can be seen as a DIRK method
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that uses only a single Newton iteration per stage with a zero initial
value. A computationally efficient formulation can be found in the
book by Hairer and Wanner [HW96].

Equations of motion We want to apply a Rosenbrock scheme
to the equations of motion. This can be done by concatenating
the system (4) to a single two-dimensional system over the state
(uuu,vvv)T , computing the Jacobians required by the Rosenbrock for-
mulation and plugging them in. Similar to the derivation for the
DIRK method, we can define the already known part of the system
state at stage i as

ûuun
i = uuun +∑

i−1
j ai jUUU j and v̂vvn

i = vvvn +∑
i−1
j ai jVVV j . (11)

Then, the velocity stage values VVV i are given as solution of the linear
equation system(

1
γiih

M− ∂ fff
∂vvv
−hγii

∂ fff
∂uuu

)
VVV i = fff (tn +αi∆t, ûuun

i , v̂vv
n
i )

+M
i−1

∑
j

ci j

∆t
VVV j + γi∆t

∂ fff
∂t

+ γii∆t(v̂vvn
i +

i−1

∑
j

ci j

∆t
UUU j) ,

(12)

where ai j , ci j , mi and γi j and γi = ∑
i
j γi j are the coefficients identi-

fying a particular Rosenbrock scheme. In the literature, sometimes
other formulations of Rosenbrock methods are used such that one
has to take care to correctly transform the coefficients for the im-
plementation. The Jacobians ∂ fff/∂uuu and ∂ fff/∂vvv and the derivative ∂ fff/∂t

(in case of forces with an explicit time dependency) of the right
hand side fff of the system (4) appear in the formulation above. For
Rosenbrock methods, they are all only evaluated once at the begin-
ning of the time step. After solving this system, the displacement
stage values can be obtained explicitly using

UUU i = γii∆t

(
i−1

∑
j

ci j

∆t
UUU j + v̂vvn

i +VVV i

)
. (13)

4. Contact model

To our knowledge, the realization of a robust and stable contact
model that incorporates higher-order integrators in a fully non-
linear model is still an open research problem. We instead con-
sider a linearized model, in the hope that it may provide new in-
sights and provide a stepping stone toward fully non-linear mod-
els in the future. To maintain stability, it is crucial to ensure that
the linearization corresponds to an implicit treatment of the in-
ternal forces. However, existing approaches [OTSG09, TNGF15,
BCDA11, LDN∗18, VJ19] directly employ particularly chosen lin-
earizations, precluding direct use of an arbitrary higher-order inte-
grator. Moreover, the direct linearization of a higher-order integra-
tor cannot be expected to remain stable in challenging scenarios.

We note that very recently, Li et al. [LFS∗20] proposed Incre-
mental Potential Contact, which is compatible with time integra-
tors that can be reformulated as an incremental potential (IP) prob-
lem. However, the stability properties of the barrier-augmented IP
for higher-order integrators — especially in the presence of highly
non-smooth contact forces — have not yet been investigated.

We propose a predictor-corrector model in which the predictor

for the unconstrained displacements and velocities can be arbitrar-
ily chosen — e.g. a higher-order integrator — while the correc-
tor relies on a carefully chosen linearization similar to (linearized)
Backward Euler, ensuring robustness and stability. This choice en-
sures that the contact constraints are satisfied without unduly af-
fecting the dynamics of the system.

We follow an approach similar to the predictor-corrector method
used for the computation of the normal forces in the Staggered Pro-
jections (SP) [KSJP08] method, which was originally designed for
rigid bodies and reduced-order soft bodies. In this context, the pre-
dictor corresponds to an unconstrained time integration of the dy-
namic system including possibly non-linear elastic forces, while
the corrector enforces the contact constraints. However, the formu-
lation used by SP is not stable for stiff materials discretized by finite
elements, as the elastic forces would essentially be treated explic-
itly. In other words, the corrector used by SP does not take elastic
stiffness into account when enforcing the contact constraints.

The corrector should also in some sense not deviate from the
predicted solution more than necessary. In particular, if no correc-
tion is necessary, the corrector should leave the predicted solution
intact. However, straightforward linearization of the internal forces
about the state at time tn, as done by most existing works, yields
a corrector that does not have this property. We show that we can
construct a corrector with this property by carefully choosing the
point at which the elastic forces are linearized. Moreover, our pro-
posed corrector effectively penalizes deviation from the predicted
state by considering elastic stiffness, which is instrumental in en-
suring stability.

We add contact forces represented by G(t)T
λλλ(t) to the differ-

ential equation (1) and concatenate state vectors of the bodies in
the system to obtain the velocity-level differential complementar-
ity problem

Müuu(t) = fff ext(t)+ fff int(uuu(t))−Du̇uu(t)+G(t)T
λλλ(t)

0≤ G(t) u̇uu(t)⊥ λλλ≥ 0.
(14)

Here G(t) encodes the non-negativity constraints for relative veloc-
ities between contact points on the bodies in the system.

We denote by uuup = uuup(t) the predicted displacement correspond-
ing to the solution of the differential equation (1) in the time inter-
val t ∈ [tn, tn+1] with any of the presented integrators. That is, uuup

solves the unconstrained differential equation. Subtracting the left
and right sides of the unconstrained differential equation (1) from
the differential equation in (14), we obtain the equivalent differen-
tial equation

M(üuu− üuup) = fff int(uuu)− fff int(uuu
p)−D(u̇uu− u̇uup)+GT

λλλ, (15)

where for brevity we have omitted the explicit time dependencies.
To simplify the notation in the following, we redefine uuup such that
uuup ← uuup(tn+1). We choose a discretization similar to Backward
Euler, but fix the contact constraint matrix G = G(tn) at the current
time step. Since uuun = uuu(tn) = uuup(tn) and vvv = u̇uu, we obtain

M
vvvn+1− vvvp

∆t
= fff int(uuu

n+1)− fff int(uuu
p)

−D(vvvn+1− vvvp)+GT
λλλ

n+1
.

(16)
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The formulation (16) is still nonlinear and difficult to solve when
taking the constraints into account. We define ∆uuu = uuun+1−uuup and
write uuun+1 = uuup+∆uuu, and subsequently make the particular choice
of linearization

fff int(uuu
n+1) = fff int(uuu

p +∆uuu)≈ fff int(uuu
p)+

∂ fff int
∂uuu

(uuup)∆uuu. (17)

Denoting by K = − ∂ fff int
∂uuu (uuup) the stiffness matrix evaluated at the

predicted state, we observe that with the above choice of lineariza-
tion applied to (16), the internal force terms vanish entirely:

M
vvvn+1− vvvp

∆t
=−K(uuun+1−uuup)

−D(vvvn+1− vvvp)+GT
λλλ

n+1
.

(18)

This is an important property, because it implies that when λλλ
n+1

=

0, we have that vvvn+1 = vvvp. More generally, if (GT
λλλ

n+1
)I = 0

for some index subset I corresponding to a particular body, then
vvvn+1

I = vvvp
I . In other words, the correction process leaves bodies un-

touched if no contact forces are necessary, preserving the conver-
gence properties of the integration method. Similarly, body parts
that are not in contact and not significantly affected by stiff internal
forces due to contact in other body parts are also largely unaffected
by the correction process.

With uuun+1 = uuun + ∆tvvvn+1, we can now formulate the discrete
constrained dynamics as

Cvvvn+1−GT
λ̃λλ

n+1
− c = 0, 0≤ Gvvvn+1 ⊥ λ̃λλ

n+1
≥ 0 (19)

with C := M + ∆tD + (∆t)2K, λ̃λλ
n+1

:= ∆tλλλn+1 and ccc := Mvvvp +
∆tK(uuup − uuun) + ∆tDvvvp. We now assume that K and D are posi-
tive semi-definite, which implies that C is positive definite. If K
is not positive definite, we replace it with a projected version as
described in Section 3.1. In this case, it is well known that the con-
ditions defined by (19) are the first-order optimality (KKT) condi-
tions [NW06] for the Quadratic Program (QP) given by

min
1
2

vvvTCvvv− cccT vvv

s.t. Gvvv≥ 0.
(20)

Note that superscripts have been omitted in the above QP. We here
consider velocities as the primal variable and construct a quadratic
program directly for vvv, so that λ̃λλ takes the role of dual variables.
This is in contrast to the formulation used by, e.g., Staggered Pro-
jections, in which the dual formulation is used. However, the dual
formulation would require that the matrix C in the QP be replaced
by the Schur complement GC−1GT , which is intractable to form
explicitly, and moreover would almost certainly be very dense. The
primal formulation presented above, on the other hand, retains the
sparsity of the finite element formulation.

4.1. Scaling

Optimization algorithms generally perform better when the prob-
lem data is scaled well. This is particularly true for first-order meth-
ods. To improve scaling of the problem, we therefore formulate a
preconditioned variant of the contact QP (20). First, we note that
we can freely replace the constraints by EGvvv≥ 0 for any choice of

E diagonal and positive definite. We choose Eii = (max j |Gi j|)−1,
so that the largest absolute value in the ith row is 1. This essentially
normalizes the constraints. This is particularly effective if the con-
straint formulation used depends on, e.g., the area of triangles on
the contact surface, in which case large differences in triangle size
may lead to poor scaling of the constraints.

Next, we write vvv = P1/2v̂vv, where P = diag(C)−1 is the inverse of
the diagonal matrix consisting of the diagonal entries of C. This is
just the usual Jacobi preconditioner, which is particularly effective
in the presence of elements of different sizes in the finite element
discretization. The preconditioned QP formulation finally becomes

min
1
2

v̂vvT P1/2CP1/2v̂vv− cccT P1/2v̂vv

s.t. EGP1/2v̂vv≥ 0.
(21)

4.2. Implementation details

We solve the preconditioned QP (21) with OSQP [SBG∗20], a first-
order solver for fast approximate solutions to QPs that robustly han-
dles the case when G is singular or close to singular, which it might
very well be if some constraints are (nearly) redundant. In our cur-
rent implementation, we only use vertex-point constraints, i.e. we
constrain the relative velocity at a vertex of one mesh that is in
contact with the other body to be non-negative. For two bodies A
and B, we consider contacts both ways; vertices on A against B and
vertices on B against A.

5. Evaluation

The following sections contain the evaluation of a selection of in-
tegration methods. In Sections 5.1 and 5.2, we first introduce the
specific methods that we want to investigate. This is followed by
the description and evaluation of experiments without contacts in
Section 5.3 which is concluded with an intermediate summary for
the investigated methods. Next, we focus on the interaction of the
higher-order integrators with our contact model, starting with a
simple example suitable for quantitative analysis in Section 5.4.
Finally, we present more complex scenes in Section 5.5, demon-
strating the practical usability of higher-order methods in computer
animation.

5.1. DIRK methods

For this paper we collected several DIRK methods from the litera-
ture that, on paper, sound like good candidates to fulfill the desired
properties introduced in Section 1. The candidates include meth-
ods of specific types of DIRK methods, in particular singly diago-
nally implicit RK (SDIRK) methods where all diagonal entries aii
of the coefficient matrix A have the same value and DIRK methods
with an explicit first stage known as EDIRK or ESDIRK methods.
For more details on the properties of these methods, we refer again
to [KC16]. In the following discussion we will consider the follow-
ing DIRK methods:

• SDIRK2 (two-stage, second-order) and SDIRK3 (three-stage,
third-order) were the first methods designated as DIRK meth-
ods [Ale77]. It was noted that both methods are stiffly-accurate
and L-stable [KC16].
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• The TR-BDF2 integrator originally proposed by Banks et
al. [BCF∗85] performs a fractional substep from tn to tn + γ∆t
with the trapezoidal rule for γ ∈ (0,1) and then uses a variant
of the BDF2 integrator with the states at tn and tn+γ. It can
be written as a family of EDIRK methods (three-stage, second-
order, see [BDR17]). Banks et al. suggested γ = 2−

√
2 and

proved that the method is L-stable in this case. The specific
case of γ = 1

2 was later introduced to nonlinear structural dy-
namics by Bathe [Bat07] (henceforth denoted TR-BDF2(B)),
and also recently employed in computer graphics by Xu and
Barbič [XB17] for better control of damping behavior when
animating deformable bodies. However, this variant is not L-
stable [BC00]. In our evaluation we will focus on the latter vari-
ant, TR-BDF2(B), due to its previous usage in our field. In the
future, however, it might be interesting to investigate the practi-
cal implications of the stronger theoretical stability properties of
the original TR-BDF2 method.
• SDIRK-NCS23 (two-stage, third-order) and SDIRK-NC34

(three-stage, fourth-order) were the first DIRK methods that
were investigated for their nonlinear stability and are alge-
braically stable and A-stable. It was noted that SDIRK-NCS23
is not stiffly-accurate [KC16].
• SDIRK(3,3,4,5) and SDIRK(4,3,4,7) are derived as methods

suited well for ODEs with oscillating solutions [FGR97]. They
follow the naming scheme DIRK(s,p,pdisp,pdiss) where s is the
number of stages, p the classical order of accuracy, pdisp the dis-
persion order and pdiss the dissipation order. Both methods are
A-stable and were tested with a low dimensional, nonlinear os-
cillatory problem in the original publication.

SDIRK methods have the property that the Newton iteration ma-
trix at each stage is the same with the exception of the change in
the derivative of ggg (and fff for the equations of motion), which is a
property that can be exploited by e.g., Quasi-Newton methods. We
also briefly investigated the low dissipation, low dispersion meth-
ods ILDDDIRK22 (two-stage, second-order) et al. (up to fifth or-
der) [GS20], but we found them to be far less reliable than other
methods.

5.2. Rosenbrock methods

For this paper we investigated two Rosenbrock methods. ROS3PL
is a four-stage, third-order method that is L-stable and stiffly accu-
rate. The authors derived it as a W-method that permits inexact Ja-
cobians and claim that it is robust against order reduction [CLW09].
In addition, it has an embedded method for error estimation.

More recent publications have shown that previously used con-
ditions to prevent order reduction for very stiff problems were
not sufficient. Rang [Ran15] derives new variants of commonly
used third-order methods including ROS3PL and, amongst others,
presents ROS3PRL2 that is shown to preserve third-order accuracy
in numerical experiments. In our experiments, however, we were
not able to obtain stable results with this method. In the publication
it was not indicated if the newly derived method has the same sta-
bility properties as the original ROS3PL. Still, we want to further
investigate this in the future as the premise of this modified method
sounds interesting.

Figure 2: The double-clamped beam experiment: discretized with
4× 4× 32 = 512 trilinear hexahedral elements, the beam swings
under the influence of gravity.

5.3. Experiments without contacts

To gain an overview of the practical performance of the selected
schemes for stiff deformable bodies without interference of our par-
ticular contact model, we initially restrict ourselves to experiments
without contacts. We implemented the integration methods and our
in-house FEM framework in Rust using the “nalgebra” library for
dense matrix-vector operations [C∗19]. For the solution of nonlin-
ear systems, we use Newton’s method with a line search based on
the residual norm. To solve the involved linear systems, we used
the sparse direct solvers provided in the Intel MKL.

As material models, we employed the Stable Neo-Hookean
model (as introduced in [SDGK18]) and an approximate coro-
tated linear elastic model (based on [MG04]). For the Stable Neo-
Hookean model, we observed that for most of our experiments it
was not necessary to perform a projection of the stiffness matrix
to ensure positive definiteness. This saves the performance over-
head of the projection operation itself, but also positively affects the
number of Newton iterations as element matrix based projections
lead to an inexact Jacobian if the current iterate is still far from the
solution. As a fallback for the rare case that the Cholesky solver
detects an indefinite system, we switch to an LU based solver.

For the corotated linear elastic material, we used a formulation
with inversion handling and an approximation that fixes the rota-
tion at the beginning of the time step. An alternative for single-step
methods with multiple stages would be to recompute the rotation
for every evaluation of the right hand side. In initial experiments
with DIRK methods, however, this prevented convergence of the
Newton iterations unless a more accurate stiffness matrix is pro-
vided, i.e. one which incorporates the derivative of the rotations
(see e.g. [Bar12]). Such a fully nonlinear corotational model, how-
ever, is not common practice in computer animation, as this would
be much less efficient than nonlinear material models with better
properties.

In some experiments we explicitly add damping. As we want to
focus on the integrator and the contact model, we have chosen to
use a simple Rayleigh damping model as introduced in Section 3.1.
However, it would alternatively be possible to use more advanced
models (e.g. [XB17]).

Double-clamped beam We start our experimental evaluation with
a simple and controllable example of a double-clamped cantilever
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Figure 3: Change in total specific energy over time for the double-clamped beam experiment (lower is better) with ∆t = 33ms (top) and
∆t = 5ms (bottom). The dotted line indicates the energy loss when BE reaches a steady state solution due to numerical dissipation.
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Figure 4: Change in total specific energy (lower is better) at the
end of the double-clamped beam experiment for different step sizes.
The dotted line indicates the energy loss when Backward Euler
reaches its steady state solution. The dashed lines from left to right
indicate slopes of ideal third-, second- and first-order convergence.

beam. A rectangular beam (ρ= 1000 kg/m3, E = 1×105 Pa, ν= 0.4)
is fixed with homogenous boundary conditions on both ends and is
subjected to gravity as shown in Figure 2. Without damping (nu-
merical or manually specified), the beam should oscillate indefi-
nitely. To measure the error from this ideal condition at time t, we
compute the total specific energy of the beam etot(t), which con-

sists of kinetic, potential and strain energy per unit mass. Due to
numerical damping or stability issues, etot(t) might deviate from
the initial total energy etot(t0). Therefore, we define the absolute
energy error |∆e(t)| = |etot(t)− etot(t0)| and record this for every
time step.

Figure 3 shows the energy error for two simulations over a span
of 200s with step sizes of ∆t = 33ms and ∆t = 5ms. It is ev-
ident that the energy loss for Backward Euler is nearly two or-
ders of magnitude larger than for all other methods. Furthermore,
we can see that the SDIRK2 and TR-BDF2(B) methods clearly
achieve the smallest error during the entire simulation for a time
step of ∆t = 33ms. TR-BDF2(B), however, exhibits stronger oscil-
lations than SDIRK2 in the beginning and seems to conserve the
energy slightly better over very long simulation durations. Still,
visual inspection of the simulation results does not reveal sig-
nificant differences between the two methods except for a slight
phase shift towards the end. With a time step of ∆t = 5ms, only
the three-stage method SDIRK(3,3,4,5) and the four-stage method
SDIRK(4,3,4,7) achieve a smaller error over longer periods of time.
However, at around 100s simulation time, the SDIRK(4,3,4,7)
method started to gain energy again. This behavior can probably be
attributed to the small scale oscillations of the energy that are ob-
served for all higher-order methods. Usually, these tiny oscillations
are not noticeable, but for a method like SDIRK(4,3,4,7), which is
optimized to have low dissipation, numerical errors can accumulate
from these oscillations and eventually lead to an increase in energy.
Interestingly, none of the other methods with an order of three or
higher performed better than SDIRK2 and TR-BDF2(B). In gen-
eral, it is not surprising that this can happen, as the error constant
of a method which affects the solution error at a specific step size, is
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(a) Backward Euler, ∆t = 5ms (b) Backward Euler, ∆t = 0.5ms

(c) Backward Euler, ∆t = 0.05ms (d) SDIRK2, ∆t = 5ms

Figure 5: A plate of jello, wobbling after the plate was nudged at
the beginning of the simulation.

not directly related to the order of a method. The ROS3PL method
also performed quite well for a linearized method on a nonlinear
material.

To be able to see the effect of the order of a method, it is neces-
sary to compare the error for different step sizes. Therefore, we run
the same scene for 10s with various step sizes ∆t ∈ [1×105 s,1s]
and evaluate the energy error at the end of the simulation. Fig-
ure 4 shows this error against the respective step size of the sim-
ulation. The first-order convergence of the Backward Euler method
is clearly visible and again, all other methods show a significantly
smaller error for the same step size over the whole range. In accor-
dance with the previous experiment, both the SDIRK2 method and
the TR-BDF2(B) method perform significantly better than all other
methods in the range between ∆t = 1×10−1 s and 1×10−2 s. Only
starting from a step size at around 5×10−2 s they are marginally
outperformed by the SDIRK(4,3,4,7) method. SDIRK(4,3,4,7) and
SDIRK(3,3,4,5) are the only methods that show an order of three or
higher, although this is of little value for most animation applica-
tions due to their higher computational cost and a larger error until
the aforementioned small step size. All other higher-order meth-
ods show an order of convergence between two and three, even the
methods with a classical order of three or four. As a last observa-
tion, the energy error converges for all higher-order methods to a
limit towards a step size of ∆t = 1×10−4 s. This is related to the
fact that the accuracy of the discrete energy also depends on the
resolution of the spatial discretization. A finer spatial discretization
would further decrease this limit.

Wobbling jello For a more practical application in computer ani-
mation, we want to simulate jello (see Figure 5). The jello (coro-
tated material, E = 5.5×105 Pa, ν = 0.38) is positioned on a plate
which is nudged in the beginning of the simulation. Without any

(a) Backward Euler, ∆t = 5ms (b) Backward Euler, ∆t = 0.05ms

(c) SDIRK(4,3,4,7), ∆t = 5ms (d) SDIRK2, ∆t = 5ms

Figure 6: Comparison between different integration methods with
different time step sizes for a cloth-like solid consisting of 96×96×
1 trilinear hex elements.

damping we expect the jello to wobble without a reduction in am-
plitude over time. With a time step of 5ms for Backward Euler,
after only 5s the movement is already very slow and after 10s it is
visually indistinguishable from a steady state solution. At the same
time the solution produced by the SDIRK2 method still wobbles
vividly after 10s with hardly any visible energy loss. Reducing the
time step for Backward Euler to 0.5ms still results in strong damp-
ing. Only for a time step of 0.05ms we get visually similar behavior
as with SDIRK2 at ∆t = 5ms. However, as shown in Table 1, com-
puting the solution using SDIRK2 at ∆t = 5ms was more than 55
times faster than using BE with a time step of 0.05ms. Note that the
simulation using TR-BDF2(B) was around 15% slower than with
SDIRK2 at the same step size. This can be attributed purely to an
implementation detail, where we recompute the forces of the pre-
vious time step that are required by the method due to its explicit
first stage. Caching them would result in similar performance of
the two methods at the cost of additional memory consumption for
TR-BDF2(B).

Thick cloth blowing in the wind Figure 6 and the supplemental
video show an undamped piece of thick cloth blowing in the wind
(ρ = 1000 kg/m3, E = 3×105 Pa, ν = 0.4). The cloth is modeled
by a single layer of 96× 96 trilinear hex elements. Due to the nu-
merical dissipation of Backward Euler with ∆t = 5ms, almost all
details — such as wrinkles and folds — are lost. In comparison, the
higher-order integrators SDIRK2 and SDIRK(4,3,4,7) show much
more detail at the same step size. SDIRK2 in particular looks vi-
sually comparable to Backward Euler at ∆t = 0.05ms while being
almost 17 times faster (Table 1). SDIRK2 and TR-BDF2(B) require
between 2.6 to 3.5 times as many Newton iterations as Backward
Euler with the same time step due to their higher frequency de-
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Figure 7: The armadillo recovers from an extreme deformation
with inverted and degenerate elements.

formations. In this experiment TR-BDF2(B) required slightly less
Newton iterations than SDIRK2 on average, however, we did not
observe this as a consistent trend in other experiments. In conclu-
sion, relative to the results of the second-order integrators, the in-
creased computational cost of the other methods does not seem to
be justified in this experiment.

In the supplemental video, the same scene is repeated with the
SDIRK2 integrator and Rayleigh damping (β = 2×10−4 s) com-
pared against the Backward Euler integrator with no damping. The
small amount of damping cancels out much of the high-frequent
oscillation present in the damping-free scene, yet retains much of
the detail in the cloth. We conclude that the inherent lower dissipa-
tion associated with the SDIRK2 integrator enables more realistic
and user-controllable damping behavior.

Extreme deformation We study the ability of an armadillo (ρ =
1000 kg/m3, E = 1×106 Pa, ν = 0.4) to recover from an initial state
with randomly generated displacements that are far more severe
than those found in typical applications, and can thus be considered
a form of worst-case scenario (see Figure 7). Here we observed that
recovery for strongly nonlinear materials proved difficult, as the
root-finding procedure (Newton’s method) with line search based
on the residual norm would get stuck in non-global critical points.
We were only able to solve the Newton problem for Backward Eu-
ler with reduced time steps, whereas we were not able to make
progress with Newton iterations for the higher-order integrators for
reasonable step sizes.

Figure 7 and the supplemental video depict the progression of
the scene and comparison of integrators for a corotational linear
elasticity. Between Backward Euler, ROS3PL, SDIRK4347 and
SDIRK2, only Backward Euler was found to be long-term stable
without material damping. This is primarily a problem due to the
employed corotational formulation itself, since keeping the rota-

tions fixed means that the model is not rotation-invariant. There-
fore, rapidly changing rotations lead to increasing energy in the
system. Only a small amount of material Rayleigh damping (β =
10−3 s) was sufficient to stabilize all the considered higher-order
integrators. Whereas Backward Euler quickly damps out almost all
of the stored potential energy, the higher-order integrators preserve
much more of the energy, resulting in livelier motion after recovery.

Summary Amongst the higher-oder methods, two methods gave
outstanding results in comparison to the others: the second-order
SDIRK2 and TR-BDF2(B) methods. In our numerical experi-
ment with the double-clamped cantilever, only SDIRK(4,3,4,7) and
SDIRK(3,3,4,5) performed better over very long periods of time.
Convergence orders higher than two were only achieved by the cor-
responding methods at step sizes that are too small for practical use.
In addition, in the qualitative experiments, visual inspection shows
that none of these methods produces significantly better results than
the second-order methods. With this in mind, the higher computa-
tional cost of the four- and three-stage methods does not seem jus-
tifiable in this area of application. In contrast, the SDIRK2 and TR-
BDF2(B) methods already yield much higher quality results than
Backward Euler, while offering more control over material damp-
ing at a comparatatively moderate increase in computationl cost.
With the present results, however, we were not able to pick a clear
winner between SDIRK2 and TR-BDF2(B) which produced visu-
ally very similar results. For the following experiments, we chose
to only showcase the results obtained with SDIRK2, as we prefer
the absence of an explicit first stage. In the future we would like
to investigate the stability of SDIRK2 and TR-BDF2 more, as our
experiment with the deformed armadillo was not conclusive, due
the indicated shortcomings related to the nonlinear solver.

5.4. Evaluation of the contact model

The correction step of our contact model is based on a linerization
of the internal forces. In order to examine how this first-order ap-
proximation influences the higher-order integrators, we perform a
simple experiment with a bouncing ball. The ball (ρ = 1000 kg/m3,
E = 6×105 Pa, ν = 0.48) with a diameter of 1m is dropped from
a height of 3m under the influence of gravity. We do not manu-
ally apply damping. Note that the maximum jump height of the
ball might not be constant as energy is transformed into oscillatory
modes. The total energy, however, should ideally be conserved and
can therefore be used as a metric. We simulate the ball over a span
of 10s with Backward Euler and SDIRK2 and time step sizes of
∆t = 5ms and ∆t = 0.5ms. The total specific energy of the ball is
visualized in Figure 8.

For both step sizes, SDIRK2 dissipates visibly less energy per
collision, as well as between each collisions, than Backward Euler.
It is also evident that a reduction of the timestep significantly re-
duces the dissipation during the contact phase. Still, the advantage
of the second-order method is less prounounced than in previous
experiments. In future work, we would like to improve our contact
model in this respect. There are several possible approaches for
this, e.g. improving the design of the corrector itself, performing
iterative prediction and correction with relaxation or combining the
model with an energy tracking based approach (such as [DLL∗18]).
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Figure 8: Jumping ball experiment. Left: Loss of the ball’s total specific energy over time. Each collision with the floor dissipates energy.
Furthermore, Backward Euler dissipates significant amounts of energy even when the ball is not in contact with the floor. Right: The ball
simulated with Backward Euler does not jump as high as with SDIRK2. The transparent balls show the collision with the ground.

Nevertheless, in practice, the influence of the contact model might
not be as severe as in this example, e.g. considering scenes where
energy is transferred by collisions to a main object of interest, as
shown in the following section.

5.5. Complex scenes

The following scenes demonstrate the practical interaction between
higher-order implicit time integration methods and our contact
model by showing collisions of multiple deformable bodies. For
the previously stated reasons, we only present results obtained us-
ing the SDIRK2 method. Due to the dissipation introduced by our
contact model (see Section 5.4), we did not explicitly add Rayleigh
damping in the correction process (i.e. D = 0), but only as part of
the predictor.

Suspended Armadillo The scene, shown in Figure 1 (right) and
the supplemental video, shows multiple beach balls thrown in se-
quence colliding with a suspended armadillo (ρ = 500 kg/m3, E =
4×104 Pa, ν= 0.48). We are able to qualitatively observe the trans-
fer of kinetic energy from the flying beach balls to the armadillo
as well as excellent energy conservation for the armadillo itself
after the collisions. Because of the much smaller amount of nu-
merical energy dissipation, we added explicit stiffness damping
(β = 4×10−4 s) to the material of the armadillo in order to obtain
a visually more pleasing result.

Duck Trampoline Party This scene, shown in Figure 1 (left) and
the supplemental video, consists of 30 rubber ducks (ρ = 250 kg/m3,
E = 5×104 Pa, ν = 0.4) which are emitted into a maze of 10 thin,
cloth-like trampolines (ρ = 1000 kg/m3, E = 1×106 Pa, ν = 0.4),
being held in position with homogenous boundary conditions at the
corner vertices. While falling through the maze, the ducks slide and
bounce across the trampolines, repeatedly colliding with trampo-
lines and other ducks. This scene demonstrates that our constraint-
based contact handling is able to robustly handle large amounts of
contacts in conjunction with an implicit higher-order time integra-
tion scheme. In addition, the long lasting motion of the trampo-
lines again demonstrates the improved energy conservation proper-
ties of the SDIRK2 method. Although the scene was stable without

material damping, we again use Rayleigh damping for the ducks
(α = 5×10−3 1/s,β = 5×10−3 s) and cloth (α = 5×10−4 1/s,β =
5×10−4 s) to obtain a visually more pleasing motion of the bodies.

6. Conclusion and Future Work

We have investigated a number of implicit Runge-Kutta-type meth-
ods for computer graphics applications. The results suggest that
second-order DIRK methods — in particular SDIRK2 and TR-
BDF2(B) — offer an attractive alternative to Backward Euler
for many graphics applications. Comparing SDIRK2 and TR-
BDF2(B), we would tend to prefer SDIRK2 as it does not feature
an explicit stage and might therefore be stable for a wider range of
problems than considered in this work. In contrast to the aforemen-
tioned second-order methods, we would not recommend the usage
of the third- and fourth-order methods that we tested. They did not
deliver a similar gain in accuracy and quality for practical ranges
of step sizes and simulation durations, especially considering their
higher computational cost.

Compared to Backward Euler, the substantially increased accu-
racy and reduced numerical dissipation allow much more faithful

Scene Integrator ∆t (ms) real s/sim s Newt. iter.

Jello BE 5 21.3 1.00
(corotated) BE 0.5 191.4 1.00

BE 0.05 1907.3 1.00
SDIRK2 5 34.42 2.00
TR-BDF2(B) 5 40.8 2.00

Cloth BE 5 37.92 2.51
(without BE 0.05 1530.42 1.01
damping) SDIRK2 5 100.32 6.90

TR-BDF2(B) 5 102.46 6.59
SDIRK(4,3,4,7) 5 533.58 20.78

Susp. armadillo SDIRK2 5 242.4 5.48

Table 1: Integration method, step size, computation time (“real s”)
per simulated 1 s, and average Newton iterations for simulations
from the supplemental video, obtained on a system with an Intel i9
9900K processor.
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reproduction of material behavior. When the underlying Newton
solver is driven to convergence, the implicit integrators investigated
offer excellent stability, and we believe therefore that they are espe-
cially well-suited for high-fidelity simulation. Due to the ability to
use larger time steps for the same visual results, SDIRK2 is often
substantially faster than Backward Euler, and therefore satisfies all
criteria set out in the introduction except for Reliability in the most
demanding scenarios (in particular our extreme deformation test
case). However, the problems we observed in this experiment are
closely related to our present design of the nonlinear solver based
on the residual norm.

When formulated as a root-finding problem, the nonlinear prob-
lems that must be solved for the integration methods may get stuck
in critical points that are not a solution to the nonlinear equations in
the most challenging scenarios. The issue at heart is essentially the
problem of finding a global minimum of the residual norm. Some-
times this problem can be alleviated by performing sub-stepping,
i.e. when the Newton iterations do not converge, the time step is
repeated with a subdivision into smaller time steps. However, this
does not guarantee convergence and changes the discrete dynam-
ics of the system. In contrast, optimization-based methods are at-
tractive because any local minimum is a solution to the nonlinear
problem. We therefore believe that it would be worthwhile to refor-
mulate, e.g., SDIRK2 as an optimization problem, which combined
with an effective solver should resolve the main problem of reliably
solving the nonlinear problem, at which point all five quality crite-
ria that we set out in the introduction would be fulfilled.

While our constraint-based contact model is well-suited for
use with any higher-order integrator due to its carefully designed
predictor-corrector structure, it also has limitations. Its stability is
in large part due to the linearization used, which is similar to Back-
ward Euler. As a result, it generally dissipates energy near the con-
tact surface. Moreover, our contact model currently does not in-
clude a friction model, and it makes no attempt to recover from pen-
etrations. While this works surprisingly well due to the tendency of
colliding deformable bodies to push each other apart due to internal
forces, it would be a natural extension to include position stabiliza-
tion and a compatible friction model.
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