
Volume Maps: An Implicit Boundary Representation for SPH
Jan Bender

bender@cs.rwth-aachen.de
RWTH Aachen University

Tassilo Kugelstadt
kugelstadt@cs.rwth-aachen.de

RWTH Aachen University

Marcel Weiler
weiler@cs.rwth-aachen.de
RWTH Aachen University

Dan Koschier
d.koschier@ucl.ac.uk

University College London

Figure 1: Our novel implicit boundary representation based on volume maps is able to handle scenarios with complex static
and dynamic boundaries. Left: 8 million turbulent fluid particles interact with a large-scale canyon boundary. Right: Four
emitters generate 12 million fluid particles with high velocities that interact with static dragons and dynamic ducks.

ABSTRACT
In this paper, we present a novel method for the robust handling
of static and dynamic rigid boundaries in Smoothed Particle Hy-
drodynamics (SPH) simulations. We build upon the ideas of the
density maps approach which has been introduced recently by
Koschier and Bender. They precompute the density contributions
of solid boundaries and store them on a spatial grid which can be
efficiently queried during runtime. This alleviates the problems
of commonly used boundary particles, like bumpy surfaces and
inaccurate pressure forces near boundaries. Our method is based
on a similar concept but we precompute the volume contribution
of the boundary geometry and store it on a grid. This maintains all
benefits of density maps but offers a variety of advantages which
are demonstrated in several experiments. Firstly, in contrast to the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6994-7/19/10. . . $15.00
https://doi.org/10.1145/3359566.3360077

density maps method we can compute derivatives in the standard
SPH manner by differentiating the kernel function. This results
in smooth pressure forces, even for lower map resolutions, such
that precomputation times and memory requirements are reduced
by more than two orders of magnitude compared to density maps.
Furthermore, this directly fits into the SPH concept so that vol-
ume maps can be seamlessly combined with existing SPH methods.
Finally, the kernel function is not baked into the map such that
the same volume map can be used with different kernels. This is
especially useful when we want to incorporate common surface
tension or viscosity methods that use different kernels than the
fluid simulation.

CCS CONCEPTS
• Computing methodologies → Physical simulation.

KEYWORDS
Smoothed Particle Hydrodynamics, fluid simulation, boundary han-
dling
ACM Reference Format:
Jan Bender, Tassilo Kugelstadt, Marcel Weiler, and Dan Koschier. 2019.
Volume Maps: An Implicit Boundary Representation for SPH. In Motion,
Interaction and Games (MIG ’19), October 28–30, 2019, Newcastle upon Tyne,

https://doi.org/10.1145/3359566.3360077

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom Bender et al.

United Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3359566.3360077

1 INTRODUCTION
Smoothed Particle Hydrodynamics (SPH) has become a powerful
tool in computer graphics, where it is used for visual effects in
movies, and in interactive applications like games or virtual training
simulators. It can be used to simulate lots of different materials
ranging from incompressible fluids and highly viscous liquids to
granular materials and deformable solids.

Using particles as the primary material representation is appeal-
ing because it simplifies implementations. Moreover, it provides a
straightforward way for two-way coupling of many different ma-
terials and for two-way coupling with rigid bodies. However, the
accurate application of boundary conditions remains challenging,
but is especially important when materials interact with complex
static and dynamic boundaries as depicted in Figure 1. Over the last
years several boundary representations based on particles, meshes
or implicit representations, like signed distance fields, have been
proposed. But most of them are either inaccurate or have high
computational demands. For instance, sampling the boundary with
particles results in bumpy surfaces which lead to inaccurate forces
and introduce artificial friction or even jumping particle artifacts
(cf. [Band et al. 2017; Koschier and Bender 2017]). A detailed dis-
cussion of previous methods and the associated problems can be
found in Section 2.

Recently, Koschier and Bender [2017] proposed an implicit bound-
ary representation called density maps. They use a spatial grid to
discretize the density contribution function of static and dynamic
rigid obstacles which is computed using adaptive Gauss-Kronrod
quadrature in a preprocessing step. To reduce the memory foot-
print, the density maps are only stored for a narrow band around
the solid surfaces and approximated with higher-order polynomials.
During runtime they can be efficiently queried and accurate forces
can be computed without the aforementioned problems of particle
based approaches and without significant computational overhead.
Moreover, friction between particles and solids, even in complex
scenarios, can be handled.

Our method is inspired by the density maps approach and is also
based on an implicit boundary representation. We use the same
data structures as described in [Koschier and Bender 2017] to store
and query function values. However, instead of precomputing the
density contribution of the boundary, we determine the boundary
volume that overlaps with the support domain of the smoothing
kernel. This has multiple advantages which are demonstrated in
a series of experiments. When using the density maps approach,
the derivatives of density values are determined by differentiat-
ing the shape functions of the cubic elements. However, this is
prone to errors because continuity at cell interfaces is not guaran-
teed [Koschier et al. 2017]. Our experiments show that this is not
problematic for high resolution grids but it results in visual artifacts
for lower resolutions due to force discontinuities. Compared to that,
we compute all derivatives by differentiating the SPH kernel which
is the standard SPH formulation. This results in smooth forces even
for low resolution volume maps which enables significantly faster
precomputations and reduces the memory requirements drastically.

Another advantage is that it directly fits into the SPH concept such
that volume maps can be seamlessly integrated into existing solvers
and combined easily with nearly all existing SPH methods. Finally,
in contrast to the density maps approach, volume maps are inde-
pendent of the smoothing kernel. Hence, a single instance of a
volume map can be used in conjunction with various kernel func-
tions. This is especially advantageous as some methods employ
individual smoothing kernels for specialized purposes, e.g. surface
tension or viscosity approaches, where multiple instances of the
kernel-dependent density maps would be required.

2 RELATED WORK
During the last decades there has been a large variety of research
on SPH methods. They have become a popular tool for simulating
incompressible fluids, highly viscous liquids, fluid structure inter-
actions and deformable solids. In this section, we briefly discuss
prior works that are related to the presented method. A more gen-
eral overview of recent developments in SPH can be found in the
state-of-the-art report by Ihmsen et al. [2014b] and in the course
notes of Koschier et al. [2019].

SPH was introduced to the computer graphics community by
Stam and Fiume [1995] to simulate fire and gaseous phenomena.
Later, it was used to simulate deformable solids by Desbrun and
Gascuel [1996] and to simulate fluids by Müller et al. [2003]. To
achieve nearly incompressible fluids, Becker and Teschner [2007]
proposed an equation of state based approach. By choosing an
appropriate stiffness constant for the pressure forces they can guar-
antee a small maximal compression. To alleviate the small time step
requirements and stability issues of explicitly integrated pressure
forces, many implicit solvers have been developed. One way of en-
forcing incompressibility is to apply a constant density constraint
as proposed by Solenthaler and Pajarola [2009] who solve it with a
predictive-corrective scheme. Similar approaches based on position
based and projective dynamics have been proposed by Macklin
and Müller [2013] and Weiler et al. [2016], respectively. Ihmsen
et al. [2014a] showed that constant density can also be enforced
by solving a discrete pressure Poisson equation. Another way to
guarantee incompressibility is to solve a Poisson equation in order
to make the velocity field divergence-free [Cornelis et al. 2019].
This has been done in a hybrid SPH and grid based approach by
Raveendran et al. [2011]. Bender and Koschier [2017] proposed
to solve for both, a divergence-free velocity field and a constant
density, which increases stability and computational performance.
In our experiments we use the DFSPH pressure solver of Bender
and Koschier although the proposed boundary handling method
can be combined with any of the aforementioned solvers.

Due to the particle nature of SPH it is not straightforward to
enforce boundary conditions at interfaces between fluids and solid
surfaces. One problem is that particles which are located close to
the boundary typically suffer from neighborhood particle deficien-
cies leading to inaccurate density estimates and pressure forces.
Another problem is that implicit pressure solvers also require pres-
sure values inside the boundary domain which are unknown. These
problems are orthogonal to each other and several methods to solve
them have been proposed in recent years. Most approaches use
specialized boundary representations, including particles, triangle

https://doi.org/10.1145/3359566.3360077
https://doi.org/10.1145/3359566.3360077

Volume Maps: An Implicit Boundary Representation for SPH MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom

meshes, and implicit representations such as signed distance fields.
In the following we will give an overview of these methods.

A popular approach is to sample the solid boundaries with parti-
cles which exert penalty forces onto nearby fluid particles such that
penetrations are avoided [Becker and Teschner 2007; Monaghan
1994]. Instead of integrating these forces with explicit schemes,
Becker et al. [2009] proposed a predictor-corrector scheme. A prob-
lem is that their method suffers from particle stacking artifacts near
the boundary. Alternatively, the boundary particles can be treated
as fluid particles such that they contribute to the density and pres-
sure computations as suggested by Solenthaler et al. [2007]. This
solves the particle deficiency problem and results in smooth den-
sity distributions near solid boundaries. However, small time steps
are necessary to guarantee non-penetration. Ihmsen et al. [2010]
combine the approaches of Becker et al. [2009] and Solenthaler et
al. [2007] to get smooth particle distributions without requiring
small time steps. Their method was further improved by Akinci et
al. [2012] such that two-way coupling of fluids with rigid bodies
can be achieved. Moreover, they introduced normalized pseudo
masses to account for non-uniform boundary particle distributions.
He et al. [2012] proposed to add auxiliary staggered particles to
discretize a Poisson equation with appropriate boundary conditions
for projecting the velocity field onto a divergence-free state. For
two-way coupling of fluids and deformable solids several adaptive
particle sampling approaches have been proposed [Akinci et al.
2013; Müller et al. 2004; Yang et al. 2012].

One problem of the particle based boundary representations is
that the surfaces are typically irregular. This causes non-smooth
surface normals and therefore non-penetration forces that are not
completely orthogonal to the surface which leads to undesired
artificial friction or even jumping particle artifacts [Koschier and
Bender 2017]. Band et al. [2017] proposed a method to alleviate
this problem. They use the moving least squares (MLS) method to
fit local planes to the boundary particles. This results in correct
normals and eliminates most artifacts. However, it can be only
applied in planar surface regions while curved surfaces cannot be
handled. Another disadvantage of boundary particles is that they
introduce a substantial computational overhead. They need to be
considered during neighborhood searches and for each fluid particle
it is required to iterate over all neighboring boundary particles
during force and pressure computations.

Alternatively, solid boundaries can be represented as triangle
meshes. Bodin et al. [2012] use unilateral constraints to prevent the
fluid particles from penetrating triangulated surfaces of static and
dynamic rigid bodies. The two-way coupling of fluids with cloth
was addressed by Huber et al. [2015]. They use continuous collision
detection and apply correction impulses such that the fluid particles
cannot penetrate the cloth. However, neither of the approaches
addresses the problem of inaccurate density estimates close to the
boundary. Fujisawa and Miura [2015] also use meshes as a boundary
representation and adopt a solution for the density problem from
the engineering community [Kulasegaram et al. 2004]. In order to
correct the SPH approximations, they compute a renormalization
factor which takes the overlapping volume of the SPH kernel and
the boundary into account. However, they compute these factors
at runtime which results in significantly higher computation times
compared to the particle based approaches.

Solid boundaries can be alternatively represented with implicit
functions, e.g. signed distance fields (SDFs) as proposed by Harada et
al. [2007a; 2007b]. To virtually extend the fluid density into the solid
they sample the density contribution of a planar surface depending
on the distance of a prototype fluid particle. The resulting values
are discretely sampled prior to the simulation and are then queried
during runtime based on the signed distance value of the fluid
particle. However, this is only correct for planar surfaces and results
in incorrect density values for curved geometries. Koschier and
Bender [2017] proposed to precompute the density contributions of
rigid boundaries and store them in a so called density map which
can be efficiently queried during runtime. This results in accurate
density values and avoids the artifacts of bumpy particle samplings.
Since our work is inspired by the density maps approach, it will be
discussed in more detail in Section 4.2.

A very popular approach to solve the problem of required but
unknown pressure values at the boundary is a technique called pres-
sure mirroring (cf. [Akinci et al. 2012]). While processing a fluid
particle that requires to determine the pressure value at a bound-
ary sample, pressure mirroring assumes that this value is equal to
the fluid’s pressure value. This is easy to implement and computa-
tionally cheap, but has the problem that the pressure values at the
boundary are not unique. This happens when several fluid particles
interact with the same boundary sample and each particle mirrors
its own individual pressure value. As shown by Band et al. [2018a]
this reduces the stability and convergence of the pressure solver.
Therefore, they suggested to include the boundary particles into the
pressure projection step. In a follow-up work, Band et al. [2018b]
point out that it is even more beneficial to compute unique bound-
ary pressures by extrapolating the values from the fluid particles
using MLS. In our work we focus on removing artifacts induced
by the irregularity of the typically particle-sampled surface and to
enhance accuracy in the evaluation of discrete field samples and
their derivatives in close proximity to the boundary. However, we
would like to stress the fact that the discussed boundary pressure
computation approaches are orthogonal to the proposed method
and we are planning to adopt them in future work.

3 FOUNDATIONS
In this section we briefly introduce the governing equations to
simulate incompressible fluids. Moreover, we derive the standard
SPH discretization which is then extended in the next section by
boundary handling.

Governing Equations. In our work we simulate fluids by using
the Navier-Stokes equations for incompressible flow in Lagrangian
coordinates

Dρ

Dt
= 0 ⇔ ∇ · v = 0 (1)

Dv
Dt
= − 1

ρ
∇p + ν∇2v +

f
ρ
, (2)

where ρ, t , v,p,ν and f denote density, time, velocity, pressure, kine-
matic viscosity and body forces, respectively. To solve the Navier-
Stokes equations numerically a discretization is required.

Spatial Discretization. In the following we introduce the SPH
formalism which is a common approach for spatial discretization.

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom Bender et al.

N(x)
x

B

F

r

Figure 2: Definition of the fluid domain F (blue), the bound-
ary domain B (gray) and the support domain N(x) of the
compact kernel function (green) with radius r at position x.
The fluid domain is discretized by particles.

To derive the standard SPH discretization for a function д(x), we
first rewrite it using the Dirac-δ identity (cf. [Koschier et al. 2019])

д(x) =
∫
Ω
д(x′) δ (x − x′)dx′,

where Ω defines the problem domain. Then, we approximate the
integral by replacing δ with a kernel function W with compact
support and finally approximate the resulting integral using a sum
over a set of sampling points xj

д(x) ≈
∫
N(x)

д(x′)W (∥x − x′∥,h)dx′ (3)

≈
∑
j
Vjд(xj)W (∥x − xj ∥,h), (4)

where N(x) defines the support domain of the kernel function (see
Figure 2), h is the smoothing length of the kernel and Vj is the
volume represented by a sampling point.

In an SPH simulation the fluid is discretized by particles. Each
particle i represents a sampling point and its volume is computed
as mi

ρi . The massmi is determined by the size of the particle and the
rest density ρ0 of the fluid. The density ρi of particle i is computed
using the SPH formalism

ρi =
∑
j
mjWi j , (5)

whereWi j =W (∥xi − xj ∥,h).

4 BOUNDARY HANDLING
Most graphics-related techniques to handle boundary conditions
in the context of SPH solvers are based on the concept of virtually
extending field quantities into the boundary domain, e.g. density,
pressure, velocity etc. [Koschier et al. 2019]. Moreover, the vast ma-
jority of proposed methods consider incompressible continua and,
therefore, ensure that the incompressibility constraint (see Equa-
tion (1)) is satisfied. By extending the density field into the boundary

domain, the typically employed pressure solvers implicitly resolve
boundary penetrations as the virtual density contributions lead to
local compressions that violate the incompressibility constraint.
Recent work has demonstrated the generality and versatility of
the concept (cf. [Gissler et al. 2019]). Building on this concept, we
will assume that (at least) the mass density ρ is extended into the
boundary such that ρ > 0 on B.

Given the (extended) density field, a smoothed density sample
ρ(x) located in close proximity to the boundary domain is deter-
mined as follows. The density function is plugged into Equation (3).
We can then partition the integral into fluid and boundary portion
(see Figure 2)

ρ(x) ≈
∫
N(x)

ρ(x′)W (∥x − x′∥,h)dx′

=

∫
N(x)∩F

ρ(x′)W (∥x − x′∥,h)dx′+
∫
N(x)∩B

ρ(x′)W (∥x − x′∥,h)dx′

=ρF(x) + ρB(x).

(6)

While the fluid integral ρF is typically discretized into SPH particles
and numerically approximated using Equation (5), there exist vari-
ous approaches to numerically approximate the boundary portion
ρB . The most widely used class of approaches is based on particle
sampling. Recently, an alternative concept, referred to as density
maps, has been proposed, where samples of ρB are computed using
adaptive numerical quadrature to discretize the function onto a
spatial grid (cf. [Koschier and Bender 2017]). In the following, we
first briefly describe the core concepts of particle-based approaches
and density maps and then introduce our novel volume maps ap-
proach. We further discuss the differences between all approaches
and review the advantages of our novel method in the next section.

4.1 Particle-Based Approaches
The core idea of particle-based approaches is to discretize the bound-
ary geometry with particles [Akinci et al. 2012; Ihmsen et al. 2010;
Monaghan 1994]. These boundary particles typically have the same
size as the fluid particles and serve as additional sampling points. In
this way the boundary portion ρB(x) can be discretized analogously
to the fluid portion using a sum (see Equation (5))

ρi = ρF(xi) + ρB(xi) ≈
∑
j
mjWi j +

∑
k

m̃kW̃ik ,

where j and k denote the indices of particle i’s fluid and boundary
particle neighbors, respectively. Some methods employ a specialized
kernel functionW̃ for boundary handling, e.g. [Becker and Teschner
2007], although the boundary kernels are usually chosen asW̃ ≡W .
Please note that the boundary particle masses m̃k are independent
of the boundary object’s material properties and solely fulfill the
purpose of extending the fluid’s mass density field into the boundary.
The values m̃k are therefore often called pseudo masses.

One of the most popular approaches for particle-based boundary
handling was proposed by Akinci et al. [2012]. In this approach the
pseudo masses are chosen such that ρB ≈ ρ0 inside the boundary
domain. Therefore, Akinci et al.’s method uses a constant function
to extend the mass density field into the boundary. They compute

Volume Maps: An Implicit Boundary Representation for SPH MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom

the pseudo mass of a boundary particle k as

m̃k =
ρ0∑
lWkl

,

where l denotes the indices of the neighboring boundary particles
of k , to account for non-uniform boundary particle distributions.

For a more detailed discussion of particle-based approaches we
would like to refer the reader to the work of Koschier et al. [2019].

4.2 Density Maps
Instead of sampling the boundary with particles one could also
solve the integral over the boundary part in Equation (6) by numeri-
cal integration methods such as Gauss quadrature while setting the
density in the boundary to ρ0. However, the problem with this ap-
proach is twofold. First, the numerical integration is expensive and
significantly decreases the performance of the simulation. Second,
we have to integrate a discontinuous, piecewise constant function
as the density field is zero outside of the boundary and takes on ρ0
inside the boundary. This leads to staircase artifacts in the resulting
function due to the limited accuracy of fixed pattern quadrature
schemes (see Figure 3).

The density maps concept of Koschier and Bender [2017], which
is introduced in this section, solves both problems. The boundary
density function ρB is discretized and precomputed on a spatial grid
to solve the performance problem. The discontinuities are removed
by extending the boundary density to the outside of the boundary to
get a smooth function. Since our novel boundary handling approach
is inspired by the density maps method, we will discuss this concept
here in more detail.

In contrast to the particle-based approaches, the density maps
concept is based on an implicit representation of the boundary.
Building on a signed distance function Φ : R3 → R whose zero
iso-surface describes the boundary geometry, the authors extend
the density field into the boundary using the extension function γ :
R→ R+. They further convolve the density extension function with
the kernel in order to ensure compliance with the SPH formalism
(cf. Equation (6)), i.e.

ρB(x) =
∫
N(x)

γ (Φ(x′))W (∥x − x′∥,h)dx′, (7)

where the signed distance function is defined as

Φ(x) =
{
−d(x, ∂B) if x ∈ B
d(x, ∂B) otherwise,

(8)

and where
d(x, ∂B) = inf

x̃∈∂B
∥x − x̃∥

defines the shortest (unsigned) distance from x to the surface of
the boundary ∂B. They further model the extension function as a
linear polynomial that takes the rest density value on the boundary
surface

γ (x) =
{
ρ0

(
1 − x

r
)

if x < r

0 otherwise.
(9)

This means instead of having zero density outside of the bound-
ary and ρ0 inside, we have a linear function increasing from 0 to
ρ0 within the support radius r . In this way the extension func-
tion has no discontinuity within the support radius of the fluid

Volume Maps: An Implicit Boundary Representation for SPH

the pseudo mass of a boundary particle k as

m̃k =
ρ0∑
lWkl

,

where l denotes the indices of the neighboring boundary particles
of k , to account for non-uniform boundary particle distributions.

For a more detailed discussion of particle-based approaches we
would like to refer the reader to the work of Koschier et al. [2019].

4.2 Density Maps
Instead of sampling the boundary with particles one could also
solve the integral over the boundary part in Equation (6) by numeri-
cal integration methods such as Gauss quadrature while setting the
density in the boundary to ρ0. However, the problem with this ap-
proach is twofold. First, the numerical integration is expensive and
significantly decreases the performance of the simulation. Second,
we have to integrate a discontinuous, piecewise constant function
as the density field is zero outside of the boundary and takes on ρ0
inside the boundary. This leads to staircase artifacts in the resulting
function due to the limited accuracy of fixed pattern quadrature
schemes (see Figure 3).

The density maps concept of Koschier and Bender [2017], which
is introduced in this section, solves both problems. The boundary
density function ρB is discretized and precomputed on a spatial grid
to solve the performance problem. The discontinuities are removed
by extending the boundary density to the outside of the boundary to
get a smooth function. Since our novel boundary handling approach
is inspired by the density maps method, we will discuss this concept
here in more detail.

In contrast to the particle-based approaches, the density maps
concept is based on an implicit representation of the boundary.
Building on a signed distance function Φ : R3 → R whose zero
iso-surface describes the boundary geometry, the authors extend
the density field into the boundary using the extension function γ :
R→ R+. They further convolve the density extension function with
the kernel in order to ensure compliance with the SPH formalism
(cf. Equation (6)), i.e.

ρB(x) =
∫
N(x)

γ (Φ(x′))W (∥x − x′∥,h)dx′, (7)

where the signed distance function is defined as

Φ(x) =
{
−d(x, ∂B) if x ∈ B
d(x, ∂B) otherwise,

(8)

and where
d(x, ∂B) = inf

x̃∈∂B
∥x − x̃∥

defines the shortest (unsigned) distance from x to the surface of
the boundary ∂B. They further model the extension function as a
linear polynomial that takes the rest density value on the boundary
surface

γ (x) =
{
ρ0

(
1 − x

r
)

if x < r

0 otherwise.
(9)

This means instead of having zero density outside of the bound-
ary and ρ0 inside, we have a linear function increasing from 0 to
ρ0 within the support radius r . In this way the extension func-
tion has no discontinuity within the support radius of the fluid

B

r enters the boundary, the boundary part of the density ρB
increases. Right: Computing ρB by numerical integration
leads to a discontinuity each time a sampling point (blue)
enters the boundary.

particle. In order to evaluate the boundary density function ρB
at a certain sample position x, Koschier and Bender numerically
approximate the integral using adaptive Gauss-Kronrod quadra-
ture. As this procedure is computationally expensive for arbitrarily
complex boundary shapes and therefore not bearable at runtime,
they discretize ρB on a regular grid with cubic shape functions of
Serendipity type. The discretized function can then be efficiently ac-
cessed at runtime such that boundary density values and gradients
can be computed in O(1). They justify the usage of the higher-order
polynomial discretization with the argument that the convolution
with typically piecewise polynomial kernels results in a sufficiently
smooth field. Therefore, the cubic discretization usually requires
fewer degrees of freedom to capture the field with high accuracy
than linear discretizations.

4.3 Volume Maps
Our novel volume maps approach is inspired by the density maps
concept and is also based on an implicit boundary representation.
Moreover, we also define an extension function to avoid disconti-
nuities and use a spatial grid to improve performance. However,
instead of computing the density part of the boundary directly, we
determine the intersection volume of the sphere around a fluid par-
ticle that is defined by the support radius r and the boundary (see
Figure 2). This offers several advantages as shown in the following.

The most important advantage is that the boundary volume can
be directly used in the general SPH formulation (see Equation (4))
which enables a consistent computation of the density gradient. Vol-
ume maps only determine the intersection volume between kernel
support domain and boundary and use the SPH formulation to com-
pute the density gradient. In contrast, density maps determine the
gradient by differentiating the cubic shape functions of Serendipity
type of their spatial grid discretization. The latter way to compute
the gradient has a significant drawback. It is not guaranteed that a
density map is continuous over the interfaces of neighboring grid
cells [Koschier et al. 2017]. This leads to ’kinks’ in the discretized
representation of the density function when using a coarse reso-
lution. At the position of such a kink the described computation

0

ρ0

-r 0 r

Figure 3: Left: As the black fluid particle with support radius
r enters the boundary, the boundary part of the density ρB
increases. Right: Computing ρB by numerical integration
leads to a discontinuity each time a sampling point (blue)
enters the boundary.

particle. In order to evaluate the boundary density function ρB
at a certain sample position x, Koschier and Bender numerically
approximate the integral using adaptive Gauss-Kronrod quadra-
ture. As this procedure is computationally expensive for arbitrarily
complex boundary shapes and therefore not bearable at runtime,
they discretize ρB on a regular grid with cubic shape functions of
Serendipity type. The discretized function can then be efficiently ac-
cessed at runtime such that boundary density values and gradients
can be computed in O(1). They justify the usage of the higher-order
polynomial discretization with the argument that the convolution
with typically piecewise polynomial kernels results in a sufficiently
smooth field. Therefore, the cubic discretization usually requires
fewer degrees of freedom to capture the field with high accuracy
than linear discretizations.

4.3 Volume Maps
Our novel volume maps approach is inspired by the density maps
concept and is also based on an implicit boundary representation.
Moreover, we also define an extension function to avoid disconti-
nuities and use a spatial grid to improve performance. However,
instead of computing the density part of the boundary directly, we
determine the intersection volume of the sphere around a fluid par-
ticle that is defined by the support radius r and the boundary (see
Figure 2). This offers several advantages as shown in the following.

The most important advantage is that the boundary volume can
be directly used in the general SPH formulation (see Equation (4))
which enables a consistent computation of the density gradient. Vol-
ume maps only determine the intersection volume between kernel
support domain and boundary and use the SPH formulation to com-
pute the density gradient. In contrast, density maps determine the
gradient by differentiating the cubic shape functions of Serendipity
type of their spatial grid discretization. The latter way to compute
the gradient has a significant drawback. It is not guaranteed that a
density map is continuous over the interfaces of neighboring grid
cells [Koschier et al. 2017]. This leads to ’kinks’ in the discretized
representation of the density function when using a coarse reso-
lution. At the position of such a kink the described computation

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom Bender et al.

 0

 0.25

 0.5

 0.75

 1

0 0.5r r

(a) linear extension function

 0

 0.25

 0.5

 0.75

 1

0 0.5r r

(b) cubic extension function

Figure 4: (a) The linear extension functionγ (Eq. (9)) used for
density maps is not smooth at x = r . (b) In contrast our cu-
bic functionγ ∗ (Eq. (4.3)) is continuously differentiable. Note
that the plot in (a) shows the normalized function γ/ρ0.

of the density gradient leads to pressure forces that are not con-
sistently oriented and therefore to noticeable visual artifacts (see
Section 5). This can be improved by using a high-resolution density
map which is computationally expensive to generate and has signifi-
cantly higher memory requirements. In our method we use the map
only to determine the boundary volume. The gradient is computed
with the classical SPH formulation. Therefore, our method yields
smooth pressure forces that do not cause visual artifacts even for
low resolution maps which is shown in Section 5.

In order to generate a volume map, we determine the boundary
volume as

VB(x) =
∫
N(x)

γ ∗(Φ(x′))dx′, (10)

where Φ is the signed distance function (see Equation (8)). Note
that this formulation is similar to the integral for the boundary
density in Equation (7). However, the computation of the volume
does not require a convolution with the kernel function. Therefore,
in contrast to density maps, volume maps are independent of the
kernel and a single map can be used in conjunction with various
kernel functions. Moreover, in our formulation we use a cubic
extension function instead of a linear one (cf. Equation (9))

γ ∗(x) =

C(x)
C(0) if 0 < x < r

1 if x ≤ 0
0 otherwise,

where C denotes the cubic spline kernel [Monaghan 2005]. Note
that this kernel is only used to define the cubic function γ ∗ while
an arbitrary kernel can be used in the SPH formulation. Using a
cubic extension function has the advantage that in contrast to the
linear function of the density maps approach, we get a smooth tran-
sition at distance x = r (see Figure 4). Moreover, the fact that our
cubic extension function is continuously differentiable significantly
improves the Gauss quadrature approximation of the integral in
Equation (10) in comparison to using the non-smooth linear func-
tion [Müller et al. 2012]. Finally, the integral in Equation (10) is
solved using Gauss-Legendre quadrature and the volume function is
spatially discretized using a regular grid with cubic shape functions
of Serendipity type to get a volume map.

To compute the density of a particle we use the SPH formulation
in Equation (4). Here a quantity at a position x is determined by a

sum over a set of sampling points in the neighborhood of x. Each
sampling point represents a volume and its quantity is weighted by
a kernel function depending on the distance between the sampling
point and x. To determine the boundary portion of the density ρB
using our volume maps approach, we add a sampling point x∗ on
the boundary which represents the boundary volumeVB . Moreover,
we extend the density field to the boundary and set the density at
this new sampling point to ρ0. This yields the following equation
for the boundary part of the density

ρB(x) = VB(x)ρ0W (∥x − x∗∥,h).
In our work we define x∗ as the closest point to x on the boundary.
This point can be easily determined by the signed distance function
Φ that we also use to generate the volume map.

The volume map is generated in a precomputation step before the
simulation. To compute the density contribution of the boundary
during runtime, in each simulation step we have to determine the
closest point x∗ on the surface of the boundary and the boundary
volume VB for each fluid particle x that is close to boundary. Note
that both quantities can be obtained by simple lookups in the map
which require constant time. The resulting density contribution
can be easily used in any pressure solver. The required density
gradient can be determined analogously by taken the gradient of
the kernel. Finally, the symmetric pressure force [Monaghan 2005]
for a particle i is computed as

Fpi = −mi
∑
j
mj

(
pi

ρ2
i
+

pj

ρ2
j

)
∇W (∥x − xj ∥,h)

−miVjρ0

(
pi

ρ2
i
+

p̃

ρ̃2

)
∇W (∥x − x∗∥,h)

=Fpi←F + Fpi←B ,

where Fpi←F is the part of the pressure force that is exerted by the
neighboring fluid particles and Fpi←B is the part that is exerted by
the boundary. p̃ and ρ̃ are the pressure and the density at the bound-
ary, respectively. In our work we used pressure mirroring [Akinci
et al. 2012] and therefore set p̃ = pi and ρ̃ = ρ0. However, in future
we want to compute the boundary pressure value by extrapolation
as proposed by Band et al. [2018b]. Their pressure extrapolation
can be combined easily with our approach by setting p̃ to the ex-
trapolated value.

In case of dynamic boundaries we apply the negative force
FpB←i = −Fpi←B at the position x∗ to the boundary object in order
to realize two-way coupling. This two-way coupling is shown in
the simulations in Figures 1 and 10.

5 RESULTS AND DISCUSSION
In this section, we present results and compare our volume maps
concept to the particle-based method of Akinci et al. [2012] and the
density maps approach [Koschier and Bender 2017]. For the compar-
ison we implemented all methods in the open-source SPH library
SPlisHSPlasH [Bender 2019]. All simulations were performed using
the implicit pressure solver DFSPH with an adaptive time-stepping
scheme based on the CFL condition [Bender and Koschier 2017].
In fluid simulations we further employed a micropolar model to

Volume Maps: An Implicit Boundary Representation for SPH MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom

(a) Akinci et al. (b) Volume Maps

Figure 5: A regular grid of fluid particles is dropped on
an inclined plane. (a) The particle-based sampling causes
a chaotic motion. (b) Our approach shows the expected
smooth motion.

Figure 6: Sequence of five steps in two simulations of a
sliding cube on a frictionless inclined plane comparing the
method of Akinci et al. (left) and our method (right). While
our method shows the expected behavior (right), the cube
simulated using the particle-based approach of Akinci et al.
(left) slightly drifts to the left, starts to rotate and gets slower
due to artificial friction.

simulate vorticity [Bender et al. 2018]. Dynamic rigid bodies are
simulated using a position-based method [Bender et al. 2017; Deul
et al. 2014]. The performance was measured on two Intel Xeon
E5-2697 processors with 2.3GHz.

Comparisons. To compare our method to the particle-based ap-
proach of Akinci et al., we performed several experiments. In the
first simulation we dropped a regular grid of fluid particles on an
inclined plane (see Figure 5). The space between the particles is
larger than the support radius so that the particles do not influence
each other. The particle-based sampling of the boundary causes a
chaotic movement of the particles (see Figure 5a) while the simula-
tion with our volume maps approach shows the expected smooth
motion (see Figure 5b).

In the second experiment we simulated the motion of a de-
formable cube on a frictionless inclined plane (see Figure 6). The
elastic behavior is simulated using the implicit SPH formulation
for deformable solids of Peer et al. [2017]. The results show that
the non-smooth surface of the particle-based sampling leads to an
undesired drift, artificial friction and a rotational motion. Since the

Figure 7: Simulation of a deformable cube that rotates on
a plane without friction. Left: In the simulation with the
method of Akinci et al. the cube looses about 90% of its an-
gular velocity and it drifts to the right. Right: Using our
method no undesired drift is noticeable and the angular ve-
locity is almost maintained.

volume maps are better suited to represent smooth surfaces, we did
not experience any artifacts when using our novel method.

Finally, we simulated another deformable cube that rotates with-
out friction for 100 seconds on a plane (see Figure 7). Again the
particle-based sampling causes an undesired drift and artificial
damping. The cubes started with an angular velocity of 5.1 rad/s.
At the end of the simulation the cube which was simulated with
the boundary handling of Akinci et al. lost almost 90 percent of its
angular velocity and the cube’s center shifted substantially. Using
our novel method the loss of angular velocity was less than one
percent and no drift occurs.

To compare our method to the density maps approach of Koschier
et al., we computed the pressure force for a single fluid particle
which is moved along the normal direction to a planar boundary.
The plots in Figure 8 show the normal component of the resulting
force (the other components are zero) for density maps and volume
maps with different resolutions. For the density map construction
we solved the integral in Equation (7) for each grid point which
is close to the boundary using a high-resolution Gauss-Legendre
quadrature with 17.5k sampling points. Since the extension func-
tion of density maps is not continuously differentiable, this high
resolution of sampling points is required to get a sufficient approxi-
mation when using Gauss quadrature [Müller et al. 2012]. Figure 8
shows that low resolution density maps lead to discontinuities in
the pressure force which in turn cause visual artifacts in a simu-
lation as demonstrated in Figure 9. The volume map construction
was also performed by solving an integral (see Equation (10)) using
Gauss-Legendre quadrature. However, due to our smooth cubic
extension function 4k sampling points were already sufficient. As
shown in Figure 8 the resulting force was continuous even for low
resolution maps and no visual artifacts occurred during the dam
break simulation in Figure 9.

We believe that the kinks in the pressure force derived using
density maps (see Figure 8), are caused by small discontinuities
between neighboring cells of the spatial grid (cf. [Koschier et al.
2017]). Since the density maps approach uses the shape functions
of the spatial discretization to compute the density gradient, these

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom Bender et al.

 0

0 r 2r

(a) density maps (10×10×10)

 0

0 r 2r

(b) density maps (20×20×20)

 0

0 r 2r

(c) density maps (30×30×30)

 0

0 r 2r

(d) density maps (60×60×60)

 0

0 r 2r

(e) volume maps (10×10×10)

 0

0 r 2r

(f) volume maps (20×20×20)

Figure 8: Pressure force. A single fluid particle is moved in
normal direction towards a boundary plane. The plots show
the pressure force in normal direction (y-axis) for different
map resolutions in relation to the distance to the bound-
ary (x-axis). When using density maps, the pressure force
increases slowly and is not smooth for low resolution maps
(a,b,c,d). The force increases faster when using volume maps
and is smooth even for low resolutions (e,f).

discontinuities have a large influence on the resulting pressure
force and cause noticeable artifacts (see Figure 9). In contrast our
volume maps method only determines the volume using a map
while the gradient is computed using the standard SPH formulation.
Therefore, the influence on the pressure force is only small and
neither noticeable in the graph (see Figure 8) nor in the simulation
(see Figure 9).

Finally, we compared the construction times and the memory
requirements of the volume and density maps. We compared the
3D maps of the unit cube that were used to generate the graphs in
Figure 8. At the same resolution the requirements are comparable.
However, the density map required a resolution of 60×60×60 while
a volume map only needed a resolution of 10 × 10 × 10 to obtain
a smooth result. We observed the same resolution requirements

Table 1: Average times per step required for the neighbor-
hood search, the pressure solve and the computation of the
non-pressure forces in a double dam break simulation (see
Figure 11).

Akinci et al. Density Maps Volume Maps
neigh. search 411 ms 379 ms 369 ms
pressure 1090 ms 1054 ms 1078 ms
non-pressure 357 ms 339 ms 342 ms
total 1858 ms 1715 ms 1789 ms

in our 2D dam break simulation. The corresponding density map
required 78.2 MB while the volume map only needed 392 KB due
to its lower resolution. Hence, the memory consumption of the
volume map was 200 times lower. The density map construction
took 175 s while the generation of the volume map only needed 0.3 s.
This yields a speedup factor of about 580. Naturally the speedup and
memory requirements depend on the geometry that is discretized.
Considering a complex geometry with small features, the discrete
map naturally requires a higher resolution. However, the density
map still relies on a far higher resolution to avoid the stability
issues. At this point we would like to mention that the current
implementation uses a regular grid to store the map. In the future,
we plan to improve our implementation by using an adaptive sparse
grid which will further reduce the memory requirements.

Complex Boundaries. We performed two simulations to show
that our novel method is able to handle scenarios with complex
static and dynamic boundaries. First, we simulated a breaking dam
in a canyon (see Figure 1, left). To capture the detailed canyon
surface we used a map resolution of 128 × 64 × 768 in this scenario.
We want to emphasize that this high resolution map is not required
to guarantee a stable simulation. A realistic fluid-air interaction is
simulated using the method of Gissler et al. [2017]. The simulation
shows that our method is able to handle 8 million turbulent fluid
particles that interact with a large-scale complex boundary.

In the second simulation 12M fluid particles, which were gen-
erated by four emitters, interact with three static dragons and ten
dynamic ducks (see Figure 1, right). This demonstrates that our
method robustly handles coupling between a turbulent fluid and
dynamic bodies.

Combination with Existing SPH Methods. Our novel boundary
handling method can be easily combined with other existing SPH
methods. To demonstrate this we created a scenario consisting of
several emitters, static dragons and dynamic ducks (see Figure 10).
This time we combined our method with the multiphase approach
of Solenthaler and Pajarola [2008] and the implicit viscosity solver
of Weiler et al. [2018] to simulate the interaction of water, highly
viscous material and dynamic and static boundaries. We used 5
million particles for the water phase and 1.3 million particles for
the highly viscous material. The simulation shows that our novel
boundary handling method can be seamlessly combined in other
existing SPH methods.

Performance. In our last experiment we simulated a double dam
break consisting of 3 million fluid particles (see Figure 11). This

Volume Maps: An Implicit Boundary Representation for SPH MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom

(a) Density Maps 10×10 (b) Density Maps 60×60 (c) Volume Maps 10×10

Figure 9: Comparison of the density and volume maps using a 2D dam break simulation. (a) Low resolution density maps
cause visual artifacts. (b) We can alleviate this problem by using a high-resolution density map. (c) Volume maps avoid these
artifacts by a consistent gradient computation and do not suffer from visual artifacts even when using a low-resolution map.

Figure 10: Multiphase simulation where 5 million fluid particles interact with 1.3 million particles of a highly viscous material
and multiple dynamic rigid bodies. The simulation demonstrates that our volume maps boundary handling can be easily
combined with an implicit viscosity solver and an SPH multiphase method.

scenario was simulated once using the boundary handling of Akinci
et al., once using density maps and once using our novel volume
maps formulation in order to compare the performance. The average
times per simulation step for the neighborhood search and the
pressure and non-pressure forces are given in Table 1. The results
show that the neighborhood search is faster when using density or
volume maps. The reason for this is that no boundary particles need
to be considered in the neighborhood search. The computation of
the pressure and non-pressure forces using a map is also slightly
faster than for the particle-based method since instead of a sum
over all boundary neighbors only a lookup in a map is required.
The comparison shows that our novel method has a performance
that is comparable to the other methods and is even slightly faster
than the particle-based approach.

6 CONCLUSION
In this paper we introduced a novel implicit boundary represen-
tation called volume maps. The most popular boundary handling

methods in SPH simulations are based on a particle representation
of the boundary. However, the boundary particles lead to bumpy
surfaces and inaccurate pressure forces. Density maps provide an
implicit representation of the boundary surfaces which avoids these
problems. However, high-resolution maps are required since the
density gradient computation suffers from discontinuities in the
map. In contrast to the density maps approach our method only de-
termines the overlapping volume of the boundary and the support
domain of the smoothing kernel. The gradient computation uses
the classical SPH formulation which provides a consistent pressure
force computation even for low resolution maps and does not suf-
fer from map discontinuities. Therefore, in comparison to density
maps we need about two orders of magnitude less precomputation
time and memory. Since our method directly fits into the classical
SPH formulation, it can be easily combined with any existing SPH
method. Finally, in contrast to density maps our representation is
independent of a specific kernel function and a single map can be
combined with methods that use different kernels.

MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom Bender et al.

Figure 11: Double dam break simulation with 3 million wa-
ter particles.

Our method has the same limitations as the density maps ap-
proach. A volume map cannot be precomputed for a deformable
solid and it is computationally expensive to compute the map at
runtime. Moreover, the cubic shape functions that we use for our
map smooth out sharp features in the boundary model. However,
this problem can be alleviated by using an adaptive discretization
for the map which is a goal for our future work. Another future
goal is to combine our volume maps with pressure extrapolation to
further improve the boundary handling.

REFERENCES
N. Akinci, J. Cornelis, G. Akinci, and M. Teschner. 2013. Coupling elastic solids with

smoothed particle hydrodynamics fluids. Computer Animation and Virtual Worlds
24, 3-4 (2013), 195–203.

N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler, and M. Teschner. 2012. Versatile
rigid-fluid coupling for incompressible SPH. ACM Transactions on Graphics 31, 4
(2012), 62:1–62:8.

Stefan Band, Christoph Gissler, Markus Ihmsen, Jens Cornelis, Andreas Peer, and
Matthias Teschner. 2018a. Pressure Boundaries for Implicit Incompressible SPH.
ACM Transactions on Graphics 37, 2, Article 14 (2018), 14:1–14:11 pages.

Stefan Band, Christoph Gissler, Andreas Peer, and Matthias Teschner. 2018b. MLS
pressure boundaries for divergence-free and viscous SPH fluids. Computers &
Graphics 76 (2018), 37–46.

Stefan Band, Christoph Gissler, and Matthias Teschner. 2017. Moving least squares
boundaries for SPH fluids. In Proceedings of the 13th Workshop on Virtual Reality
Interactions and Physical Simulations. Eurographics Association, 21–28.

M. Becker and M. Teschner. 2007. Weakly compressible SPH for free surface flows. In
ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 1–8.

M. Becker, H. Tessendorf, and M. Teschner. 2009. Direct Forcing for Lagrangian Rigid-
Fluid Coupling. IEEE Transactions on Visualization and Computer Graphics 15, 3
(2009), 493–503.

Jan Bender. 2019. SPlisHSPlasH Library.
https://github.com/InteractiveComputerGraphics/SPlisHSPlasH.

Jan Bender and Dan Koschier. 2017. Divergence-Free SPH for Incompressible and
Viscous Fluids. IEEE Transactions on Visualization and Computer Graphics 23, 3
(2017), 1193–1206.

Jan Bender, Dan Koschier, Tassilo Kugelstadt, and Marcel Weiler. 2018. Turbulent
Micropolar SPH Fluids with Foam. IEEE Transactions on Visualization and Computer
Graphics 25, 6 (2018), 2284–2295.

Jan Bender, Matthias Müller, and Miles Macklin. 2017. Position-Based Simulation
Methods in Computer Graphics. In EUROGRAPHICS 2017 Tutorials. Eurographics
Association.

K. Bodin, C. Lacoursière, and M. Servin. 2012. Constraint fluids. IEEE Transactions on
Visualization and Computer Graphics 18 (2012), 516–526.

Jens Cornelis, Jan Bender, Christoph Gissler, Markus Ihmsen, and Matthias Teschner.
2019. An optimized source term formulation for incompressible SPH. The Visual
Computer 35, 4 (2019), 579–590.

M. Desbrun and M.-P. Gascuel. 1996. Smoothed Particles: A new paradigm for animat-
ing highly deformable bodies. In Eurographics Workshop on Computer Animation
and Simulation. 61–76.

Crispin Deul, Patrick Charrier, and Jan Bender. 2014. Position-based rigid-body dy-
namics. Computer Animation and Virtual Worlds 27, 2 (2014), 103–112.

M. Fujisawa and K. Miura. 2015. An Efficient Boundary Handling with a Modified
Density Calculation for SPH. Computer Graphics Forum 34, 7 (2015), 155–162.

Christoph Gissler, Stefan Band, Andreas Peer, Markus Ihmsen, and Matthias Teschner.
2017. Generalized drag force for particle-based simulations. Computers & Graphics
69 (2017), 1–11.

Christoph Gissler, Andreas Peer, Stefan Band, Jan Bender, and Matthias Teschner.
2019. Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Coupling. ACM
Transactions on Graphics 38, 1 (2019), 5:1–5:13.

T. Harada, S. Koshizuka, and Y. Kawaguchi. 2007a. Smoothed particle hydrodynamics
in complex shapes. In Spring Conf. on Computer Graph. 191–197.

T. Harada, S. Koshizuka, and Y. Kawaguchi. 2007b. Smoothed Particle Hydrodynamics
on GPUs. In Computer Graphics International. 63–70.

X. He, N. Liu, S. Li, H. Wang, and G. Wang. 2012. Local Poisson SPH for Viscous
Incompressible Fluids. Computer Graphics Forum 31 (2012), 1948–1958.

M. Huber, B. Eberhardt, and D. Weiskopf. 2015. Boundary Handling at Cloth-Fluid
Contact. Computer Graphics Forum 34, 1 (2015), 14–25.

M. Ihmsen, N. Akinci, M. Gissler, and M. Teschner. 2010. Boundary handling and
adaptive time-stepping for PCISPH. In Virtual Reality Interactions and Physical
Simulations. 79–88.

M. Ihmsen, J. Cornelis, B. Solenthaler, C. Horvath, and M. Teschner. 2014a. Implicit
incompressible SPH. IEEE Transactions on Visualization and Computer Graphics 20,
3 (2014), 426–435.

M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner. 2014b. SPH Fluids
in Computer Graphics. In Eurographics (State of the Art Reports). 21–42.

Dan Koschier and Jan Bender. 2017. Density Maps for Improved SPH Boundary
Handling. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
ACM, 1–10.

Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2019. Smoothed
Particle Hydrodynamics for Physically-Based Simulation of Fluids and Solids. In
EUROGRAPHICS 2019 Tutorials. Eurographics Association.

Dan Koschier, Crispin Deul, Magnus Brand, and Jan Bender. 2017. An hp-Adaptive
Discretization Algorithm for Signed Distance Field Generation. IEEE Transactions
on Visualization and Computer Graphics 23, 10 (2017), 2208–2221.

S. Kulasegaram, J. Bonet, R. W. Lewis, and M. Profit. 2004. A variational formulation
based contact algorithm for rigid boundaries in two-dimensional SPH applications.
Computational Mechanics 33, 4 (2004), 316–325.

M. Macklin and M. Müller. 2013. Position Based Fluids. ACM Transactions on Graphics
32, 4 (2013), 1–5.

J.J. Monaghan. 1994. Simulating Free Surface Flows with SPH. J. Comput. Phys. 110, 2
(1994), 399–406.

J J Monaghan. 2005. Smoothed Particle Hydrodynamics. Reports on Progress in Physics
68, 8 (2005), 1703–1759.

Björn Müller, Florian Kummer, Martin Oberlack, and Yongqi Wang. 2012. Simple
multidimensional integration of discontinuous functions with application to level
set methods. Internat. J. Numer. Methods Engrg. 92, 7 (2012), 637–651.

M. Müller, D. Charypar, and M. Gross. 2003. Particle-Based Fluid Simulation for
Interactive Applications. In ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 154–159.

M. Müller, S. Schirm, M. Teschner, B. Heidelberger, and M. Gross. 2004. Interaction of
fluids with deformable solids. Computer Animation and Virtual Worlds 15, 34 (2004),
159–171.

Andreas Peer, Christoph Gissler, Stefan Band, and Matthias Teschner. 2017. An Implicit
SPH Formulation for Incompressible Linearly Elastic Solids. Computer Graphics
Forum 37, 6 (2017), 135–148.

K. Raveendran, C. Wojtan, and G. Turk. 2011. Hybrid smoothed particle hydrodynamics.
In ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 33–42.

B. Solenthaler and R. Pajarola. 2008. Density Contrast SPH Interfaces. In ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 211–218.

B. Solenthaler and R. Pajarola. 2009. Predictive-corrective incompressible SPH. ACM
Transactions on Graphics 28, 3 (2009), 40:1–40:6.

B. Solenthaler, J. Schläfli, and R. Pajarola. 2007. A unified particle model for fluid-solid
interactions. Computer Animation and Virtual Worlds 18, 1 (2007), 69–82.

Jos Stam and Eugene Fiume. 1995. Depicting Fire and Other Gaseous Phenomena Using
Diffusion Processes. In Proceedings of the 22Nd Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’95).

M. Weiler, D. Koschier, and J. Bender. 2016. Projective Fluids. In ACM Motion in Games.
ACM, New York, NY, USA, 79–84.

Marcel Weiler, Dan Koschier, Magnus Brand, and Jan Bender. 2018. A Physically
Consistent Implicit Viscosity Solver for SPH Fluids. Computer Graphics Forum 37,
2 (2018).

L. Yang, S. Li, A. Hao, and H. Qin. 2012. Realtime Two-Way Coupling of Meshless
Fluids and Nonlinear FEM. Computer Graphics Forum 31, 7 (2012), 2037–2046.

https://github.com/InteractiveComputerGraphics/SPlisHSPlasH

	Abstract
	1 Introduction
	2 Related Work
	3 Foundations
	4 Boundary Handling
	4.1 Particle-Based Approaches
	4.2 Density Maps
	4.3 Volume Maps

	5 Results and Discussion
	6 Conclusion
	References

