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Divergence-Free SPH for Incompressible and
Viscous Fluids
Jan Bender and Dan Koschier

Abstract—In this paper we present a novel Smoothed Particle Hydrodynamics (SPH) method for the efficient and stable simulation of
incompressible fluids. The most efficient SPH-based approaches enforce incompressibility either on position or velocity level. However,
the continuity equation for incompressible flow demands to maintain a constant density and a divergence-free velocity field. We
propose a combination of two novel implicit pressure solvers enforcing both a low volume compression as well as a divergence-free
velocity field. While a compression-free fluid is essential for realistic physical behavior, a divergence-free velocity field drastically
reduces the number of required solver iterations and increases the stability of the simulation significantly. Thanks to the improved
stability, our method can handle larger time steps than previous approaches. This results in a substantial performance gain since the
computationally expensive neighborhood search has to be performed less frequently. Moreover, we introduce a third optional implicit
solver to simulate highly viscous fluids which seamlessly integrates into our solver framework. Our implicit viscosity solver produces
realistic results while introducing almost no numerical damping. We demonstrate the efficiency, robustness and scalability of our
method in a variety of complex simulations including scenarios with millions of turbulent particles or highly viscous materials.

Index Terms—fluid simulation, Smoothed Particle Hydrodynamics, divergence-free fluids, incompressibility, viscous fluids, implicit
integration
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1 INTRODUCTION

In the area of computer graphics Smoothed Particle Hydro-
dynamics (SPH) is an important meshless Lagrangian ap-
proach to simulate complex fluid effects. The SPH formalism
allows an efficient computation of a certain quantity of a
fluid particle by considering only a finite set of neighboring
particles. One of the most challenging research topics in the
field of SPH methods is the simulation of incompressible flu-
ids. The fact that most fluids we encounter in nature feature
incompressible behavior, proves that enforcing incompress-
ibility is essential to produce realistic animations for a wide
range of materials. A strongly related research topic is the
simulation of highly viscous fluids which represents a class
of similarly important liquids, e.g. honey or mud. In this
paper we introduce an efficient divergence-free SPH (DFSPH)
method to simulate incompressible fluids. Moreover, we
extend this method by an implicit viscosity solver which
allows the simulation of highly viscous fluids.

In order to model incompressible fluids we base our
simulation on the incompressible, isothermal Navier-Stokes
equations in Lagrangian coordinates

Dρ

Dt
= 0 ⇔ ∇ · v = 0 (1)

Dv

Dt
= −1

ρ
∇p+ ν∇2v +

f

ρ
, (2)

whereD(·)/Dt denotes the material derivative and ρ, p, ν, v
and f denote density, pressure, kinematic viscosity, velocity
and body force density field, respectively. According to
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Equation (1) an incompressible fluid satisfies the divergence-
free condition ∇ · v = 0 and therefore has a divergence-
free velocity field. Based on the observation that the density
must not change over time, i.e. DρDt = 0, and based on the
continuity equation Dρ

Dt = −ρ∇ · v the equivalence stated
in Equation 1 easily follows. Therefore, in theory, a fluid
with a divergence-free velocity field is incompressible, as
it maintains constant density. However, in practice, incom-
pressibility cannot be guaranteed in SPH simulations by
only enforcing the divergence-free condition. The numerical
time integration causes numerical errors which sum up over
time. The resulting density deviations are not considered
in the divergence-free condition and therefore a volume
compression cannot be avoided. In order to enforce incom-
pressibility a second condition is required:

ρ− ρ0 = 0. (3)

In the following we will refer to this as constant density con-
dition. In summary, the incompressible, isothermal Navier-
Stoke equations demand a divergence-free velocity field
(see Equation (1)). Additionally, a stabilization is required
to counteract numerical errors which can be realized by
enforcing the constant density condition.

In recent years several implicit SPH solvers which com-
pute pressure forces to counteract volume compression were
investigated. Currently, the most efficient pressure solvers
only consider the constant density condition. Since this con-
dition solely depends on particle positions, the divergence-
free condition is generally not fulfilled (see Figure 2, left)
as demanded by the continuity equation for incompressible
flow. A correction of velocity divergence is considered only
by a few SPH approaches so far. However, they are either
comparatively slow or cannot maintain a low density error.

In this paper we introduce a novel stable and efficient
SPH method for incompressible flow. In contrast to most
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Fig. 1. Our SPH method enforces a divergence-free velocity field which allows a stable simulation of incompressible fluids with high velocities
using large time steps. This is demonstrated in a simulation with 2.4 million fast moving fluid particles and a complex boundary consisting of 6
million boundary particles (left). Moreover, our approach only requires 5 seconds per time step in a complex simulation with 5 million fluid particles,
40 million boundary particles and a maximum volume compression of 0.01 % (right). This is significantly faster than current state-of-the-art SPH
methods.

Fig. 2. Velocity divergence comparison of IISPH (left) and DFSPH (right)
in a breaking dam simulation with 125k particles. The divergence errors
are color coded, where white is the minimum and red is the maximum.

previous methods, it satisfies both the constant density
condition and the divergence-free condition. Our method
combines two pressure solvers. The first solver enforces a
divergence-free velocity field (see Figure 2, right) while the
second solver satisfies the constant density condition. This
combination has several advantages in SPH simulations.
Firstly, the stability of the simulation increases significantly,
especially in simulations with fast moving particles (see
Figure 1). The improved stability allows to perform larger
time steps. This yields a considerable performance gain
as the neighborhood search which is the main bottleneck
in SPH simulations has to be performed less frequently.
Secondly, the number of iterations required by the constant
density solver decreases significantly when a divergence-
free velocity field is enforced. Finally, the divergence-free
field allows a more accurate computation of the maximum
time step size as the commonly used CFL condition depends
on the maximum particle velocity.

In the last years different efficient constant density
solvers have been introduced, e.g. Predictive-Corrective
Incompressible SPH (PCISPH) [1] or Implicit Incompress-
ible SPH (IISPH) [2]. Nevertheless, we propose a new

approach in this paper that operates analogously to our
divergence-free solver, and therefore benefits from reusing
precomputed coefficients. The fluid simulation based on
our combined solvers clearly outperforms state-of-the-art
SPH methods and is more than 20 times faster in typical
scenarios.

2 RELATED WORK

In this section we will briefly discuss previous approaches
related to this paper. For a more detailed discussion, we
would like to refer to reader to the work of Bridson [3] for
a general survey and to the state of the art report of Ihmsen
et al. [4] for SPH-based simulation approaches.

Equation of State Based Solvers
The first pioneering approaches to simulate fluids using
SPH discretizations were proposed by Monaghan [5], [6],
[7]. Using an equation of state (EOS), deviations from a
given rest density were penalized using a stiffness coeffi-
cient in order to weakly enforce incompressibility. Several
years later, an EOS-based approach for fluid simulation was
introduced to the computer graphics community by Müller
et al. [8] and later extended by Adams et al. [9] for spatially
adaptive SPH discretizations. In order to restrict the maxi-
mum compression using an EOS-based solver, Becker and
Teschner [10] precomputed a scenario-dependent stiffness
coefficient. However, this may lead to stiff differential equa-
tions which restrict the time step size for explicit integration
schemes drastically.

Iterative Incompressibility Solvers Based on Splitting
An alternative strategy, often referred to as the concept of
splitting, is to compute the pressure after advecting particles
only based on non-pressure forces. Initially, the concept was
applied to EOS-based solvers (cf. [3], [11]) only but soon
combined with implicit pressure solvers as discussed in the
following.

Solenthaler and Pajarola [1] developed an iterative pres-
sure solver based on the splitting concept to approximately
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limit the maximum density error to a user-defined toler-
ance. Later, the method was extended by rigid-fluid cou-
pling [12] and a novel surface tension model [13]. Macklin
and Müller [14] proposed Position Based Fluids (PBF) – a
similar approach that iteratively corrects particle positions
to enforce incompressibility. A velocity-level formulation
using holonomic constraints based on rigid body mechanics
was proposed by Bodin et al. [15]. However, due to numer-
ical errors, their regularization approach and velocity-level
correction, they reported density errors of up to 17 %. In con-
trast to the discussed iterative approaches our method does
not only enforce incompressibility on velocity or density
level but considers both. Another method eliminating the
compression on both levels was recently proposed by Kang
and Sagong [16]. They extended the work of Macklin and
Müller [14] by additionally projecting the velocity field onto
a the divergence-free state. However, the velocity field is not
guaranteed to contain zero divergence after a time step as
particle positions are updated subsequently to the velocity
projection. Moreover, their extension leads to a consider-
able overhead in comparison to the underlying method of
Macklin and Müller while our method yields large speedup
factors of up to one order of magnitude, especially in case
of large time steps (see Table 2).

Pressure Projection
Another popular choice to enforce incompressibility is to
project the velocity field onto a divergence-free state by
solving the pressure Poisson equation (PPE). This method
is particularly popular for Eulerian discretizations (cf. [3]).
A PPE derived from an approximate pressure projection was
proposed by Cummins and Rudman [17]. They solved the
resulting linear system using either a conjugate gradient
method or a multigrid approach treating the particles as
finest level grid. Foster and Fedkiw [18] developed a semi-
Lagrangian method where incompressibility is enforced on
the simulation grid. They counteracted mass dissipation
using a level set and freely moving inertialess particles. Fur-
ther hybrid approaches using particles and a background
grid were developed in the following years [19], [20], [21].
An interesting and more elaborate approach was proposed
by Losasso et al. [22]. The PPE was solved on a background
grid not only to maintain zero divergence but to enforce
a predefined target density. Sin et al. [23] constructed a
Voronoi discretization of the PPE from point-samples in
each step for solving. In contrast to the discussed ap-
proaches, our method does not rely on any background grid.
For that reason we do not have to maintain memory con-
suming data-structures which is especially advantageous
for large scenarios as presented in Figure 1.

In contrast to solve the PPE on a background grid, it
may be directly solved on a meshless discretization. Hu et
al. [24] proposed an incompressible SPH-based approach for
multiphase flows with multistep time integration. In a first
halfstep the density error is eliminated using a position-
altering iterative gradient descent solver. During the second
halfstep, errors in velocity divergence are similarly cor-
rected. However, they applied their method exclusively to
non-complex two-dimensional scenarios of up to 14,400 par-
ticles while we demonstrate scenarios with over five million
particles in three dimensions. A local Poisson solver extend-

ing the work of Solenthaler and Parajola [1] was proposed
by He et al. [25]. The solver enforces both a divergence-free
velocity and constant density. As the integration domain for
the local solves is not necessarily equal or a subset of the
local kernel function support, they have to recompute the
particle neighbors. Moreover, a recomputation of particle
neighborhoods is required in each solver iteration resulting
in a considerable computational effort. Compared to the
method of Solenthaler and Pajarola they are able to achieve a
small speedup factor of approximately 1.5 while we experi-
enced speedup factors of more than 20 with DFSPH. Ihmsen
et al. [2] proposed a method based on a PPE that iteratively
eliminates the density error to 0.1% or even less. However,
they do not consider resolving velocity divergence which
leads to a large number of solver iterations compared to
our method and can even cause artifacts in special cases
(cf. Section 5). Very recently, an incompressible particle-
based approach using power-diagrams was proposed by de
Goes et al. [26]. In each simulation step they construct a
Voronoi diagram induced by the particle positions in order
to enforce incompressibility. However, our approach clearly
outperforms the method as the diagram construction is very
time consuming.

Highly Viscous Fluids
Motivated by the Navier-Stokes equation, the standard ap-
proach to model viscosity is to discretize the Laplacian of the
velocity term. As an alternative, viscous behavior can also
be modeled using a strain rate measure or even by artificial
viscosity models as discussed in the following.

Based on a Eulerian simulation methodology the Lapla-
cian term was discretized using finite differences with
explicit time integration in an early work of Foster and
Metaxas [27]. Later, Stam [28] and Carlson et al. [29] em-
ployed implicit time updates to maintain stability for large
viscosity parameters. In order to extend the method to
variable viscosities Rasmussen et al. [30] presented a model
based on the strain rate tensor. As pointed out by Batty and
Bridson [31], both Laplacian as well as strain rate formula-
tions work only on divergence-free velocity fields. For that
reason, they performed a pressure projection precedent and
subsequent to the viscosity solve. The method was later
extended by a spatially adaptive [32] and a dimension-
reduced [33] variant. An early Eulerian approach to simulate
viscoelastic materials was proposed by Goktekin et al. [34]
using additive decomposition and subsequent evolution of
the strain tensor by explicit integration over time.

Following Lagrangian simulation methodologies Mon-
aghan [5] and Morris and Monaghan [35] discretized the
Laplacian operator using finite differences of the first
derivative within their SPH framework. Later, Müller et
al. [8] designed a specific kernel function for the discretiza-
tion of the viscosity term while Premože et al. [36] pro-
posed a method based on the Moving-Particle Semi-Implicit
method. An alternative approach to approximate the Lapla-
cian referred to as XSPH was introduced by Monoghan [5],
[6] and later adopted in several works, e.g. [14], [37]. In
the case of non-Newtonian fluids, viscous forces can also
be modeled based on the deformation tensor [38], [39],
[40]. Recently, highly viscous fluids were simulated using
a splitting approach combined with an implicit solve of
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pressure and viscous forces. Using this strategy, Peer et
al. [41] compute the strain rate field throughout the fluid
and enforce a target strain rate. Their solver is based on a
symmetrized linearization of the velocity field which allows
them to decouple the resulting equation system into three
distinct linear equation systems. However, the linearization
leads to a considerable numerical dissipation of kinetic
energy which makes the approach less applicable for mod-
erately viscous fluids compared to our method (cf. Figure 9).
Takahashi et al. [42] also use a model based on a strain rate
measure. Adopting the concept of splitting they implicitly
integrate viscous forces in an individual solver step in order
to maintain a stable simulation.

Highly viscous materials were also considered for hybrid
solid-fluid and viscoelastic models. An early spring-based
method was presented by Clavet et al. [43] where viscous
behavior is enforced using an impulse-based velocity filter.
The spring-based concept was later paired with a position-
based approach by Takahashi et al. [44] and modified using
a velocity filter [45]. Point-based approaches were proposed
by Gerszewski et al. [46] and Jones et al. [47] while a mesh-
based approach with special treatment for thin features was
presented by Wojtan et al. [48]. Lagrangian methods for
the simulation of lower-dimensional viscous materials were
proposed by Bergou et al. [49] and Batty et al. [33] while Zhu
et al. [50] recently developed a codimensional approach.

In this paper we propose an efficient implicit solver to
handle high viscosities. Based on a continuous strain rate
measure, we capture complex phenomena as demonstrated
in Section 5. In contrast to very recent existing SPH-based
implicit viscosity solvers, our method produces significantly
less numerical damping than the method proposed by Peer
et al. [41] while being substantially faster compared to the
solver of Takahashi et al. [42]. Moreover, the solver operates
analogously to the proposed divergence-free and constant
density solvers and is for that reason very easy to integrate.

3 SIMULATION OF INCOMPRESSIBLE FLUIDS

Our fluid simulation is based on the incompressible, isother-
mal Navier-Stokes equations introduced in Section 1. How-
ever, we omit the viscous term on the right hand side of
Equation (2). Instead we use the XSPH variant of Schechter
and Bridson [37] in order to simulate low viscous fluids like
water. Moreover, we introduce an implicit strain rate based
viscosity formulation to simulate highly viscous fluids in
Section 4.1.

We use the SPH method to spatially discretize Equa-
tion (2) as described in the following. Equation (1) represents
the incompressibility condition. Our method satisfies this
condition by enforcing the divergence-free condition and
the constant density condition as described in Sections 3.2
and 3.3, respectively.

Using the SPH concept a quantity Ai at position xi
is approximated by the values Aj at a set of neighboring
points xj [6]:

Ai ≈
∑
j

mj

ρj
AjWij , (4)

where mj is the mass of particle j, ρj is its density and
Wij = W (xi − xj , h) is a smoothing kernel function with

support radius h. The spatial derivative of Ai is determined
by

∇Ai ≈
∑
j

mj

ρj
Aj∇Wij . (5)

An important quantity in fluid simulation is the density
which can be approximated using this concept as:

ρi =
∑
j

mj

ρj
ρjWij =

∑
j

mjWij .

The pressure field of a fluid is often computed by the
following equation of state (EOS):

pi =
κρ0

γ

((
ρi
ρ0

)γ
− 1

)
,

where ρ0 is the rest density and κ and γ are stiffness
parameters. In our work we set the parameter γ to 1 which
is a common choice in computer graphics [4], [8], [51]:

pi = κ(ρi − ρ0). (6)

The pressure field can be directly used to determine
pressure forces which counteract a density deviation [6].
However, a high stiffness coefficient κ is required to sim-
ulate weakly compressible fluids which leads to stiff dif-
ferential equations. Therefore, implicit pressure solvers like
PCISPH [1] or IISPH [2] were investigated for the simulation
of incompressible fluids. Such solvers typically solve a linear
system to determine the pressure field. This allows a stable
simulation with larger time steps and as a consequence a
significant performance gain.

In this paper we introduce a novel implicit SPH ap-
proach to simulate incompressible fluids. In contrast to pre-
vious methods we use two different solvers: the divergence-
free solver (see Section 3.2) and the constant density solver
(see Section 3.3). The first solver enforces a divergence-
free velocity field. Since density deviations resulting from
numerical errors cannot be corrected in this way, as already
discussed in Section 1, our second solver eliminates these
density errors by satisfying the constant density condition.
In summary, we enforce incompressibility and a divergence-
free velocity field as demanded by Equation (1). In both
solvers we fulfill the respective condition for each neighbor-
hood independently by computing a stiffness coefficient κi
(see Equation (6)) and the corresponding pressure forces. To
obtain a global solution the solvers process the neighbor-
hoods in a parallel Jacobi fashion which is a common choice
in SPH pressure solvers [1], [2], [14].

3.1 Simulation Step

This section is intended to abstractly outline the simulation
step. A detailed description of the substeps is given in the
following sections. The Navier-Stokes equations for incom-
pressible fluids demand that the constant density condition
and the divergence-free condition are satisfied at the end
of a simulation step. In order to fulfill the first condition we
determine pressure forces which must be integrated twice to
get the required position changes. Afterwards we compute
pressure forces and integrate them once to make the re-
sulting velocity field divergence-free. Note that performing
the density stabilization before computing a divergence-free
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Algorithm 1 Simulation
1: function PERFORMSIMULATION
2: for all particles i do // init neighborhoods
3: find neighborhoods Ni(0)

4: for all particles i do // init ρi and αi
5: compute densities ρi(0)
6: compute factors αi(0)

7: while (t < tmax) do // simulation loop
8: for all particles i do
9: compute non-pressure forces Fadv

i (t)

10: adapt time step size ∆t according to CFL condition
11: for all particles i do // predict velocities v∗i
12: v∗i = vi + ∆tFadv

i /mi

13: correctDensityError(α, v∗) // ρ∗ − ρ0 = 0
14: for all particles i do // update positions
15: xi(t+ ∆t) = xi(t) + ∆tv∗i
16: for all particles i do // update neighbors
17: find neighborhoods Ni(t+ ∆t)

18: for all particles i do // update ρi and αi
19: compute densities ρi(t+ ∆t)
20: compute factors αi(t+ ∆t)

21: correctDivergenceError(α, v∗) // Dρ
Dt = 0

22: for all particles i do // update velocities
23: vi(t+ ∆t) = v∗i

velocity field does not impose any restrictions since both
steps are executed in a loop.

The simulation with our novel method is outlined in Al-
gorithm 1. Before the simulation loop begins we determine
all particle neighborhoods Ni using compact hashing [52].
Furthermore, the densities ρi and the factors αi (see Sec-
tion 3.2) are computed. The value αi is a common factor
which is required by both solvers. This factor only depends
on the current positions and therefore it does not change
during the iterative process of the solvers. For that reason,
it must be computed only once in each simulation step and
can be used by both solvers. This reduces the computational
effort of the solver iterations considerably.

In the first step of the simulation loop all non-pressure
forces Fadv like gravity, surface tension and viscosity are
computed. Then we adapt the time step size according to
the Courant-Friedrich-Levy (CFL) condition [6]

∆t ≤ 0.4
d

‖vmax‖
,

where vmax is the maximum particle velocity and d is the
particle diameter. Note that in contrast to PCISPH [1] no
special treatment is required to perform adaptive time-
stepping. In line 12 of the algorithm predicted velocities
v∗i are determined for the particles by considering the
non-pressure forces. This prediction and the precomputed
factors αi are then used by our constant density solver
to compute the pressure forces which correct the density
error ρ∗i − ρ0 (see Section 3.3) for each neighborhood. The
time integration in line 15 determines the new positions
of the particles. Hence, all neighborhoods Ni, densities ρi
and factors αi have to be updated. Finally, the condition
Dρi
Dt = 0 must be satisfied. This is done in line 21 where our

divergence-free solver determines pressure forces to make
the velocity field divergence-free (see Section 3.2). In the last
step the particle velocities are updated.

Note that the neighborhoods Ni, the densities ρi and the
factors αi must be computed only once per simulation step.
These values are initialized before the simulation loop in
lines 2-6 and updated once per time step in lines 16-20. The
values are not determined in the beginning of the simulation
loop as in previous methods since our solvers are executed
at different points in time.

3.2 Divergence-Free Solver

The goal of our divergence-free solver is to satisfy the
condition Dρ

Dt = 0 which means that the density must not
change over time. From Equation (1) it follows that in this
case the divergence of the velocity field ∇ · v must be zero.

In order to enforce the condition Dρi
Dt = 0 for a particle i

our solver determines a set of pressure forces which correct
the divergence error in the neighborhood of the particle. The
pressure force density of particle i is defined by

f
p
i = −∇pi. (7)

The pressure gradient ∇pi is determined by computing the
spatial derivative of Equation (6) using the SPH approach
(see Equation (5)):

∇pi = κv
i∇ρi = κv

i

∑
j

mj∇Wij ,

where κv
i is the stiffness parameter that we want to deter-

mine. In order to get symmetric pressure forces for each
neighborhood we also consider the force densities f

p
j←i

which act from the particle i on its neighboring particles j. A
set of symmetric pressure forces must satisfy the condition
f

p
i +

∑
j f

p
j←i = 0 which means that the forces sum up

to zero which is required to conserve momentum. The
pressure force densities f

p
j←i for the neighboring particles

are determined analogously to Equation (7) except that the
pressure must be differentiated with respect to position xj :

f
p
j←i = − ∂pi

∂xj
= κv

imj∇Wij . (8)

The current divergence error in particle i is determined
using the SPH formulation of the divergence [4]:

Dρi
Dt

=
∑
j

mj(vi − vj)∇Wij . (9)

The goal of our divergence-free solver is to compute a
set of symmetric pressure forces to enforce Dρi

Dt = 0.
These pressure forces cause the following velocity changes
∆vi = ∆tf

p
i /ρi and ∆vj = ∆tf

p
j←i/ρi. Since we search for

the velocity changes that eliminate the divergence, we get
the following equation:

−Dρi
Dt

= ∆t
∑
j

mj

(
f

p
i

ρi
−

f
p
j←i

ρi

)
∇Wij . (10)
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Moreover, we get an equation for the stiffness parameter κv
i

by using Equations (7) and (8) in Equation (10):

Dρi
Dt

= −∆t
∑
j

mj

(
f

p
i

ρi
−

f
p
j←i

ρi

)
∇Wij

Dρi
Dt

=
∆t

ρi

∑
j

mj

κv
i

∑
j

mj∇Wij + κv
imj∇Wij

∇Wij

Dρi
Dt

= κv
i

∆t

ρi


∣∣∣∣∣∣
∑
j

mj∇Wij

∣∣∣∣∣∣
2

+
∑
j

|mj∇Wij |2

 .
Solving for κv

i yields:

κv
i =

1

∆t

Dρi
Dt
· ρi∣∣∣∑jmj∇Wij

∣∣∣2 +
∑
j |mj∇Wij |2︸ ︷︷ ︸

αi

, (11)

where αi is a factor that solely depends on the current
particle positions. If we compute pressure forces with the
resulting stiffness parameter κv

i , the condition Dρi
Dt = 0 will

be exactly fulfilled. This means that we obtain a divergence-
free velocity field in the neighborhood of particle i. In
order to obtain a globally divergence-free velocity field we
determine the pressure forces for all particles iteratively
with a parallel Jacobi solver.

If particle i has a small number of neighbors, the denom-
inator of αi can lead to instabilities. In our simulations we
clamp the denominator if it gets smaller than 10−6 in order
to solve this problem. We did not notice any visual artifacts
in our experiments. Alternatively, the problem could be
solved by adding a small constant to the denominator [14]
or using a reference configuration with a filled neighbor-
hood [1].

The total force f
p
i,total for a particle i is the sum of all

pressure forces:

f
p
i,total =

mi

ρi
f

p
i +

∑
j

mj

ρj
f

p
i←j

= −mi

ρi
κv
i

∑
j

mj∇Wij +
∑
j

mj

ρj
κv
jmi∇Wji

= −mi

∑
j

mj

(
κv
i

ρi
+
κv
j

ρj

)
∇Wij .

Note that our symmetric pressure force is equivalent to the
one introduced by Monaghan [6].

In order to get a velocity field that is globally divergence-
free we compute pressure forces for each particle using par-
allel Jacobi iterations. In each iteration we have to compute
the stiffness parameters κv

i that depend on the complex
factors αi. Fortunately, the factors can be precomputed
before the iterative process since they only depend on
the current positions which yields computationally cheap
iteration steps. Note that Equation (11) must be adapted for
static boundary particles since in this case f

p
j←i = 0.

Our divergence-free solver is outlined in Algorithm 2.
It finishes when the average density change rate is smaller
than a given threshold ηdiv. To improve the convergence of
our solver we use a “warm start” operating as explained
in the following. The stiffness values κv

i are summed up

Algorithm 2 Divergence-free solver
1: function CORRECTDIVERGENCEERROR(α, v∗)

2: while
((

Dρ
Dt

)
avg

> ηdiv
)
∨ (iter < 1) do

3: for all particles i do // compute Dρ
Dt

4: Dρi
Dt = −ρi∇ · v∗i

5: for all particles i do // adapt velocities
6: κv

i = 1
∆t

Dρi
Dt αi, κv

j = 1
∆t

Dρj
Dt αj

7: v∗i := v∗i −∆t
∑
jmj

(
κv
i

ρi
+

κv
j

ρj

)
∇Wij

for each particle during the iterative process. Before the
divergence-free solver in the next simulation step starts we
evaluate line 7 once for each particle using the resulting
values.

3.3 Constant Density Solver
Our constant density solver minimizes the deviation ρ− ρ0

of the actual density to the rest density. Previous pressure
solvers like PCISPH [1] or IISPH [2] also minimize the den-
sity deviation and could be combined with our divergence-
free solver. However, we decided to develop a new solver
which works analogously to our divergence-free solver. This
has the advantage that the precomputed factors αi can be
reused which reduces the computational effort significantly.
Our solver uses a predictor-corrector scheme similar to
PCISPH in order to determine particle positions for the next
time step that correct the density error. However, in contrast
to PCISPH we do not precompute a reference configuration
with a filled neighborhood to solve the system since this
reduces the convergence.

The prediction of the density error ρ∗i −ρ0 is determined
by integrating Equation (9) using an explicit Euler scheme:

ρ∗i = ρi + ∆t
Dρi
Dt

= ρi + ∆t
∑
j

mj(v
∗
i − v∗j )∇Wij .

Analogous to Equation (10), we compute forces to correct
this error by solving:

ρ∗i − ρ0 = ∆t2
∑
j

mj

(
f

p
i

ρi
−

f
p
j←i

ρi

)
∇Wij . (12)

The resulting stiffness parameter is determined by:

κi =
1

∆t2
(ρ∗i − ρ0)αi.

Algorithm 3 outlines our implicit constant density solver.
Note that we perform a warm start analogous to the one of
our divergence-free solver to improve the convergence.

4 EXTENSIONS

4.1 Viscosity Solver
In order to allow the simulation of highly viscous fluids we
introduce an implicit viscosity solver. Viscosity is defined as
the resistance of a fluid to flow. That means that viscosity
forces counteract viscous stress. In a Newtonian fluid the
viscous stress tensor τ is defined by the strain rate tensor ε̇
and the viscosity coefficient µ:

τ = µε̇.
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Algorithm 3 Constant density solver
1: function CORRECTDENSITYERROR(α, v∗)
2: while (ρavg − ρ0 > ηρ) ∨ (iter < 2) do
3: for all particles i do // predict density
4: compute ρ∗i
5: for all particles i do // adapt velocities
6: κi =

ρ∗i−ρ0
∆t2 αi, κj =

ρ∗j−ρ0
∆t2 αj

7: v∗i := v∗i −∆t
∑
jmj

(
κi

ρi
+

κj

ρj

)
∇Wij

The strain rate tensor is defined as the symmetric part of the
velocity gradient ∇v [3]:

ε̇ =
1

2

(
∇v +∇vT

)
. (13)

In general the viscosity coefficient µ is a rank four tensor
containing 81 coefficients. However, since τ and ε̇ are sym-
metric, µ can be reduced to 36 independent values. For a
specific material the number of independent coefficients can
even be significantly smaller, e.g. isotropic material requires
only two coefficients. Please note that viscosity models
based on the strain rate commonly assume a divergence-free
velocity field as noted in several previous works, e.g. [31],
[41], [53]. Thanks to our divergence-free solver presented in
Section 3.2, the velocity field is approximately divergence-
free, even after the constant density solve.

The key idea of our implicit viscosity solver is analogous
to the idea of our divergence-free solver (see Section 3.2)
and our constant density solver (see Section 3.3): For each
neighborhood i we determine an individual viscosity coef-
ficient µ′i and corresponding impulses in order to enforce a
target strain rate locally. We use a parallel Jacobi method in
order to fulfill the strain rate condition globally. In this work
we introduce a viscosity parameter 0 ≤ γ ≤ 1 to define the
target strain rate:

ε̇t = γε̇∗,

where ε̇∗ denotes the strain rate tensor determined by the
velocities v∗ (see Algorithm 5). For γ = 0 the target strain
rate tensor vanishes which corresponds to a fluid with
maximum viscosity while a minimum viscosity is obtained
for γ = 1.

Using the SPH formulation for a symmetric gradient [6]
the velocity gradient is determined by

∇vi =
1

ρi

∑
j

mjvji∇WT
ij , (14)

where vji = vj − vi. Substituting Equation (14) in Equa-
tion (13) and writing the symmetric tensor ε̇i for particle i
as six-dimensional vector yields:

ε̇xxi
ε̇yyi
ε̇zzi
ε̇xyi
ε̇xzi
ε̇yzi

 =
1

2ρi

∑
j

mj



2vxji∇W x
ij

2vyji∇W
y
ij

2vzji∇W z
ij

vxji∇W
y
ij + vyji∇W x

ij

vxji∇W z
ij + vzji∇W x

ij

vyji∇W z
ij + vzji∇W

y
ij

 .

In our work we use the formulation of the strain rate tensor
as six-dimensional vector in order to remove redundancy

and to facilitate the computation of its derivative (see be-
low).

For each neighborhood we want to compute a viscosity
coefficient µ′i so that the current strain rate error ε̇i − ε̇t

i is
corrected. Since the strain rate tensor has six independent
values, we determine a six-dimensional viscosity coefficient
in the solver. Analogous to Equations (7) and (8) we com-
pute the following impulse densities in order to correct the
strain rate error:

pi = −∂τ i
∂vi

= −
(
∂ε̇i
∂vi

)T
µ′i,

pj←i = −∂τ i
∂vj

= −
(
∂ε̇i
∂vj

)T
µ′i.

Due to our six-dimensional formulation the required deriva-
tives of the strain rate ε̇i with respect to the velocities vi and
vj are determined by the following 6× 3 matrices:

∂ε̇i
∂vj

=
1

2ρi
mj



2∇W x
ij 0 0

0 2∇W y
ij 0

0 0 2∇W z
ij

∇W y
ij ∇W x

ij 0
∇W z

ij 0 ∇W x
ij

0 ∇W z
ij ∇W y

ij

 ,
∂ε̇i
∂vi

= −
∑
j

∂ε̇i
∂vj

.

The impulses cause the velocity changes ∆vi = 1
ρi
pi

and ∆vj = 1
ρi
pj←i. The resulting change of the strain rate

error is determined by ∆ε̇ − ε̇t, where ∆ε̇ is computed by
Equation (13) using the velocity changes ∆v. Our goal is to
compute ∆ε̇ so that the strain rate error is eliminated. This
yields the following equation for µ′i:

A =
1

ρi

∂ε̇i
∂vi

(
∂ε̇i
∂vi

)T
+
∑
j

1

ρi

∂ε̇i
∂vj

(
∂ε̇i
∂vj

)T
,

µ′i = A−1︸︷︷︸
βi

(
ε̇i − ε̇t

i

)
,

which is determined analogously to Equation (11). Note that
the matrix βi only depends on the current positions. Hence,
it can be precomputed and must not be updated in the Jacobi
solver.

Finally, we compute the sum of all impulses for each
particle i including the impulses acting from neighboring
particles j as

pi,total =
mi

ρi
pi +

∑
j

mj

ρj
pi←j

=
mi

2

∑
j

mj


2∇Wx

ij 0 0

0 2∇Wy
ij 0

0 0 2∇W z
ij

∇Wy
ij ∇W

x
ij 0

∇W z
ij 0 ∇Wx

ij

0 ∇W z
ij ∇W

y
ij


T(

1

ρ2
i

µ′i +
1

ρ2
j

µ′j

)

(15)

and determine the resulting velocity changes.
Our implicit viscosity solver is outlined in Algorithm 4.

Analogous to the divergence-free solver and the constant
density solver we perform a warm start to improve its



8

Algorithm 4 Implicit viscosity solver
1: function CORRECTSTRAINRATEERROR(v∗)
2: for all particles i do
3: compute factors βi
4: compute target strain rates ε̇t

i

5: while (
(
ε̇∗ − ε̇t)

avg > ηvisco) ∨ (iter < 1) do
6: for all particles i do // compute strain rate
7: compute ε̇∗i
8: for all particles i do // adapt velocities
9: µ′i = βi

(
ε̇∗i − ε̇t

i

)
, µ′j = βj

(
ε̇∗j − ε̇t

j

)
10: v∗i := v∗i − 1

mi
pi,total // see Equation (15)

Algorithm 5 Simulation with implicit viscosity
1: function PERFORMSIMULATION
2: init neighborhoods N(0) // initialization
3: compute densities ρ(0)
4: compute factors α(0)
5: while (t < tmax) do // simulation loop
6: compute non-pressure forces Fadv(t)
7: predict velocities v∗ = v + ∆tM−1Fadv

8: correctDensityError(α, v∗) // ρ∗ − ρ0 = 0
9: correctStrainRateError(v∗) // ε̇∗ − ε̇t = 0

10: update positions x(t+ ∆t) = x(t) + ∆tv∗

11: update neighborhoods N(t+ ∆t)
12: update densities ρ(t+ ∆t)
13: update factors α(t+ ∆t)
14: correctDivergenceError(α, v∗) // Dρ

Dt = 0
15: update velocities v(t+ ∆t) = v∗

convergence. To integrate the viscosity solver in the sim-
ulation step we have to modify Algorithm 1. By adding
the viscosity solve before the position update we get the
modified Algorithm 5.

Note that Peer et al. [41] perform a decomposition of the
strain rate tensor into the expansion rate tensor V = 1

3 (∇ ·
v)I and the shear rate tensor S = ε̇−V in order to preserve
the divergence of the fluid particles. This decomposition can
also be used in our viscosity solver. However, due to our
divergence-free solver the divergence ∇ · v is in practice
small, even after the pressure solve. Therefore, we did not
use the decomposition in this work in order to increase the
performance.

We also want to note that the viscosity parameter γ de-
pends on the time step size. Our implicit viscosity solver has
this limitation in common with recent approaches, e.g. the
one of Peer et al. [41]. We do not further address this issue
in the paper but it is one of our research topics for future
work.

4.2 Efficient Kernel Computation

SPH methods typically use kernel functions which approx-
imate a Gaussian. Sometimes different kernels are used to
determine Wij and its gradient ∇Wij (e.g. [8]). However,
in a predictor-corrector method the same kernel must be
used for both. Otherwise, the prediction and correction steps
do not fit together. In our solvers we use the cubic spline
kernel [6].

The SPH approach uses a kernel function with compact
support. This means the function vanishes at a finite dis-
tance which is also known as the support radius h. Such a
kernel function can be written as Wh(q(x)) with q = ‖x‖

h ,
where the function is non-zero for 0 ≤ q < 1. Therefore, the
kernel gradient ∇Wh(q(x)) has the same compact support.

Since the kernel gradients must be determined for the
whole neighborhood of each particle in the non-pressure
force computation, in each iteration step of all solvers and
when computing the factors αi and βi, it is one of the most
time consuming tasks in our simulation. However, due to
the large memory consumption it is not recommended to
store all gradients for large scenes. In the following we
introduce an efficient computation of the kernel and its
gradient based on precomputed lookup tables to increase
the performance of our simulation. Lookup tables have
already been employed in other areas to speed up function
evaluations but to the best of our knowledge they have not
been used yet in SPH simulations.

It is easy to generate a lookup table for the kernel Wh by
a regular sampling since it is a smooth scalar function with
compact support. However, the gradient ∇Wh is a vector
function and sampling this function in all three dimensions
yields a larger memory consumption and computational
overhead. Therefore, we introduce the scalar function g(q):

∇Wh(q(x)) = x · g(q) with g(q) =
∂Wh

∂q
· 1

h‖x‖
.

This function is also a smooth scalar function with compact
support which can be sampled regularly to get a corre-
sponding lookup table. Finally, only a single lookup and
a multiplication with x is required to compute a kernel
gradient.

Our kernel lookup tables are easy to implement and can
also be used in other SPH methods. Details about the sam-
pling distance, the performance gain and the approximation
error are discussed in Section 5.

5 RESULTS

In this section we show results for our divergence-free SPH
method and for the introduced extensions. All timings were
measured on two Intel Xeon E5-2697 processors with 2.7
GHz, 12 cores per processor and 64 GB RAM. We used
OpenMP to parallelize our fluid simulation. In our experi-
ments we performed the boundary handling using the rigid-
fluid coupling of Akinci et al. [12] and the neighborhood
search using the parallel method of Ihmsen et al. [52]. We
successfully combined our method with the surface tension
models of Becker and Teschner [10], Akinci et al. [13] and
He et al. [54]. However, in the experiments in this paper
we solely used the surface tension model of Akinci et
al. [13]. We employed the XSPH variant of Schechter and
Bridson [37] to simulate the viscosity of all low viscous
fluids. In Section 4.1 we introduced an extension of our
divergence-free SPH approach for the simulation of highly
viscous fluids. The results of our implicit viscosity solver are
discussed in the last paragraph of this section.

A well-known issue of SPH fluid simulations is particle
deficiency at free surfaces which leads to an underesti-
mation of the density and therefore to particle clustering.
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We clamp negative pressures to zero to solve this problem
which is a common solution in computer graphics, see
e.g. [2]. In our simulations we enforced an average density
error of less than 0.01 % and a density error due to the
density change rate of less than 0.1 %. Moreover, we used
adaptive time-stepping according to the CFL condition (see
Section 3.1) unless stated otherwise.

Performance
We compared the performance of our novel simulation
method for incompressible fluids with IISPH, PBF and
PCISPH using a breaking dam scenario with 125k particles
with different fixed time step sizes. The particle radius in
the simulation was 0.02 m. The results for a simulation over
one second are summarized in Table 1 and Table 2 shows
the speedup factors. Note that Ihmsen et al. [2] compared
the performance between PCISPH and IISPH with a similar
scenario and measured comparable results.

Our SPH method enforces the constant density condi-
tion and the divergence-free condition at the same time.
Therefore, the density error is kept small during the whole
simulation which leads to significantly lower number of iter-
ations required by the solvers. The iteration count is further
reduced by our warm start which initializes both solvers
with the sum of the stiffness values of the previous time
step. In the dam break scenario we measured a speedup
factor of approximately 3 due to the warm start. DFSPH
uses a full warm start. In contrast to that IISPH performs
best when multiplying the solution of the previous time
step with a factor of 0.5 [2]. As summarized in Table 2
the performed warm start and the divergence-free velocity
field in our simulation leads to speedup factors of 6.9 in
comparison to IISPH up to 23.9 in comparison to PCISPH
for a time step size of 4 ms. There are two reasons for
this large speedup. First, in contrast to previous works we
enforce both conditions which increases the stability of the
simulation and therefore allows us to perform larger time
steps and to apply a full warm start. Second, in our method
the reuse of precomputed coefficients leads to fast iterations.
Our constant density solver required only an average of
4.5 iterations while our divergence-free solver needed 2.8
iterations. The second best approach in our experiment was
IISPH which already required 50.5 iterations. For smaller
time step sizes DFSPH often used the minimum number
of iterations which reduced the speedup for these step
sizes. However, in simulations with more particles, where
more iterations are required, the speedup is also larger for
small step sizes. In our simulations we noticed that DFSPH
performs best when a time step size is chosen so that the
number of iterations ranges between 2 and 20.

The best performance of our method was reached for
larger time steps than IISPH, PBF and PCISPH (see Table 1).
The usage of larger time steps has the advantage that the
computationally expensive neighborhood search is needed
less frequently.

In Section 4.2 we introduced a kernel optimization based
on lookup tables. This optimization yields a performance
gain of approximately 30 % in the breaking dam scenario.
In this performance test the kernel function and its gradient
were sampled at 1000 points. For this sampling we mea-
sured a maximum local error of less than 10−11 m−3. The

Fig. 3. Breaking dam model with 2.3 million fluid particles and a complex
boundary including two dragon models and a moving wall. We color
coded the velocity field: white is the maximum and blue is the minimum.

implementation of the kernel optimization is very simple
and the error is negligible. Hence, this is a useful extension
for SPH simulations.

In order to demonstrate the performance of our method
in more complex scenarios, we performed another breaking
dam simulation with a large number of fluid particles and a
boundary consisting of two dragon models and a moving
wall (see Figure 3). We used 2.3 million fluid particles
and 0.7 million boundary particles in this breaking dam
scenario. As a second example we simulated 5 million fluid
particles flowing through a canyon consisting of 40 million
boundary particles (see Figure 1, right). Table 3 shows the
average computation times of the most important steps in
Algorithm 1 for both scenarios.

Memory Requirements
The memory requirements of our method are low. DF-
SPH only needs to store the scalar value αi per particle
which is then used by both solvers. We need an additional
scalar value per particle for each solver if a warm start
is performed. Therefore, DFSPH requires considerably less
memory than IISPH which needs seven scalar values for
the solver and one for the warm start. This is especially
an advantage when simulating large scale scenarios with
millions of particles.

Stability
In this paragraph we demonstrate that current state-of-the-
art SPH pressure solvers which do not enforce a divergence-
free velocity field explicitly cannot satisfy the condition
Dρ
Dt = 0 as demanded by the continuity equation. However,
this can cause instabilities, especially when fluid particles
have high velocities.

We compared the velocity divergence error of DFSPH
and IISPH using a breaking dam scenario with 125k par-
ticles (see Figure 2). The results demonstrate that DFSPH
is able to maintain a divergence-free velocity field in con-
trast to approaches which do not enforce a divergence-free
condition explicitly. In the comparison the maximum local
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DFSPH IISPH PBF PCISPH
∆t [ms] iter. (cd/df) solver [s] total [s] iter. solver [s] total [s] iter. solver [s] total [s] iter. solver [s] total [s]

4.0 4.5/2.8 45.2 51.3 50.5 312.1 318.1 105.7 607.1 613.5 160.0 1079.1 1085.7
2.0 2.1/1.3 47.8 59.4 21.4 256.4 267.9 42.7 508.4 520.7 73.9 1021.2 1033.5
1.0 2.0/1.0 85.0 107.5 7.3 197.9 220.7 13.2 314.8 338.0 23.9 656.9 680.0
0.5 2.0/1.0 164.1 210.8 2.3 182.3 225.6 3.4 194.1 240.5 6.7 394.9 440.9
0.25 2.0/1.0 288.3 372.0 2.0 322.5 402.2 2.0 263.3 354.0 3.0 409.3 498.0

TABLE 1
Performance comparison of DFSPH, IISPH, PBF and PCISPH for a breaking dam simulation with 125k particles using different fixed time step

sizes (see Figure 2). The table contains the average iteration count, the total computation time of the solvers and the total simulation time including
the neighborhood search in a simulation over one second. The best total computation times are marked bold. The column with the average

iteration count of DFSPH contains the values for the constant density solver (cd) and the divergence-free solver (df). Note that the solver time of
DFSPH is the sum of the times needed by both solvers since they need almost the same amount of time for one iteration step.

IISPH PBF PCISPH
∆t [ms] solver total solver total solver total

4.0 6.9 6.2 13.4 12.0 23.9 21.2
2.0 5.3 4.5 10.6 8.8 21.4 17.4
1.0 2.3 2.1 3.7 3.1 7.7 6.3
0.5 1.1 1.1 1.2 1.1 2.4 2.1
0.25 1.1 1.1 0.9 1.0 1.4 1.3

TABLE 2
Speedup factors of DFSPH in comparison to IISPH, PBF and PCISPH

based on the measurements in Table 1.

neigh.
α Fadv const. div.- totalsearch density free

canyon 1.2 0.2 0.7 1.9 1.3 5.3
dragons 0.4 0.1 0.3 0.7 0.6 2.1

TABLE 3
Performance of the canyon simulation (see Figure 1, right) and the dam
break simulation (see Figure 3). The table shows the average times per
simulation step (in seconds) required by the neighborhood search, the
computation of α, the computation of all non-pressure forces Fadv, the

constant density solver and the divergence-free solver.

divergence error of IISPH was 108.3 s−1 while the one of
our method was only 1.9 s−1.

Large divergence errors can lead to instabilities as we
demonstrate in the following comparisons with PCISPH
and IISPH. First, we simulated a cube of 27k fast mov-
ing particles falling on the ground in order to show how
this influences the stability (see Figure 5). We used the
adaptive time-stepping according to the CFL condition.

Fig. 4. Top of a fluid pillar with 80k particles. The divergence errors
are color coded: red is the maximum and white is the minimum. Large
divergence errors in the IISPH simulation (left) lead to jumping artifacts.
The DFSPH approach (right) maintains a divergence-free velocity field
which allows a stable simulation without artifacts.

Fig. 5. Stability comparison of DFSPH with PCISPH. The same color
coding as in Figure 3 is used. A cube with 27k fluid particles is falling on
the ground with a high velocity. Instabilities occur in the PCISPH simula-
tion (left) and several fluid particles pass through the boundary. DFSPH
without activating the divergence-free solver shows artifacts (middle)
while DFSPH with activated divergence-free solver stays stable.

Fig. 6. Two-way coupling of several dynamic rigid bodies with 330k fluid
particles.

In this experiment we compared PCISPH, DFSPH with
deactivated divergence-free solver and DFSPH with acti-
vated divergence-free solver. A stable simulation was only
possible with DFSPH when using both solvers. Without
the divergence-free solver artifacts occurred in the DFSPH
simulation. PCISPH even became totally instable due to
the impact and several fluid particles passed through the
boundary. A stable simulation with PCISPH was only pos-
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model fluid particles γ pressure viscosity

Stanford 390k
0.95 0.16 2.4
0.7 0.22 4.7
0.4 0.26 5.3

coiling 37k 0.75 0.01 0.32
buckling 150k 0.25 0.01 0.79

bunny 50k

0.9 0.02 0.13
0.75 0.03 0.20
0.5 0.03 0.30
0.25 0.03 0.37

TABLE 4
Number of fluid particles, viscosity parameters and average

computation times (in seconds) per simulation step of the pressure
solver and the viscosity solver for the viscous fluid examples shown in

Figures 7, 8 and 9. The time for the pressure solve contains the time for
the computation of α and the times for the constant density and the

divergence-free solver.

sible when using a time step size which was clearly below
the one suggested by the CFL condition which reduced the
overall performance significantly.

To compare our method with IISPH we simulated a rest-
ing fluid pillar model with 80k fluid particles (see Figure 4).
We restricted the time step size to a maximum of 5 ms
as the CFL condition allows arbitrary large values for the
resting particles. In the DFSPH simulation the maximum
local divergence error was 2.5 s−1 which allowed a stable
simulation without artifacts. In the IISPH simulation large
divergence errors of up to 72.9 s−1 occurred. In combination
with the large time steps this led to visual artifacts: fluid
particles jumped up due to the errors (see Figure 4, left). By
decreasing the time step size significantly this problem can
be solved. However, this reduces the overall performance
considerably.

In summary our comparisons showed that enforcing a
divergence-free velocity field improves the stability of the
simulation and allows to perform larger time steps.

The next two experiments demonstrate the stability of
our method in simulations with dynamic boundaries and
in large scale scenarios. In the first simulation several rigid
bodies fall in a breaking dam scenario with 330k particles
(see Figure 6). We used the Bullet physics library [55] to sim-
ulate the rigid bodies. In the second experiment 2.4 million
fast moving particles hit a complex boundary (see Figure 1,
left). In both scenarios DFSPH allowed a stable simulation
with the maximum possible time step size defined by the
CFL condition.

Viscous Fluids

In order to simulate highly viscous fluids we introduced
an implicit viscosity solver in Section 4.1. In the following
we present results with our method and a comparison with
the approach of Peer et al. [41]. In all experiments with
viscous fluids we used a fixed time step size of ∆t = 1 ms,
a particle radius of 0.025 m and no surface tension forces. In
all simulations we enforced an average strain rate error of
less than 0.01 s−1.

In our first experiment with the implicit viscosity solver
we dropped a dragon, a bunny and an armadillo model on
a plane while varying the viscosity parameter γ. Figure 7
shows the results for the values γ = 0.95, γ = 0.7 and
γ = 0.4 after two seconds of simulation. This experiment

(a) γ = 0.95

(b) γ = 0.7

(c) γ = 0.4

Fig. 7. Stanford model. A Stanford dragon, bunny and armadillo are
dropped on a plane. The simulation was performed with different vis-
cosity parameters γ. The images show the results after two seconds of
simulation.

demonstrates that our implicit solver can handle low vis-
cous fluids as well as highly viscous fluids. The simula-
tion model contains 390k fluid particles and 91k boundary
particles. We measured the average computation times of
the viscosity solver for all three viscosity parameters (see
Table 4). As we can see the solver converges faster for low
viscous fluids. The reason for this is that in case of low
viscosity, the difference between the target strain rate and
the current strain rate is always small.

In the next experiment we demonstrate that our viscosity
solver is able to simulate the phenomena of viscous fluid
buckling and coiling (see Figure 8). In the first simulation
we emitted a sheet of 150k fluid particles using a viscosity
parameter of γ = 0.25 (see Figure 8a) and in the second one
we emitted 37k fluid particles using a viscosity parameter
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(a) buckling (b) coiling

Fig. 8. Realistic buckling and coiling effects simulated with our implicit viscosity solver. Left: a sheet of 150k fluid particles is emitted with a viscosity
parameter of γ = 0.25 to simulate buckling. Right: coiling is simulated by emitting 37k fluid particles with γ = 0.75.

of γ = 0.75 (see Figure 8b). The performance values of these
simulations are given in Table 4.

Finally, we performed a comparison with the implicit
viscosity approach of Peer et al. [41]. In this comparison
we dropped a bunny model on the ground using different
viscosity parameters γ (see Figure 9). For the method of Peer
et al. we used the value of ξ = γ to determine the target
velocity gradient. Note that an exact comparison of both
methods is hard since viscosity parameters with a different
meaning are used and the conditions to terminate the itera-
tive solvers are different. However, in a visual comparison
we can see that our approach covers a broader range of
viscous materials. While Peer et al. state that their approach
should not be used for low viscous fluids our method is able
to handle low viscosity as well.

Peer et al. reconstruct the final velocities from the target
velocity gradient. A first-order Taylor approximation is used
in the reconstruction. This approximation has the advantage
that a smaller linear system has to be solved in comparison
to our method. However, the drawback of the approxima-
tion of Peer et al. is that it introduces a large numerical
damping. For that reason the method of Peer et al. cannot
simulate low viscous fluids. Our approach does not use any
approximation and therefore does not suffer from numerical
damping (see Figure 9).

6 CONCLUSION AND FUTURE WORK

In this paper we introduced a novel implicit SPH approach
to simulate incompressible and viscous fluids. In contrast
to previous state-of-the-art SPH methods for incompress-
ible fuids two solvers are employed in order to enforce a
constant density condition and a divergence-free condition.
The combination of both solvers improves the stability and
the performance of the simulation. Our method handles
scenarios with millions of fast moving particles robustly and
is considerably faster than current state-of-the-art methods.
Moreover, we presented an implicit viscosity solver to sim-
ulate highly viscous fluids which can be integrated easily in
our SPH method.

Since DFSPH is based on the same principles as other
SPH pressure solvers, it has similar limitations. The density

near free surfaces is underestimated due to particle defi-
ciency. This leads to unnatural particle clustering artifacts.
We solve this problem by clamping negative pressures to
zero which is a common solution in computer graphics.
However, Schechter and Bridson [37] introduced a better
solution for this problem. They prevent particle deficiencies
by generating ghost particles near the free surface to im-
prove the physical behavior of the fluid. Avoiding pressure
clamping by ghost particles would also allow to use solving
algorithms with a better convergence rate like the conjugate
gradient method in our pressure solvers. Therefore, the
integration of ghost particles is one of our future goals.
Another goal is to analyze if our method is able to improve
the stability of multi-phase simulations with high density
contrasts.
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