
1

Deferred Warping
Martin Knuth, Jan Bender, Michael Goesele, Arjan Kuijper

Abstract—We introduce deferred warping, a novel approach for real-time deformation of 3D objects attached to an animated or
manipulated surface. Our target application is virtual prototyping of garments where 2D pattern modeling is combined with 3D garment
simulation which allows an immediate validation of the design. The technique works in two steps: First, the surface deformation of the
target object is determined and the resulting transformation field is stored as a matrix texture. Then the matrix texture is used as
look-up table to transform a given geometry onto a deformed surface. Splitting the process in two steps yields a large flexibility since
different attachment types can be realized by simply defining specific mapping functions. Our technique can directly handle complex
topology changes within the surface. We demonstrate a fast implementation in the vertex shading stage allowing the use of highly
decorated surfaces with millions of triangles in real-time.

Index Terms—real-time deformation, garment modeling, virtual prototyping

F

1 INTRODUCTION

For many years the simulation of cloth models has
played a significant role in computer games and movies.
In the last years it also became important in virtual gar-
ment prototyping, which is an essential part of the garment
manufacturing pipeline. In a virtual prototyping process a
designer models a 2D garment pattern consisting of multi-
ple pieces of cloth, which are sewed together in a 3D cloth
simulation. The simulation allows the designer to validate
the garment design and to guarantee producibility. Current
real-time cloth simulation methods can often only handle
coarse meshes. These meshes are textured in the rendering
process to obtain more realistic results. However, the area of
virtual garment prototyping demands more detailed models
since coarse textured meshes often do not look realistic in a
close-up view, e.g., when representing a knitwear model.
Furthermore, there exist a set of typical objects (appliqué),
which are attached to the garment surface as decoration
(e.g., sequins) or which have a functional task (e.g., but-
tons). Simulating knitwear models or garments with many
attached objects is computationally too expensive for a real-
time simulation in an interactive virtual prototyping system.

In this paper we introduce deferred warping, which al-
lows the attachment of arbitrary geometry on deformed
garment models. The key idea of our approach is to enrich
coarse simulation models with geometric details in a post-
processing step. Our method allows a high quality visual-
ization of simulated garment models with many geometric
details like appliqué or even the replacement of the cloth
surface with a complex knitwear model at interactive frame
rates.

• Martin Knuth - Fraunhofer IGD
E-mail: martin.knuth@igd.fraunhofer.de

• Jan Bender - Graduate School CE, TU Darmstadt
E-mail: bender@gsc.tu-darmstadt.de

• Michael Goesele - TU Darmstadt
E-mail: michael.goesele@gris.informatik.tu-darmstadt.de

• Arjan Kuijper - Fraunhofer IGD
E-mail: arjan.kuijper@igd.fraunhofer.de

Appliqué differ strongly in the way they are attached to
a garment surface, e.g., buttons are fixed at a single point,
seams are attached along a curve, and patches are fixed
on a particular area of the surface (see also the examples
in Figure 1). Our method is able to handle these different
attachment types while using UV coordinates to define the
positions of the detail geometries on the deformed surface.
The area attachment can even be used to replace the com-
plete surface with a detailed geometric cloth or a knitwear
model as shown in Figure 1. This gives us the flexibility
required for interactive virtual garment design.

Our deferred warping approach consists of two steps:
First, we create an intermediate representation of the surface
deformation stored as a matrix texture. The matrix texture
defines the position in 3D world coordinates and the cor-
responding local tangent space orientation for each vertex.
This allows us to define and interpolate the deformation
for any surface point while deferring the actual warp to
the second step. The deformation field has to be extracted
only once and potentially only at coarse locations yielding
a significant performance gain. In the second step we use
this information to deform the attached geometry. This
allows the flexible attachment of geometric details in var-
ious ways. The whole process is independent of the target
surface’s topology and resolution as long as a suitable UV
parametrization exists. Note that the definition of unique
and orthogonal UV coordinates on a 2D garment pattern
is trivial. Each piece of cloth of a garment pattern has
its own material and UV parametrization. This results in
visible seams when the pieces are sewn together. This is
desired in virtual garment prototyping since the seams are
an important tool for the visual design of a garment [1].

Deferred warping was originally developed for garment
simulations but it can be used in combination with any
animation, manipulation, or simulation system. Geometric
details can be added without increasing the computational
effort of the animation system itself. The proposed method
can be easily implemented in the vertex shading stage of
current GPU rendering pipelines and combined with other
techniques. E.g., we can still use geometry instancing to

IEEE Computer Graphics and Applications c© 2016 IEEE

2

(a) (b) (c) (d) (e)

Fig. 1. Deferred warping allows to attach arbitrary detail geometry to an animated or manipulated surface in real-time as required in interactive
garment simulations. Details can be attached at single points (a,c), along a curve (b,c), or on an area (d,e). In the latter case, the original geometry
was even completely replaced with geometry representing the fabric structure.

attach many geometrical details to an existing surface. Inte-
grating the algorithm into a renderer does not significantly
increase the amount of data needed for rendering or the
computational complexity. It is therefore well-suited for
interactive applications.

Our contributions are:
• A technique to attach detail geometry to an animated or
deforming target surface that separates the computation
of the transformation from its application to the detail
geometry,
• several different ways to attach and deform detail geom-
etry, including point, curve, and area attachments, and
• an efficient implementation in the vertex processing
stage of modern GPUs with real-time performance and
seamless integration with other rendering techniques.

2 RELATED WORK

In the last years, the increasing performance of computer
hardware and the development of efficient cloth simulation
methods have established garment simulation in design
tools for the garment and fashion industry [2]. However,
state-of-the-art simulation methods are still not able to han-
dle garments with a large numbers of appliqué in real-time.

In computer graphics there exist a wide range of ap-
proaches to attach details to a smooth surface and to visu-
alize them. But none of those is flexible enough to attach
geometric details in various ways to a deforming, poten-
tially interactively manipulated, or even remeshed surface
while still yielding interactive frame rates. This is, however,
required in virtual garment prototyping.

Decal rendering is a mapping method in which a texture
patch is projected locally onto a geometry. The coordinate
computation can be difficult in this case. A solution for this
problem is presented by Schmidt et al. [3], which computes
the needed coordinates on-the-fly using exponential maps.
Zhou et al. [4] focus on the structure of the underlying

parametrization of the base mesh in order to increase the
quality of the attached geometry. To visualize the attached
geometry they use a ray casting approach. The generation
of the underlying parametrization is also a topic of the work
of Ma et al. [5] who present a technique to fill a user-defined
volume with aligned 3D geometry.

For area texturing with a repeating detail there exist sev-
eral methods to apply displacements to a surface. Height-
field based techniques allow to handle self-occlusion using
a ray casting step which uses binary search to find the
nearest intersection with the viewing ray. This so-called
relief mapping can be extended to multiple layers in order to
represent 3D objects within a surface as shown by Policarpo
and Oliveira [6]. Neyret [7] uses volumetric textures instead
of layers to represent the detail geometry, which allows a
fast computation and the use of complex detail geometry.

Toledo et al. [8] present a technique, that uses patches
with overlapping height field information in order to rep-
resent complete highly detailed 3D models. The technique
is capable of representing highly detailed static geometry.
Changes of the surface topology or animation require a
recomputation of the height fields, which represent char-
acteristic parts of the surface.

Wang et al. [9] introduce a real-time approach based
on five-dimensional Generalized Displacement Maps (GDM).
These maps are used to speed up a ray marching process
that creates the image of the detail geometry. To perform the
ray marching, the target surface is represented by prisms,
which are used to map rays from world to local surface
space. Porumbescu et al. [10] use a very similar approach.
Instead of using a 5D-map, the detail geometry is traced
directly. They warp geometric detail inside a tetrahedral
cage layer attached to the target surface also known as Shell
Mapping. Jeschke et al. [11] improve on this by ensuring
a consistent warping between neighboring cages. Shen [12]
extends Shell Mapping to support the animation of a shell,
which allows morphing and deformation of the surface
objects. Ritsche [13] presents a real-time version of a shell
space rendering approach. The technique uses ray tracing

3

of surface details stored as volumetric textures. The shell
space is precomputed and thus static.

Brodersen et al. [14] later extended this for implicit
representations, allowing advanced attachment modes such
as sum and subtraction. This can be used to create a smooth
transition between target surface and detail geometry. They
also propose a near real-time variant where the detail geom-
etry is represented explicitly.

A method for the simulation and rendering of knitted
garments is presented by Yuksel et al. [15]. Their approach
uses two stages. The first stage operates on a quad based
mesh and is used for overall relaxation. These quads are
filled with stitch meshes, which represent yarn based geom-
etry. Their approach solves the mapping problem by using
quads for the base mesh. The mapping process is, however,
intended for offline rendering.

An approach similar to ours, but limited to area map-
ping, is introduced by Schein et al. [16]. The authors present
a real-time implementation of Deformation Displacement Map-
ping, which was originally introduced by Elber et al. [17]. In
order to map geometry onto a target surface they compute
a position and normal texture from the surface. This step
is performed as an offline process while the deformation
mapping itself is performed in real-time on the GPU. Due
to the offline process animated surfaces are not directly
supported. However, today this preparation step can be
performed on current graphics hardware.

The purpose of all techniques described above is to
handle decal and area mappings. It is difficult to extend
them to handle curve-based features, such as embroidery,
which are important in virtual garment prototyping. Cage-
based deformation methods are able to handle such features.
We note that the prism-based approaches could be used
as a cage-based deformation system for detail geometry.
However, such an approach would need a very smooth
interpolation function. These are typically considered as the
holy grail of cage-based deformation. Interpolation func-
tions such as high order barycentric coordinates [18] or
Green coordinates [19] would be required to create smooth
transitions. These functions are, however, very complex,
which would reduce the performance by a large degree
compared to prisms with hard boundaries.

In conclusion we can state three main differences of our
work to the existing approaches:

First, the presented methods with the exception of Schein
et al. [16] use a representation that requires raytracing
techniques to render the detail geometry or approximated
data. In contrast, our method as well as the one of Schein
et al. [16] simply render the geometry in the same way
the target geometry is rendered using arbitrary rendering
systems including rasterization. Both methods can also post-
process the attached geometry within the rendering pipeline
as needed. We show an example with further deformation
later on in Section 3.6.

Second, in garment simulation the patterns have a per-
fect UV parametrization per definition. However, the sim-
ulation can shear the parametrization until it degenerates.
Shell space and previous geometry based methods are
intended to be used as texturing methods for 3D meso-
structures and are dependent on the UV parametrization
of the base mesh. This means that they are also affected by

shearing of the texture coordinate space, which is a large
problem for our target application of garment design (e.g.,
buttons must not be sheared). Therefore, in contrast to all
other previous methods, our approach defines a complete
orthogonal reference frame at every vertex position. Hav-
ing a full reference frame allows us to support advanced
attachment types such as point and curve attachments,
independent of the status of the base surface. Note that
these types do not shear the detail geometry even in case
of a sheared UV parametrization.

Third, we need no offline pre-processing step since our
matrix textures are computed on-the-fly. This enables us
to attach and modify detail geometries on animated or
manipulated surfaces. Moreover, the contained matrices can
be modified in this process providing more flexibility to the
user.

3 DEFERRED WARPING

In this section we describe the deferred warping concept in
detail. Our method works in two steps: First, the transfor-
mation field of a deformed surface is extracted on-the-fly.
Second, this field is used to transform detail geometry on
the surface. We also call this attaching geometry to a surface.
Note that we use the terms source object for the geometry we
want to attach to the deformed surface and target object for
the externally animated or deformed geometry. We assume
that a suitable parametrization of the target object exists. If
this is not the case, such a parametrization can be generated
using well-known techniques (see, e.g., Akenine-Möller et
al. [20] or Hormann et al. [21]). Note that in our application
area of virtual garment prototyping the parametrization is
given by the UV coordinates of the garment pattern.

In the following we first give an overview of deferred
warping. Then we show how the transformation field of
a deformed surface is determined. Finally, we demonstrate
how different attachment types are realized by simply
defining two mapping functions and introduce the most
important types (see Figure 2). These attachment types can
be used to implement a large variety of effects (see Figure 1).
Deferred warping is, however, not limited to these types.
Other definitions are also possible, e.g., to support the
animation of the source geometry on the target surface (see
Figure 8).

3.1 Overview
In the first step of our method the transformation field of a
deformed surface is determined, which is defined by a 3×4
linear transformation matrix for each vertex. This field de-
fines a look-up table from texture space into tangent space.
Having the transformation field, we can define a matrix
texture as the function fmt : [0, 1]

2 7→ R3×4, which maps the
surface parameter coordinates (u, v) to the corresponding
3 × 4 matrix (see Section 3.2). Hence, this matrix texture
yields a local coordinate system on the deformed surface of
the target object at any surface position (u, v).

In the second step the matrix texture is used to imple-
ment different attachment types. To obtain the correspond-
ing local coordinate system for a point of the detail geom-
etry, we need a mapping function fuv : R3 7→ R3, which

4

(a) (b) (c)

Fig. 2. Possible attachments of a 3D geometry to a 2D surface. (a)
Point attachment: The geometry is directly transformed by the matrix
retrieved from the transformation field for the given position, placed
on the surface, and oriented according to the principal axes of the
subspace. (b) Area attachment: Texture coordinates are determined by
projecting the source geometry on the xz-plane. The source geometry
follows the curvature of the target surface. The y-coordinate of a source
point defines the distance to the target surface in normal direction. (c)
Curve attachment: A user-defined parametric curve function defines the
texture coordinates for the matrix look-up. One component of a source
point is used as parameter for the curve while the other components
determine the final position in the plane which is orthogonal to the curve.

Mtex fuv(p) fmt

p Mmt(p)

Fig. 3. To determine the matrix Mmt for a point p, first a projection
of p onto the target surface is performed. Then the tangent space is
determined for the projected point which is a subspace aligned to the
UV parametrization of the surface.

yields a valid homogeneous texture coordinate (u, v, 1) for
each detail point. This function can be defined in different
ways to create different attachment types (see Sections 3.3-
3.5). Furthermore, we introduce the matrix Mtex ∈ R2×3

to allow for a linear transformation in texture space. This
gives the user the possibility to change the position, rotation,
and scale of an attachment on the target surface easily and
dynamically. Finally, the local coordinate system of a detail
point p on the deformed surface is determined by the matrix
Mmt(p):

Mmt(p) = fmt (Mtex · fuv(p)) . (1)

Figure 3 illustrates the computation of Mmt(p) for a point
p. The mapping function fuv only depends on p. However,
deferred warping supports the use of arbitrary functions as
long as they provide valid texture coordinates. For exam-
ple, an animated attachment can be implemented using a
mapping that depends on a time parameter.

The matrix Mmt can be used to transform detail ge-
ometry on the target surface. But instead of applying this
transformation directly, we introduce another transforma-
tion matrix Mtan ∈ R4×4 to give the user more flexibility.
This matrix provides the possibility to transform the detail
geometry in tangent space before attaching it to the de-
formed surface, e.g., to scale the geometry in direction of

Mtan fmap(p) Mmt(p)

p pw

Fig. 4. To transform a detail point p to world space, we apply a mapping
function fmap that depends on the attachment type. The resulting position
is first transformed by a user defined matrix Mtan, which yields more
flexibility, and then by the matrix Mmt to transform the result onto the
deformed surface.

the surface normal (see Figure 4, middle). The final position
of an attached detail point p in world space is determined
by:

pw = Mmt(p) ·Mtan · fmap(p), (2)

where fmap : R3 7→ R4 is another mapping function which
is required to realize the different attachment types in Sec-
tions 3.3-3.5. Figure 4 illustrates the transformation of the
detail point p to world space.

In summary, we require fmt, the user-defined functions
fuv and fmap as well as optionally the transformation matri-
ces Mtex and Mtan to attach detail geometry. In the following
subsections we will give the missing definitions of these
functions.

3.2 The Transformation Field of a Surface

A surface in 3D space can be parametrized using two
variables u, v, i.e., (x, y, z) = f(u, v). The tangent space
plane can be computed from this surface parametrization
for each (u, v) pair using partial derivatives in u and v as
tu = ∂f

∂u and tv = ∂f
∂v . These vectors define the directions

of the principal axes of u and v in 3D space. Given the
tangent vectors, we can compute the normal of the surface
at position (u, v) as n = tu × tv if the surface is not
degenerated and if the parametrization on the surface is
not pathological (i.e., tu and tv are not parallel). n, tu,
and tv are then linearly independent and form a subspace
in R3, which is aligned with the surface’s tangent space.
The tangent vectors and the normal are orthogonalized and
normalized after their computation to obtain an orthogonal
coordinate system. This is required to prevent a distortion
of the attached geometry.

We extend the determined subspace with the position
(x, y, z) on the surface to form a 3× 4 linear transformation
matrix. The matrix texture function which maps the surface
parameter coordinates (u, v) to the corresponding transfor-
mation matrix is then defined by:

fmt(u, v) =

tu,x nx tv,x x
tu,y ny tv,y y
tu,z nz tv,z z

 . (3)

3.3 Point Attachments

To attach a detail geometry to a point on a target surface (see
Figure 2(a)), we first must define its goal position (ug, vg)
in texture space. Then the corresponding transformation
matrix is determined by Equation (3). By applying this
transformation the source geometry is transformed on the

5

surface and is oriented according to the principal axes of
the subspace.

Since the goal position (ug, vg) of the detail geometry
on the surface is predefined, the first mapping function is
determined by

fuv(p) = (ug, vg, 1)
T . (4)

Hence, each point of the detail geometry has the same
subspace (see Figure 2(a)). The detail geometry must be
defined in the coordinate system of the tangent space. Since
this geometry should only be attached at a single point, the
second mapping function is determined by

fmap(p) =
(
px py pz 1

)T
. (5)

This means that the coordinates of the points of the source
object are directly used to determine their positions in the
subspace on the surface of the target object.

An example for point attachments is shown in Fig-
ure 1(a), where fur is fixed to a dress by this attachment type.
The more complex area and curve attachments are described
in the following subsections.

3.4 Area Attachments
In order to introduce an area attachment (see Figure 2(b)),
we first need to define a mapping function fuv : R3 7→ R3

which yields valid texture coordinates (u, v, 1) for each
point of the detail geometry. Since the detail geometry is
given in the coordinate system of the tangent space, the x, z
coordinates correspond to the two tangent directions. There-
fore, we the define the mapping function by a projection on
the xz-plane:

fuv(p) = (px, pz, 1)
T . (6)

If the resulting coordinates do not range from 0 to 1, we just
scale the whole geometry accordingly to get valid texture
coordinates.

In contrast to a point attachment we get a different
tangent space matrix for each detail point. This means that
each detail point has an own subspace which lies directly
on the target surface (see Figure 2(b)). The distance of a
point to this surface is defined by its y coordinate. Therefore,
we get the final position for a point of the detail geometry
by moving its corresponding surface position in normal
direction by py . Mapping the point p by the function

fmap(p) =
(
0 py 0 1

)T (7)

yields the desired result. Recall that the first and the third
column of Mmt correspond to the two tangent vectors, while
the second and the fourth column correspond to the normal
vector and the surface position (see Equation (3)).

3.5 Curve Attachments
The curve attachment is the most complex type. The source
geometry must be attached to a curve on the deformed
target surface (see Figure 2(c)). To define this curve, the user
has to provide a parametric curve function fc : R 7→ [0, 1]2.
This function delivers two-dimensional coordinates, which
can be directly used to determine the mapping function for
the texture coordinates in Equation (1):

fuv(p) = (fxc (pz), f
y
c (pz), 1)

T
. (8)

This means that we obtain a subspace on the target surface
for each point on the curve (see Figure 2(c)). We use the z
coordinate of the source point as parameter for the curve
function. Hence, the curve is oriented along the vector tv
which is no limitation. For our examples (see Figure 1) we
defined the curve function fc using a cubic Bézier spline
which is transformed to the desired position in texture space
by Mtex.

To define the offsets of a point p in the directions tu and
n, we use the following mapping function in Equation (2):

fmap(p) =
(
px py 0 1

)T
. (9)

Since we used the z component of the source point as
parameter for the curve, the corresponding value of fmap(p)
is set to 0.

The mapping function of Equation (9) attaches a detail
geometry to a curve on the target surface but does not align
the geometry to the curve. If the source geometry should
also be aligned to the curve, we use a different mapping
function:

f ′map(p) =
(
nx

c · px py ny
c · px 1

)T
, (10)

where nc ∈ R2 is the normal vector of the curve at pz . This
function determines the position of the point p in the plane
which is orthogonal to the curve, where py is the height over
the surface and px is the offset perpendicular to the curve.

3.6 Vertex Post-Processing

An important advantage of deferred warping is its seam-
less integration in the vertex transformation process. This
provides the possibility to apply pre- and post-processing
steps to the vertex data and yields a large flexibility. As
an example, we demonstrate this flexibility in our fur
rendering approach, which uses a post-processing step in
order to emulate gravitational forces acting on the hairs
(see Figure 1(a)). The hair geometry is transformed on the
surface of the dress by using point attachments of small fur
patches which are randomly placed and rotated. Without
a post-processing step the hairs would all stand perfectly
orthogonal to the surface which would look unrealistic. To
obtain more realistic results, we therefore manipulate the
vertex positions of a hair, which are given by Equation (2).
First, the y coordinate of each point is reduced depending
on its squared distance to the surface:

p′w := pw −
(
0 c · p2y 0

)T
, (11)

where c is a user-defined value which scales the effect. After
this step all hairs hang down but their lengths vary widely.
We mitigate this problem by adapting the position p′w so
that it has the same distance to the corresponding surface
point ps as the original point pw:

p′′w = ps + |pw − ps|
p′w − ps

|p′w − ps|
. (12)

In this way a simple gravitational fur bending effect was
introduced into the transformation. The result can be seen
in the right image of Figure 9.

6

4 IMPLEMENTATION

Deferred warping is performed in a two pass rendering
process at runtime. In the first rendering pass the matrix
texture is updated. For an animated target geometry we
update the texture per frame to keep track of the animation.
To generate this texture we need to determine the trans-
formation (see Equation (3)) of each vertex of the surface.
This transformation consists of the vertex position as well as
the normal and tangent vectors of the surface at the vertex.
The position is already known and the required vectors can
be easily obtained since state-of-the-art rendering engines
often support dot product bump mapping. For this kind of
bump mapping, tangent space data is needed and typically
stored per vertex in conjunction with the surface normal.
The shader transforms these vectors into world space. Ad-
ditionally, tangent and binormal are orthogonalized and
normalized, before a matrix is rendered into the texture. The
matrix texture is then used in the second rendering pass in
combination with the attachment mechanisms introduced in
Section 3.

Each attachment type can be interpreted as an additional
transformation step inside a vertex transformation stage
of a renderer which is located between the local object
transformation and the view and projection transformation.
The transformation of the normal and tangent space of the
source geometry is performed analogously to the vertex
transformation. The three attachment types were imple-
mented as vertex shader programs. Since only few values
are required to control the mapping functions of the dif-
ferent attachments, we recommend to use bulk processing
methods such as instancing on the GPU to maximize the
geometry throughput. For this purpose we submit an array
of parameters to the shader, which holds placement data
for up to 256 geometry instances. Thus, larger blocks of
object instantiations need to be broken into multiples of 256,
giving a good speedup and still allowing arbitrary numbers
of attached objects. A schematic view of the complete vertex
transformation stage of our implementation is shown in
Figure 5.

In our approach a problem arises when detail geometry
tries to sample the matrix texture at positions not used by
the target surface. Our solution to this problem is to initialize
the matrix texture with a zero matrix. For a single vertex
we can now detect, whether it is outside by checking the
length of the orientation vectors of the matrix. If the length
is smaller than one it is most likely for the vertex to have left
the surface area. In our implementation we set a flag in this
case within the vertex shader, the fragment shader can then
discard all fragments, which are influenced by this vertex.
This way, we can effectively detect and discard illegal states
without much performance loss.

5 RESULTS

We present our results here and in the accompanying video.
All renderings were performed using an image-based light-
ing approach with ambient occlusion. All cloth simulations
use the finite element method (FEM) of Etzmuss et al. [22].
For the simulation in Figure 7 we combined this method
with an adaptive remeshing [23]. In our examples the

Fig. 6. Knitwear model (right) created by replacing the original cloth
mesh by the knitwear pattern (left) using area attachment.

Fig. 7. Our implementation handles line drawings (left). Each curve is
evaluated in the vertex shader to attach a source geometry repeatedly
on the surface (middle). Deferred warping is independent of the mesh
topology of the target surface and can therefore be directly used in
adaptive cloth simulations (right).

matrix texture is assembled by four RGB textures using
floating-point components with a resolution of 512 × 512
pixels.

Figure 1 shows results for point (a,c), curve (b,c), and
area attachments (d,e) as well as combinations of them (c).
The area attachment type even allows for replacing the
surface completely. This can be used to replace a cloth model
which consists of a simple triangle mesh by a complex
knitwear model (see Figure 6) at interactive frame rates. The
curve attachment shader can handle detail geometry that is
repeated along the z-axis. The geometry is repeated n times
via instancing and is mapped to the length of the curve
(see Figure 7). The curves we use in the examples are cubic
Bézier splines, which are read from scalable vector graphics
(SVG) files. In Figure 7 (right) we also demonstrate that
our approach can handle complex topology changes as they
occur, e.g., in adaptive cloth simulations. If we implement
fuv as a time-dependent mapping function to determine
the texture coordinates, we can even animate the source
geometry on a waving flag (see Figure 8).

Our novel method supports the usage of several attach-
ment types at the same time and even allows to deform the
attached geometry in a post-processing step (see Figure 9).
This yields a large flexibility and allows the user to generate
and to deform complex models at interactive frame rates.
Therefore, our approach is well-suited for the usage in
interactive virtual garment prototyping systems. Moreover,
it can be easily integrated in such a system as geometry
post-processing step of the garment simulation.

We tested the performance of our approach on an Intel
Xenon X6550 (2,67 GHz) system with a NVIDIA GeForce
GTX 580. For the test we attached a button geometry con-

7

Fig. 5. Vertex transformation block diagram. The upper pipeline processes 3D coordinates from tangent space to world space. The lower pipeline
processes 2D coordinates defining how the object is placed in texture space on the surface and therefore determines Mmt. The matrices Mtex and
Mtan allow the independent positioning inside tangent and texture space. After an optional post-process of the transformed vertex it is passed to
the standard model view transformation.

Fig. 8. Waving flag with a rotating logo as a demonstration of a time-
dependent mapping function.

Fig. 9. Various attachment types on garment surfaces. Our approach
allows to mix all types and to use them at the same time. Additionally,
the technique can be easily extended to support additional features, e.g.,
to consider gravity in the fur example (right).

taining 928 triangles up to 65000 times to a target surface
resulting in up to 60.1 MTriangles. This test was performed
with a point, an area, and a curve attachment shader. The
results are shown in Figure 10. The performance values of
the single attachment types are very similar and mainly
depend on the number of attached elements. The curve
shader has to evaluate cubic Bézier splines and is therefore
a bit slower. Table 1 shows the number of triangles and the
computation times for the scenarios in Figure 1. Please note:
for all tests no culling or other acceleration techniques were

fr
am

es
 p

er
 s

ec
on

d

number of instances

Area Attachments
Point Attachments

Curve Attachments

Fig. 10. Performance of deferred warping using an NVIDIA GeForce
GTX 580 and massive instancing of a 928 triangles model in conjunction
with our attachment types. The benchmark setups for point, curve and
area attachments are shown on the right side (top to bottom). The
benchmarks were performed by sequentially increasing the number of
button objects on the surface. At the maximum, the pipeline handled
60.1 MTriangles. 65 measurements were taken per curve. GPU instanc-
ing was realized via the corresponding OpenGL extension. Point and
area attachments have a similar performance. The curve attachment
is computationally more expensive since it additionally has to evaluate
parts of a curve in order to transform the vertices.

Image Types Triangles Time (ms)

Fig1. a points 25M ∼ 37
Fig1. b curves 10M ∼ 20
Fig1. c curves and area 6M ∼ 13
Fig1. d area 48M ∼ 56
Fig1. e area 650k < 6

TABLE 1
Numbers of triangles of the detail geometries and computation times

per frame of our algorithm for all examples shown in Figure 1.

used. The tests demonstrate how much performance can be
expected using a naive implementation of the algorithm.

6 DISCUSSION

Performance Considerations
Using a geometry based approach such as deferred warping
has the advantage that it is possible to achieve a very
high amount of detail albeit at the cost of performance.
As demonstrated in Figure 10 (and as expected), there is
a strong relationship between the speed and the amount
of geometry rendered. In contrast, image-based approaches

8

(e.g., Policarpo and Oliveira [6]) have the advantage that the
required number of operations is limited by the number of
visible pixels. However, ray casting approaches need to be
directly supported by the used rendering system, whereas a
pure geometry based approach can be integrated in practi-
cally all rendering systems. The resulting geometry can be
post-processed or even exported without rendering output.
A geometry based approach shifts the necessary computa-
tional power from pixels rendered to the complexity of the
overall geometry processing. Thus, it is useful to reduce the
amount of geometry, where it is not needed. Culling by leav-
ing out invisible parts can improve the performance of the
overall system by a great deal. A survey on occlusion culling
techniques is given by Pantazopoulos and Tzafestas [24].
Due to the flexibility of our approach, culling techniques can
be easily implemented even on single attachment element
level. Therefore, using culling techniques in conjunction
with our method is orthogonal. For this reason we do not
discuss it in more detail in this work. Our performance tests
were performed brute force to get reliable measurements.
We did not use culling at all in our tests.

Flexibility
Looking at the flexibility of our approach, we have the
advantage to work directly with the detail geometry data.
This data is available in every stage of the process and can
be manipulated in various ways, enabling effects such as
bending fur or alternative attachment types. This breaks
the limitation to only cover mapping of the detail geometry
in all mentioned existing techniques. In terms of flexibility,
deferred warping is therefore superior to these techniques.
Additionally, it can be combined with every rendering tech-
nique and allows arbitrary pre- and post-processing of the
detail geometry vertex data.

To prevent the self-intersections and inversions of the
attached detail geometry, bends in the surface have to be
limited to respect the height of the attached detail geometry.
Additionally, deferred warping allows to reduce the amount
of self intersections by low pass filtering the orientation field
inside the matrix texture. This avoids sudden changes in the
orientation of the applied objects. Since the matrix texture
is basically an image, this filtering can be easily applied.
However, to guarantee a penetration-free state more com-
plex filter functions are required which is a topic for future
work. Correctly handling self-penetration requires that the
attached geometry is already considered in the generation
process of the base mesh. Therefore, self-intersections can-
not be completely resolved within our post-processing step
which does not alter the base surface. Note that the problem
of self-intersections is a common issue of all other surface
detailing methods presented in the related work section.

7 CONCLUSION AND FUTURE WORK

In this paper we introduced deferred warping, a novel
approach for real-time deformation of 3D objects attached to
an animated or manipulated surface. The method consists
of two steps, creating the matrix texture containing the
transformations and applying those to the detail geometry.
One of its key advantages compared to previous work is the

fact that detailed geometry is directly transformed, allowing
additional manipulation in a post-processing step as well
as efficient rendering using a standard rasterization-based
pipeline. We demonstrated an implementation in the vertex
shading stage of modern GPUs. Another key advantage is
the flexibility to use different types of attachment which
are typically not supported by existing techniques. This is
exactly the flexibility which is required in virtual garment
prototyping, where different appliqué, such as buttons or
sequins, must be attached in different ways to garment
models.

Our approach opens several directions for future work.
First, we plan to combine deferred warping with proce-
durally generated surface geometry. This allows, e.g., to
integrate more complex knitwear patterns in the virtual
garment prototyping system. Applying deferred warping
after the generation process could be a way to integrate
procedurally generated surface geometry in real-time ani-
mations. Another topic we want to address in future is the
missing collision feedback when using deferred warping in
a simulation framework. Using the attached geometry di-
rectly for collision detection is too expensive for interactive
simulations. To solve this problem one could introduce a
collision geometry which approximates the final surface and
transform this geometry simply by deferred warping.

Finally, we believe that our technique could greatly in-
crease the visual complexity in various application domains
including garments visualized in virtual try-on scenarios
and computer games.

ACKNOWLEDGMENTS

The work of Jan Bender was supported by the Excellence
Initiative of the German Federal and State Governments and
the Graduate School CE at TU Darmstadt. The research lead-
ing to these results has received funding from the European
Commission’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no 285026.

REFERENCES

[1] M. Fontana, C. Rizzi, and U. Cugini, “3D virtual apparel design
for industrial applications,” Comput. Aided Des., vol. 37, no. 6, pp.
609–622, May 2005.

[2] N. Magnenat-Thalmann and P. Volino, “From early draping to
haute couture models: 20 years of research,” The Visual Computer,
vol. 21, no. 8-10, pp. 506–519, 2005.

[3] R. Schmidt, C. Grimm, and B. Wyvill, “Interactive decal composit-
ing with discrete exponential maps,” ACM Trans. Graph., vol. 25,
no. 3, pp. 605–613, Jul. 2006.

[4] K. Zhou, X. Huang, X. Wang, Y. Tong, M. Desbrun, B. Guo, and
H.-Y. Shum, “Mesh quilting for geometric texture synthesis,” ACM
Trans. Graph., vol. 25, no. 3, pp. 690–697, 2006.

[5] C. Ma, L.-Y. Wei, and X. Tong, “Discrete element textures,” ACM
Trans. Graph., vol. 30, no. 4, pp. 62:1–62:10, Jul. 2011.

[6] F. Policarpo and M. M. Oliveira, “Relief mapping of non-height-
field surface details,” in Proc. I3D, 2006, pp. 55–62.

[7] F. Neyret, “Modeling, animating, and rendering complex scenes
using volumetric textures,” IEEE TVCG, vol. 4, no. 1, pp. 55–70,
1998.

[8] R. d. Toledo, B. Wang, and B. Levy, “Geometry textures,” in Proc.
SIBGRAPI, 2007, pp. 79–86.

[9] X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and H.-Y. Shum,
“Generalized displacement maps,” in Proc. EGSR. Eurographics
Association, 2004, pp. 227–233.

[10] S. D. Porumbescu, B. Budge, L. Feng, and K. I. Joy, “Shell maps,”
ACM Trans. Graph., vol. 24, no. 3, pp. 626–633, Jul. 2005.

9

[11] S. Jeschke, S. Mantler, and M. Wimmer, “Interactive smooth and
curved shell mapping,” in Proc. EGSR, 2007, pp. 351–360.

[12] R. Shen, “Animated volume texture mapping for complex scene
generation and editing,” in Proc. Smart Graphics. Springer-Verlag,
2010, pp. 33–43.

[13] N. Ritsche, “Real-time shell space rendering of volumetric ge-
ometry,” in Proc. Computer Graphics and Interactive Techniques in
Australasia and Southeast Asia. ACM, 2006, pp. 265–274.

[14] A. Brodersen, K. Museth, S. Porumbescu, and B. Budge, “Geo-
metric texturing using level sets,” IEEE TVCG, vol. 14, no. 2, pp.
277–288, 2008.

[15] C. Yuksel, J. M. Kaldor, D. L. James, and S. Marschner, “Stitch
meshes for modeling knitted clothing with yarn-level detail,”
ACM Trans. Graph., vol. 31, no. 4, pp. 37:1–37:12, 2012.

[16] S. Schein, E. Karpen, and G. Elber, “Real-time geometric defor-
mation displacement maps using programmable hardware,” The
Visual Computer, vol. 21, no. 8-10, pp. 791–800, 2005.

[17] G. Elber, “Geometric deformation-displacement maps,” in Proc.
Pacific Graphics. IEEE Computer Society, 2002, pp. 156–165.

[18] T. Langer and H.-P. Seidel, “Higher order barycentric coordinates,”
Proc. EUROGRAPHICS, vol. 27(2), no. 2, pp. 459–466, 2008.

[19] Y. Lipman, D. Levin, and D. Cohen-Or, “Green coordinates,” ACM
Trans. Graph., vol. 27, no. 3, pp. 78:1–78:10, 2008.

[20] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time Render-
ing 3rd Edition. A. K. Peters, 2008.

[21] K. Hormann, B. Lévy, and A. Sheffer, “Mesh parameterization:
theory and practice,” in ACM SIGGRAPH courses. ACM, 2007.

[22] O. Etzmuss, M. Keckeisen, and W. Strasser, “A fast finite element
solution for cloth modelling,” in Proc. Pacific Graphics, 2003, pp.
244 – 251.

[23] J. Bender and C. Deul, “Adaptive cloth simulation using corota-
tional finite elements,” Computers & Graphics, vol. 37, no. 7, pp. 820
– 829, 2013.

[24] I. Pantazopoulos and S. Tzafestas, “Occlusion culling algorithms:
A comprehensive survey,” J. Intell. Robotics Syst., vol. 35, no. 2, pp.
123–156, Nov. 2002.

Martin Knuth is a researcher at Fraunhofer In-
stitute for Computer Graphics, Darmstadt, Ger-
many. He received his diploma in computer
science from the Technische Universität Darm-
stadt. His research interests include interac-
tive simulation and visualization suitable for vir-
tual prototyping of garments. Contact him at
martin.knuth@igd.fraunhofer.de.

Jan Bender is a assistant professor of com-
puter science at the Graduate School CE, TU
Darmstadt. He received his diploma, PhD and
habilitation in computer science from the Univer-
sity of Karlsruhe. His research interests include
interactive simulation of multibody systems and
deformable solids, collision handling, fracture,
fluid simulation and real-time visualization. Con-
tact him at bender@gsc.tu-darmstadt.de.

Michael Goesele is a professor of computer
science at TU Darmstadt. He holds a diploma
in computer science from Ulm University and
a doctorate from Saarland University and
the MPI Informatik. His research interests
include computer graphics, computer vision,
and massively parallel computing. Contact
him at michael.goesele@gris.informatik.tu-
darmstadt.de.

Arjan Kuijper is a professor of computer sci-
ence at TU Darmstadt and a staff member at
the Fraunhofer Institute for Computer Graphics
Research (IGD). His research interests include
mathematics-based methods for image process-
ing, pattern recognition, computer vision and
graphics. Kuijper received a habilitation from TU
Graz’s Institute for Computer Graphics and Vi-
sion and a doctorate from Utrecht University.
Contact him at arjan.kuijper@igd.fraunhofer.de.

