
Interactive Simulation of Rigid Body Dynamics in Computer
Graphics

Jan Bender1, Kenny Erleben2 and Jeff Trinkle3

1Graduate School CE, TU Darmstadt, Germany
2Department of Computer Science, University of Copenhagen, Denmark

3Department of Computer Science, Rensselaer Polytechnic Institute, USA

Abstract
Interactive rigid body simulation is an important part of many modern computer tools, which no authoring tool
nor game engine can do without. Such high performance computer tools open up new possibilities for changing
how designers, engineers, modelers and animators work with their design problems.
This paper is a self contained state-of-the-art report on the physics, the models, the numerical methods and the
algorithms used in interactive rigid body simulation all of which have evolved and matured over the past 20 years.
Furthermore, the paper communicates the mathematical and theoretical details in a pedagogical manner.
This paper is not only a stake in the sand on what has been done, it also seeks to give the reader deeper insights
to help guide their future research.

Keywords: Rigid Body Dynamics, Contact Mechanics, Articulated Bodies, Jointed Mechanisms, Contact Point
Generation, Iterative Methods.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Physically-based modeling; Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism—Animation; Mathematics of Computing [G.1.6]: Numerical Analysis—Nonlinear programming

1. Motivation and Perspective on Interactive Rigid
Body Simulation

Rigid body dynamics simulation is an integral and important
part of many modern computer tools in a wide range of ap-
plication areas such as computer games, animation software
for digital production, including special effects in film and
animation movies, robotics validation, virtual prototyping,
and training simulators, just to mention a few.

In this paper, we focus on interactive rigid body dynamics
simulation (as shown in Figure 1), a subfield that has evolved
rapidly over the past 10 years and moved the frontier of run-
time simulation to applications in areas where, until recently,
only off-line simulation was possible. As a consequence, this
changes the computer tools humans use and has great eco-
nomical impact on society as a whole.

The term “interactive” implies a loop closed around a hu-
man and a simulation tool. For applications such as games
where the feedback is simply animation on a screen, a rea-

sonable goal is that the simulation delivers 60 frames per
second (fps). For haptic rendering, the simulation would be
part of a feedback loop running at 1000Hz, where this rate is
needed to display realistic forces to the user [LO08].

Rigid body dynamics has a long history in computer
graphics [AG85,MW88,Hah88,Bar89,BBZ91] and a wealth
of work exists on the topic. In this state-of-the-art paper,
we will cover the important work over the past 20 years
on interactive rigid body simulation since the last state-
of-the-art report [Bar93] on the subject. In his STAR pa-
per, Baraff discussed penalty- and constraint-based meth-
ods which use an acceleration-level nonlinear complemen-
tarity problem (NCP) formulation. He did not cover many
details on solving the complementarity problem. Not un-
til 1994, when Baraff published his version of a direct
method based on pivoting, was it feasible to compute so-
lutions for Baraff’s complementarity problem formulation.
For years this solution was the de-facto standard method
of rigid body dynamics and it was used in both Maya and

2 J. Bender et al. / Interactive Rigid Body Simulation

Figure 1: Interactive rigid body simulations require the ef-
ficient simulation of joints, motors, collisions and contacts
with friction.

Open Dynamics Engine (ODE) [Smi00]. However, the solu-
tion only remained interactive for small sized configurations
(less than 100 interacting objects). When the number of in-
teracting objects increased, the computational cost quickly
made simulations take hours to compute. The acceleration-
level formulation also caused problems concerning the ex-
istence of solutions and their uniqueness. Besides, solutions
found by his algorithm did not always satisfy the static fric-
tion constraints. In the following years, the impulse based
paradigm was revisited by Mirtich [Mir96] and became a
strong competitor when concerning interactive simulation.
Soon the interactive simulation community moved onto it-
erative methods and velocity level formulations, eventually
evolving into the technology one finds today in engines such
as Bullet [Cou13, Erl07] and ODE. As of this writing inter-
active simulations on single core CPUs with several 1000
and up to 10000 interacting objects are feasible. Multi-core
and GPU works even go far beyond these limits. Today
much active cross-disciplinary work is ongoing on differ-
ent contact formulations and iterative solvers. Looking be-
yond contact problems, one finds that simulation methods
for articulated bodies have also undergone rapid develop-
ment. In computer graphics, the reduced coordinate formu-
lations have won much recognition as being superior for in-
teractive rag-doll simulations.

The recent trend in interactive rigid body simulation has
focused on delivering larger simulations of rigid bodies or
creating faster simulation methods. The need for bigger and
faster simulations is motivated by rigid body simulators be-
ing used (e.g., in digital production). The need in production
for creating interesting motion requires more complex simu-
lation scenarios. The well known trade-off between accuracy
and performance is an inherent property of interactive rigid
body simulation. Many applications enforce a performance
constraint, which leaves insufficient time for computing ac-
curate solutions. Thus, it is a balance between accuracy and

stability properties. Robustness is another desirable numeri-
cal trait when considering a human (or the real world in case
of robotics) interacting with the simulator. In summary, the
holy grail of interactive rigid body simulation is extremely
fast and robust simulation methods that can deal gracefully
with large scale complex simulation scenarios under hard
performance constraints.

The maturing technology makes it possible to use rigid
body simulators as sub-parts in larger systems. For instance,
in time critical scenarios like tracking humans or maneuver-
ing a robot, a simulator can be used as a prediction tool.
From a digital design viewpoint, one may define a spectrum
of technology. At one end of the spectrum, one finds off-line
simulators that may take hours or days to compute results,
but on the other hand they deliver high quality results. For
movie production, several such computer graphics simula-
tion methods have been presented [Bar94, GBF03, KEP05,
KSJP08, SKV∗12]. At the other end of the spectrum, one
finds the fast run-time simulators capable of delivering plau-
sible results very fast. This kind of simulator often originates
from game physics. At the middle of the spectrum, one finds
moderately fast simulators that can deliver high fidelity re-
sults. These are suitable for testing design ideas or training.
In general, different application areas have different require-
ments in regards to performance/quality trade-offs and accu-
racy. We refer the interested reader to [BETC12] for a de-
tailed discussion on this. [BETC12] contains a detailed tax-
onomy of models. We have omitted the taxonomy in this
paper and chosen to focus more on the “key” model and cor-
responding numerical methods.

1.1. The Anatomy and Physiology of a Rigid Body
Simulator

A rigid body simulator is a complex and large piece of soft-
ware, which traditionally implements a simulation loop sim-
ilar to the one shown in Figure 2. The loop begins with a
collision detection query to find the contact points between
the various bodies. These points are needed to write the
physical laws governing the motions of the bodies, which
are then solved to determine contact forces that provide
proper contact friction effects and prevent bodies from inter-
penetrating. This phase is termed contact handling. Newly
formed contacts imply collisions, which are accompanied by
impulsive forces (i.e., forces with infinite magnitudes over
infinitesimal time periods). Impulsive forces cause instanta-
neous changes in the body velocities, so are often handled
separately from pre-existing contacts. This is termed colli-
sion resolving. After computing all the contact forces, the
positions and velocities of the bodies are integrated forward
in time before a new iteration of the simulation loop starts.
Several iterations of the loop might be performed before a
frame is rendered.

In order to derive the correct physical laws for the scene,
all contacts between bodies must be found. If there are n

J. Bender et al. / Interactive Rigid Body Simulation 3

Figure 2: The simulation loop provides a coarse description
of data flow and processes in a rigid body simulator.

Figure 3: A modular phase description of the sub tasks of a
rigid body simulator.

bodies, then there are O(n2) pairs of bodies to test for col-
lisions. To avoid collision detection becoming a computa-
tional bottleneck, it is broken into phases (see Figure 3). In
the first phase, called the broad phase, bodies are approx-
imated by simple geometric primitives, for which distance
computations are very fast. For example, each body is re-
placed by the smallest sphere that completely contains it. If
the spheres of two bodies do not overlap, then neither do
the actual bodies. The broad phase culling happens in global
world coordinates. If the individual bodies are complex and
consist of many parts, an additional stage called mid phase
is used to cull parts in local body space. The culling is typ-
ically performed using bounding volume hierarchies. In the
narrow phase the detailed geometries of remaining bodies
are used to find the precise body features in contact and
the location of the contact points. The narrow phase is of-
ten combined with the mid phase for performance reasons.
Note that some narrow phase algorithms do not return all the
contact information needed to formulate the dynamic model,
in which case a separate contact point generation algorithm
must be applied. This paper will not treat the subject of colli-
sion detection instead we refer to [BETC12] for further dis-
cussion. For more details in general about collision detection
we recommend [LG98, Eri04].

1.2. Outline

We first give a short introduction to rigid body dynamics in
Section 2. For a better understanding, we separated the ex-
planation of fundamental models for systems with joints and

contacts in Section 3 from the discussion of numerical meth-
ods to compute solutions in Section 4. The parallelization
and optimization of these methods is covered in Section 5.
Finally, we conclude in Section 6 pointing out several av-
enues for future work.

2. A Quick Primer

Rigid body simulation requires the numerical solution of
nonlinear ordinary differential equations constrained by al-
gebraic inequalities for which closed-form solutions do not
exist. Assume time t is the independent variable. Given a
time period [t0, tN], driving inputs, and the initial state of
the system, the differential equations (the instantaneous-
time model) are discretized in time to yield an approx-
imate discrete-time model, in the form of a system of
(state-dependent) algebraic equations and inequalities. The
discrete-time model is formulated and solved at each time
step (t0, .., tN).

In rigid body simulation, one begins with the Newton-
Euler (differential) equations, which describe the dynamic
motion of the bodies without contact. These differential
equations are then augmented with three types of conditions:
nonpenetration constraints that prevent the bodies from over-
lapping, a friction model that requires contact forces to re-
main within their friction cones, and complementarity (or
variational inequality) constraints that enforce certain dis-
junctive relationships among the variables. These relation-
ships enforce critically important physical effects; for exam-
ple, a contact force must become zero if two bodies sep-
arate and if bodies are sliding on one another, the friction
force acts in the direction that will most quickly halt the
sliding. Putting all these components together yields the
instantaneous-time model, as a system of differential alge-
braic equations and inequalities that can be reformulated as a
differential nonlinear complementarity problem (dNCP) that
cannot be solved in closed form. Instead, it is discretized
in time, producing a sequence of NCPs whose solutions
approximate the state and contact force trajectories of the
system. In the ideal case, the discrete trajectories produced
in this process will converge to trajectories of the original
instantaneous-time model. Computing a discrete-time solu-
tion requires a consideration of possible reformulations of
the NCPs and the choice of a solution method. Two good
options are a reformulation as nonsmooth equation using the
Fischer-Burmeister function (Section 4.3) or proximal point
mappings [Stu08].

2.1. Classical Mechanics

Simulation of the motion of a system of rigid bodies is based
on a famous system of differential equations, the Newton-
Euler equations, which can be derived from Newton’s laws
and other basic concepts from classical mechanics:

• Newton’s 1st law: The velocity of a body remains un-
changed unless acted upon by a force.

4 J. Bender et al. / Interactive Rigid Body Simulation

{N}

{B}
x

v
ω

fτ
g

Figure 4: Illustration of a spatial rigid body showing the
body frame {B} and inertial frame {N} as well as notation
for positions, velocities and forces.

• Newton’s 2nd law: The time rate of change of momentum
of a body is equal to the applied force.
• Newton’s 3rd law: For every force there is an equal and

opposite force.

Two important implications of Newton’s laws, when applied
to rigid body dynamics, are: (from the first law) the equa-
tions apply only when the bodies are observed from an iner-
tial (non-accelerating) coordinate frame and (from the third
law) at a contact point between two touching bodies, the
force applied from one body onto the second is equal in mag-
nitude, opposite in direction, and collinear with the force ap-
plied by the second onto the first. Applying these two im-
plications to Newton’s second law gives rise to differential
equations of motion. While the second law actually applies
only to particles, Euler extended it to the case of rigid bodies
by viewing them as collections of infinite numbers of parti-
cles and applying a bit of calculus [GPS02,ESHD05]. This is
why the equations of motion are known as the Newton-Euler
equations.

Before presenting the Newton-Euler equations, we need
to introduce a number of concepts from classical mechanics.
Figure 4 shows a rigid body in space, moving with transla-
tional velocity v and rotational velocity ω, while being acted
upon by an applied force f and moment τ (also known as a
torque).

2.1.1. Rigid Bodies

A rigid body is an idealized solid object for which the dis-
tance between every pair of points on the object will never
change, even if infinitely large forces are applied. A rigid
body has mass m, which is distributed over its volume. The
centroid of this distribution (marked by the circle with two
blackened quarters) is called the center of mass. To compute
rotational motions, the mass distribution is important. This
is captured in a 3-by-3 matrix known as the mass (or iner-
tia) matrix I ∈ R(3×3). It is a symmetric and positive defi-
nite matrix with elements known as moments of inertia and
products of inertia, which are integrals of certain functions
over the volume of the body [Mei70]. When the integrals are
computed in a body-fixed frame, the mass matrix is constant

and will be denoted by Ibody. The most convenient body-
fixed frame for simulation is one with its origin at the center
of mass and axes oriented such that Ibody is diagonal. When
computed in the inertial frame, the mass matrix is time vary-
ing and will be denoted by I.

2.1.2. Rigid Body Kinematics

The body’s position in the inertial (or world) frame is given
by the vector x ∈ R3, from the origin of the inertial frame
{N} fixed in the world to the origin of the frame {B} fixed
in the body. Note that since three independent numbers are
needed to specify the location of the center of mass, a rigid
body has three translational degrees of freedom.

The orientation of a rigid body is defined as the orien-
tation of the body-fixed frame with respect to the inertial
frame. While many representations of orientation exist, here
we use rotation matrices R ∈ R3×3 and unit quaternions
Q ∈ H. Rotation matrices are members of the class of or-
thogonal matrices. Denoting the columns by R1, R2, and
R3, orthogonal matrices must satisfy: ‖ Ri ‖= 1; i = 1,2,3
and RT

i R j = 0; ∀i 6= j; i = 1,2,3; j = 1,2,3. Since the nine
numbers in R must satisfy these six equations, only three
numbers can be freely chosen. Thus, a rigid body has three
rotational degrees of freedom. A unit quaternion is four num-
bers [Qs, Qx, Qy, Qz], constrained so that the sum of their
squares is one. The fourth element can be computed in terms
of the other three, and this redundancy serves as additional
confirmation that orientation has three degrees of freedom.
Considering translation and rotation together, a rigid body
has six degrees of freedom.

The rotational velocity ω ∈ R3 (also known as, angular
velocity) of a body can be thought of as vector where the di-
rection identifies a line about which all points on the body
instantaneously rotate (shown as a red vector with a double
arrowhead in Figure 4). The magnitude determines the rate
of rotation. While the rate of rotation may be changing over
time, at each instant, every point on a rigid body has exactly
the same rotational velocity. The three elements of ω corre-
spond to the three rotational degrees of freedom.

Translational velocity v ∈ R3 (also inaccurately referred
to as linear velocity) is an attribute of a point, not a body,
because when a body rotates, not all points have the same
velocity (see the red vector with a single arrowhead in Fig-
ure 4). However, the velocity of every point can be deter-
mined from the velocity of one reference point and the an-
gular velocity of the body. In rigid body dynamics, the center
of mass is typically chosen as the reference point.

Next we need velocity kinematic relationships. Kinemat-
ics is the study of motion without concern for forces, mo-
ments, or body masses. By contrast, dynamics is the study of
how forces produce motions. Since dynamic motions must
also be kinematically feasible, kinematics is an essential
building block of dynamics. The particular kinematic rela-
tionships needed here relate the time derivatives of position

J. Bender et al. / Interactive Rigid Body Simulation 5

and orientation variables to the translational and rotational
velocities.

Let us define q = (x, Q) as the tuple containing the po-
sition of the center of mass and the orientation parameters.
Note that the number of elements of q is seven if Q is a
quaternion (which is the most common choice). The gener-
alized velocity of the body is defined as: u = [vT

ω
T]T ∈R6.

The velocity kinematic equations for a rigid body relate q̇ to
u, which may have different numbers of elements. The rela-
tionship between the translational quantities is simple: ẋ= v.
The time rate of change of the rotational parameter Q is the
product of a Jacobian matrix and the rotational velocity of
the body: Q̇ = G(Q)ω, where the details of G(Q) are deter-
mined by the orientation representation. In the specific case
when Q is a unit quaternion, G(Q) is defined as follows:

G =
1
2

−Qx −Qy −Qz

Qs Qz −Qy
−Qz Qs Qx

Qy −Qx Qs

 .
Putting the two velocity kinematic relationships together
yields:

q̇ = Hu, (1)

where H =

[
13×3 0

0 G

]
, where 13×3 is the 3-by-3 identity

matrix. Note that when the orientation representation uses
more than three parameters, G is not square, although it has
the property that GT G = 13×3.

2.1.3. Constraints

Constraints are equations and inequalities that change the
way pairs of bodies are allowed to move relative to one an-
other. Since they are kinematic restrictions, they also affect
the dynamics. The constraints alone do not provide a direct
means to compute the forces that must exist to enforce them.
Generally, constraints are functions of generalized position
variables, generalized velocities, and their derivatives to any
order:

C(q1,q2,u1,u2, u̇1, u̇2, ..., t) = 0 (2)

or

C(q1,q2,u1,u2, u̇1, u̇2, ..., t)≥ 0, (3)

where the subscripts indicate the body. Equality and inequal-
ity constraints are referred to as bilateral and unilateral con-
straints, respectively.

As an example, consider two rigid spheres of radii r1 and
r2 and with centers located at x1 and x2. Consider the con-
straint function:

C(x1,x2) = ||x1−x2||− (r1 + r2), (4)

where || · || is the Euclidean two-norm. If C = 0, then the sur-
faces of the spheres touch at a single point. If this bilateral

Figure 5: Constraint classification

constraint is imposed on the Newton-Euler equations, then
regardless of the speeds of the spheres and the sizes of the
forces, the surfaces will always remain in single-point con-
tact. Intuitively, for this to happen the constraint force nor-
mal to the sphere surfaces can be compressive (the spheres
push on each other) or tensile (the spheres pull). By con-
trast, if C is nonnegative, then the two spheres may move
away from each other but never overlap. Correspondingly,
the constraint force can only be compressive.

The form of a constraint (see Figure 5) impacts the way in
which the Newton-Euler equations should be solved. Holo-
nomic constraints are those which can be expressed as an
equality in terms of only generalized position variables and
time. These are further subdivided into those independent
of time, known as scleronomic, and those dependent on
time, rheonomic. An example of a scleronomic constraint is
the equality constraint of the spheres discussed above. Rhe-
nomic constraints typically arise when one body is kinemat-
ically controlled (i.e., it is required to follow a known trajec-
tory regardless of the forces that might be required to make
that happen).

Any constraint that is not holonomic is said to be non-
holonomic. This class includes all unilateral constraints and
equality constraints which are not integrable in the sense that
generalized velocity variables and derivatives of the gener-
alized position variables (and higher derivatives, if present)
cannot be eliminated. The steering constraint for a car on a
flat surface whose wheels are not allowed to skid is a non-
holonomic equality constraint. If the car is driving, its ro-
tational velocity is directly proportional the car’s forward
speed and the angle of the front wheels. This means the
fundamental constraint between two velocities cannot be
integrated to yield an equivalent constraint written solely
in terms of position variables, hence the constraint is non-
holonomic.

Holonomic constraints remove degrees of freedom from
the system, i.e., the dimension of the space of possible gener-
alized positions is reduced. For instance two free rigid bodies
have a total of 12 degrees of freedom, but as in the previous
case of the touching spheres, one degree of freedom (DOF)
is lost. Assume that one sphere can be moved at will through
space using all six degrees of freedom. Now view the sec-

6 J. Bender et al. / Interactive Rigid Body Simulation

ond sphere from a frame of reference fixed in the first. From
this perspective, the second sphere can rotate with all three
degrees of freedom while maintaining contact and also trans-
late with the contact point moving across the surface of the
first sphere. Since this surface is two-dimensional, the sec-
ond sphere has only two translational degrees of freedom.
Thus a system of two spheres with one contact constraint
has 11 degrees of freedom. If instead, two bodies were con-
nected by a hinge joint, the system would have seven degrees
of freedom. That is, if you allow one body to move with six
degrees of freedom, then the other can only rotate about the
hinge joint with respect to the first body. This also implies
that a hinge constraint cannot be represented with fewer than
five holonomic constraints.

One should note that non-holonomic equality constraints
remove only instantaneous, or local, degrees of freedom
from the system. In the car example, the car cannot trans-
late instantaneously left or right. However, every competent
driver can accomplish a lateral move of his car by executing
the kind of maneuver used to parallel park in a small space.

2.1.4. Forces and Moments and Relative Velocity

A force f is a vector with a line of action. A force produces a
moment τ or torque about any point not on the line of action
of the force. Let r and ρ be two distinct points such that r is
on the line of action and ρ is not. Then the moment of f with
respect to r is defined as τ = (r−ρ)× f. Moments need not
be byproducts of forces; they exist in their own right, which
is why one is shown applied to the body in Figure 4.

Many sources of forces exist in rigid body dynamics, for
example, forces from wind, gravity, and electro-magnetics.
However, the forces that are most difficult to deal with, but
also critically important in interactive simulation, are con-
straint and friction forces.

Gravity, as we experience it on Earth, acts equally on ev-
ery particle of mass in a rigid body. Nonetheless, the grav-
ity force is shown in Figure 4 as a single force of magni-
tude mg with line of action through the center of mass of the
body. This is because the affect of gravity acting on an entire
body is equivalent to a single force of magnitude mg acting
through its center of mass. Friction forces are dissipative.
They act in contact interfaces to halt sliding at sliding con-
tacts and to prevent sliding at sticking and rolling contacts.
The type of friction force focused on here is dry friction,
which is assumed to act at contacts between body surfaces,
including the inner surfaces of joints. Dry friction, as op-
posed to viscous friction, allows bodies to stick together and
requires a non-zero tangential force to initiate sliding.

For point contacts between body surfaces, we consider
the standard isotropic Coulomb friction model. Assume that
contact occurs at a single point with a uniquely defined tan-
gent plane. Then place the origin of the contact coordinate
frame at the contact point and let the t- and o-axes lie in the

ft

fo

fn

ν
t̂

ô

n̂

(a) A Friction Cone

νt

νo

νn

ν

νf

(b) Contact velocities

Figure 6: The friction cone of a contact and the decomposi-
tion of the contact force and relative velocity.

tangent plane (see Figure 6(a)). The n-axis is orthogonal to
the t- and o-axes and is referred to as the contact normal.
A contact force f is decomposed into a normal component
fn and tangential components, ft and fo. Because bodies are
able to push against each other, but not pull, the normal force
is unilateral, i.e., fn ≥ 0. Similarly, the relative velocity be-
tween the touching points on the bodies ν is decomposed
into components, νn, νt , and νo (see Figure 6(b)). The con-
tact is sliding if νn = 0 and νt or νo is nonzero, and separat-
ing if νn is greater than zero. Negative νn is not allowed, as
it corresponds to interpenetration of the bodies.

The Coulomb model has two conditions: first, the net con-
tact force must lie in a quadratic friction cone (see the gray
cone in Figure 6(a)) and second, when the bodies are slip-
ping, the friction force must be the one on the boundary of
the cone that directly opposes the sliding motion. The cone
is defined as follows:

F(fn,µ) = {µ2f2
n− f2

t − f2
o ≥ 0, fn ≥ 0} (5)

where µ≥ 0 is the friction coefficient. The friction force that
maximizes friction dissipation is:

ft =−µfn
νt

β
, fo =−µfn

νo

β
, (6)

where β =
√

ν2
t +ν2

o is the sliding speed at the contact (see
Figure 6(b)).

Common variations on this model include using two dif-
ferent friction coefficients; one for sticking contact and a
lower one for sliding. When friction forces are larger in one
direction than another, one can replace the circular cone with
an elliptical cone. In some simulation schemes the nonlinear-
ity of the friction cone causes problems, and so it is elimi-
nated by approximating the cone as a polyhedral cone. Fi-
nally, to model the fact that contacts between real bodies are
actually small patches, the friction cone can be extended, as
done by Contensou, to allow for a friction moment that re-
sists rotation about the contact normal [Con62, TTP01].

A similar model for dry friction acting to resist joint mo-
tion will be discussed in Section 3.

J. Bender et al. / Interactive Rigid Body Simulation 7

2.1.5. The Newton-Euler Equations

The Newton-Euler equations are obtained by applying New-
ton’s second law twice; once for translational motion and
again for rotational motion. Specifically, the net force f ap-
plied to the body is equal to the time rate of change of trans-
lational momentum mv (i.e., d

dt (mv)= f) and the net moment
τ is equal to the time rate of change of rotational momentum
Iω (i.e., d

dt (Iω) = τ). Specializing these equations to the case
of a rigid body (which, by definition, has constant mass and
mass distribution) yields:

mv̇ = f (7)

Iω̇+ω× Iω = τ, (8)

where× represents the vector cross product and recall that I
is the 3-by-3 inertia matrix.

The second term on the left side of the rotational equa-
tion is called the “gyroscopic force” which arises from the
proper differentiation of the rotational momentum. The ro-
tational velocity and mass matrix must both be expressed in
the same frame. This is usually a body-fixed frame (which
is rotating with the body in the inertial frame) or the inertial
frame. In a body-fixed frame, Ibody is constant, but ω is a
vector expressed in a rotating frame, which means that Iω

is also a vector expressed in a rotating frame. The first term
represents the rate of increase of angular velocity along the
vector ω.

One might be tempted to try to eliminate the second
term by expressing the rotational quantities in the inertial
frame and differentiating them there. However, this does
not work, because the inertia matrix expressed in the iner-
tial frame I is time-varying, as seen by the following iden-
tity I = RIbodyRT . Differentiating inertial frame quantities
yields an equivalent expression with equivalent complexity.

The Newton-Euler equations contain the net force f and
moment τ. f is simply the vector sum of all forces acting on
the body. τ is the vector sum of the moments of all the forces
and pure moments. One can see from equation (7), that the
net force causes the center of gravity to accelerate in the di-
rection of the net force proportional to its magnitude. This is
true independent of the location of the line of action in space.
Equation (8) implies that the net moment directly affects the
rotational velocity of the body, but in a more complicated
way. The gyroscopic moments tend to cause the rotation axis
of a rotating rigid body to “precess” about a circular cone.

The Newton-Euler equations can also be written as:

Mu̇ = g, (9)

where M is the generalized mass matrix containing the body
mass properties and g is the vector of loads, including the gy-
roscopic moment. The generalized mass matrix M is a block
diagonal matrix defined as:

M =

[
m13×3 0

0 I

]
∈ R6×6, (10)

where 13×3 is the 3-by-3 identity matrix. Since each block is
positive definite and symmetric, so too is M. The load vector
of a rigid body is defined by:

g =

[
f

τ−ω× Iω

]
∈ R6. (11)

Simulation of free body motion is done by integrating
the Newton-Euler equations (9) and the velocity kinematic
equation (1) simultaneously. If there are contacts and joints,
then these equations must be augmented with the constraint
equations (2,3). If in addition, dry friction exists in contacts,
then equations (5,6) must be included. The complete sys-
tem of differential and algebraic equations and inequalities is
challenging to integrate and the development of robust meth-
ods has been a research topic for more than 20 years. To push
the boundaries of interactive rigid body dynamics, one must
maintain the current level of solution robustness and greatly
increase the solution speed.

2.1.6. Impulse

When two bodies collide, those bodies, and any other bod-
ies they are touching, experience very high forces of very
short duration. In the case of ideal rigid bodies, the force
magnitudes become infinite and the duration becomes in-
finitesimal. These forces are referred to as impulsive forces
or shocks. One can see from equation (7), that shocks cause
infinite accelerations, which makes direct numerical integra-
tion of the Newton-Euler equations impossible. One way to
deal with this problem during simulation is to use a stan-
dard integration method up to the time of impact, then use
an impulse-momentum law to determine the jump disconti-
nuities in the velocities, and finally restart the integrator.

Let [t, t +∆t] be a time step during which a collision oc-
curs. Further, define p =

∫ t+∆t
t fdt as the impulse of the

net force and mv as translational momentum. Integrating
equation (7) from t to t + ∆t yields m(v(t + ∆t)− v(t)) =∫ t+∆t

t fdt, which states that impulse of the net applied force
equals the change of translational momentum of the body. In
rigid body collisions, ∆t approaches zero. Taking the limit as
∆t goes to zero, one obtains an impulse momentum law that
is applied at the instant of impact to compute post collision
velocities. Since ∆t goes to zero and the velocities remain
finite, the generalized position of the bodies are fixed during
the impact. After processing the collision, one has the values
of the generalized positions and velocities, which are the ini-
tial conditions to restart the integrator. Note that integration
of the rotational equation (8) yields an impulse-momentum
law for determining jump discontinuities in the rotational ve-
locities.

Based on impulse-momentum laws, several algebraic col-
lision rules have been proposed. Newton’s Hypothesis is
stated in terms of the normal component of the relative ve-
locity of the colliding points just before and just after colli-
sion: v+n = −εv−n , where v−n is the relative normal velocity

8 J. Bender et al. / Interactive Rigid Body Simulation

just before impact, v+n is the relative normal velocity just af-
ter impact, and ε ∈ [0,1] is known as the coefficient of resti-
tution. Setting ε to zero yields a perfectly plastic impact (i.e.,
an impact with no bounce). Setting this value to 1 yields per-
fectly elastic impacts (i.e., no energy is lost).

Poisson’s Hypothesis is similar, but is a function of col-
lision impulse rather than the rate of approach. The normal
impulse is divided into two parts, pc

n and pr
n, which are re-

lated as follows pr
n = εpc

n, where again ε ∈ [0,1]. Immedi-
ately prior to the collision, ν

−
n of the impact points is neg-

ative. The compression impulse pc
n is defined as the amount

of impulse required to cause the relative normal velocity to
become zero - just enough to prevent body interpenetration
with no bounce. The restitution impulse is applied after the
compression impulse to generate bounce (i.e., ν

+
n > 0).

The same idea can be applied to frictional collision im-
pulses by replacing the normal components of the impulses
and velocities with the tangential components (see for ex-
ample [Bra91]). The normal and tangential impact hypothe-
ses can be used together to determine the velocity jumps
caused by impacts. While simple and intuitive, this approach
can unfortunately generate energy during oblique collisions.
To prevent such unrealistic outcomes, Stronge developed
an energy-based collision law that imposes a condition that
prevents energy generation. Chatterjee and Ruina incorpo-
rated Stronge’s energy constraint and recast the collision
law in terms of two parameters that are physically mean-
ingful [CR98].

3. Models for Systems with Frictional Joints and
Contacts

This section introduces the most important models for sys-
tems with joints and contacts. In this paper we focus on si-
multaneous models using a constraint based approach. Nu-
merical methods for the computation of solutions are pre-
sented in Section 4.

The laws of physics must be combined into what we
term an “instantaneous-time” model, which describes the
continuous-time motions of the rigid bodies. Following this,
we discretize this model over time to obtain a “discrete-
time” model, which is a sequence of time-stepping sub-
problems. The subproblems are formulated and numerically
solved at every time step to simulate the system.

3.1. Model Components

Here we take a strict approach trying to keep the physics
as correct as possible by only introducing errors of lin-
earization and discretization. The model consists of five
parts: the Newton-Euler equation [Lan86], a kinematic map
(to relate time derivatives of configuration parameters to
translational and angular velocity variables), equality con-
straints (to model permanent joint connections), normal con-
tact conditions (to model intermittent contact behavior),

and a dry friction law satisfying the principle of maximum
power dissipation, also known as the principle of maximum
work [Goy89]. These five parts will be explained in detail
below.

Two types of constraints exist (see Section 2.1.3): per-
manent mechanical joints, each represented by a system of
equations (five scalar equations in the case of a one-DOF
joint), and isolated point contacts with well-defined contact
normals, each represented by one scalar inequality. Let B
and U denote the mutually exclusive sets of bilateral (equal-
ity) and unilateral (inequality) contacts:

B = {i : contact i is a joint} (12)

U = {i : contact i is a point contact}, (13)

where B∪U = {1, ...,nc} and nc is the number of contacts.
Note that distributed contacts can be approximated arbitrar-
ily well by a number of isolated point contacts.

To formulate the equations of motion properly, one needs
precise definitions of contact maintenance, sliding, and
sticking. It is convenient to partition possible relative mo-
tions at each contact into normal and frictional subspaces.
Let κCin and κCi f , where κ ∈ {b, u}, denote signed distance
functions (or gap functions) in the normal and friction sub-
space directions at contact i. If two bodies touch at contact i,
then κCin = 0. This is always enforced for joints (bCin = 0),
which are permanent contacts, but not for unilateral contacts,
which are broken as bodies separate (uCin > 0). The con-
straint function (4) for two rigid spheres is a simple example
of a gap function that can be written in closed form. Sim-
ple gap functions also arise in one-DOF joints with limits;
if qi is the displacement of joint i, and qi,min and qi,max are
the minimum and maximum displacements, then joint i has
two gap functions: qi− qi,min ≥ 0 and qi,max− qi ≥ 0. Gen-
erally gap functions are not available in closed form, but for-
tunately, they are not needed by most simulation algorithms.
In explicit time-stepping methods, such as considered in this
paper, one simply needs gap values at the start of the current
time step, and these can be obtained from collision detection
algorithms. In the case of geometrically implicit algorithms,
such as the one developed by Chakraborty et al. [CBAT13],
one needs closed form expressions of the body geometries,
but not closed form gap functions.

The first time derivatives of the distance functions are the
relative contact velocities, κ

νiσ = d
dt
(

κCiσ
)

; κ∈ {b, u},σ∈
{n, f}. Note that κ

νin and κ
νi f are orthogonal subspaces,

where unallowed motions are prevented by body structures
and sliding motions are resisted by friction forces, respec-
tively. If a pair of contact points (one on each body at the
point of touching) are in sticking contact, instantaneously,
the relative velocity of the contact points projected into the
frictional subspace is zero (κ

νi f = 0). If they slip, at least one
friction direction displacement will become nonzero. For ex-
ample, the friction direction of a one-DOF joint is in the di-
rection of motion of the joint. For a unilateral contact with

J. Bender et al. / Interactive Rigid Body Simulation 9

isotropic Coulomb friction, the friction subspace will con-
sist of relative translation in the t,o-plane. The correspond-
ing displacement functions will be denoted by uCit and uCio.
Relative rotations are not resisted by body structure or fric-
tion, so they are not included in either subspace.

We now partition all contacts into sliding and sticking
subsets. At the position level, contact i is sustained if the dis-
tance function κCin(q, t); κ ∈ {b,u} is equal to zero for a fi-
nite period of time. However, one cannot distinguish sliding
from sticking with this position-level condition; one needs
time derivatives. The velocity-level set definitions are:

S = {i : κCin = 0, κ
νin = 0, κ

νi f 6= 0} (14)

R = {i : κCin = 0, κ
νin = 0, κ

νi f = 0}, (15)

where the sets S andR are mutually exclusive.

We are now in a position to develop the system of equa-
tions and inequalities defining the instantaneous-time dy-
namic model of a multi-rigid-body system with bilateral and
unilateral contacts.

Newton-Euler Equations: The Newton-Euler equation for
a system of rigid bodies is defined by:

M(q)u̇ = g(q,u, t), (16)

where M(q) is the generalized mass matrix and g(q,u, t) is
the load vector (cf. equation (9)). M is a positive definite and
symmetric block diagonal matrix with the jth block defined
by the mass matrix of body j (see equation (10)). Hence, its
dimension is (6nb× 6nb), where nb is the number of rigid
bodies in the system. The load vector g ∈ R6nb is formed
by stacking the load vectors of the individual bodies (see
equation (11)).

Kinematic Map: The time rate of change of the general-
ized coordinates of the bodies q̇ is related to the generalized
velocities of the bodies u (cf. equation (1)):

q̇ = H(q)u, (17)

where H(q) is the generalized kinematic map, which is
block diagonal, with nonzero blocks H j j given by equa-
tion (1). If unit quaternions are used to represent body con-
figurations, then the size of H is (7nb×6nb).

Joint Constraints: Since joints are permanent contacts, if
contact i is a joint (i.e., i ∈ B), then the vector function
bCin(q, t) = 0 for all time. Stacking the bCin functions for
all i ∈ B into the vector bCn(q, t), yields the position-level
constraint for all joints:

bCn(q, t) = 0, (18)

which is a holonomic constraint (see Section 2.1.3). From
a physical perspective, these constraints are maintained by
reaction forces bfin that are unconstrained. That is, general-
ized forces normal or anti-normal to the constraint surface

in the system’s configuration space can be generated. When
viewing multibody dynamics from a variational perspective,
these forces are Lagrange multipliers [Lan86].

Normal Contact Constraints: For the unilateral contacts,
the scalar functions, uCin(q, t) for all i ∈ U must be non-
negative. Stacking all the gap functions into the vector
uCn(q, t) yields the following position-level non-penetration
constraint:

uCn(q, t)≥ 0, (19)

which is a nonholonomic inequality constraint (see Sec-
tion 2.1.3). From a physical perspective, this constraint is
maintained by the normal component of the contact force
ufin between the bodies. Again, this force can be viewed as
a Lagrange multiplier, but since the constraint is one-sided,
so is the multiplier (i.e., ufin ≥ 0). This means that constraint
forces at unilateral contacts must be compressive or zero.
Combining all ufin for all i∈ U into the vector ufn, all normal
force constraints can be written as ufn ≥ 0.

There is one more aspect of unilateral contacts that must
be modeled. If contact i is supporting a load (i.e., ufin > 0),
then the contact must be maintained (i.e., uCin = 0). Con-
versely, if the contact breaks (i.e., uCin > 0), then the normal
components (and hence the frictional components) of the
contact force must be zero (i.e., ufin = 0). For each contact,
at least one of ufin and uCin must be zero, (i.e., uCin

ufin = 0).
These conditions are imposed at every contact simultane-
ously by an orthogonality constraint:

uCn(q, t) · ufn = 0, (20)

where · denotes the vector dot product.

Friction Law: At contact i, the generalized friction force
κfi f can act only in a subset of the unconstrained directions
and must lie within a closed convex limit setFi(

κfin,µi). The
limit set must contain the origin, so that a zero friction force
is possible. Also, typically, the limit set scales linearly with
the normal component of the contact force, thus forming a
cone of possible contact forces.

When contact i is sticking, the friction force may take on
any value within the limit set. However, when the contact is
sliding, the friction force must be the one within Fi(

κfin,µi)
(see equation (5)) that maximizes the power dissipation.
Such models are said to satisfy the principle of maximum
dissipation [Goy89]. At the velocity level, maximum dissi-
pation can be expressed as follows:

κfi f ∈ argmax
f′i f

{
−κ

νi f ·f′i f : f′i f ∈ Fi(
κfin,µi)

}
, (21)

where f′i f is an arbitrary vector in the set Fi(
κfin,µi). No-

tice that when this set is strictly convex, then the friction
force will be unique. For example, under the assumption of
isotropic Coulomb friction at a unilateral contact, the limit
set is the disc µ2

i
uf2

in− uf2
it − uf2

io ≥ 0 and the unique friction

10 J. Bender et al. / Interactive Rigid Body Simulation

force is the one directly opposite the relative sliding velocity,
κ
νi f = [uνit

u
νio]

T .

Finally, our instantaneous-time dynamic model is the sys-
tem of differential algebraic inequalities (DAIs) composed
of equations (9, 17–21), where the sliding and sticking con-
tact sets are defined by equations (14) and (15).

In its current form, the DAI is difficult to solve, partly be-
cause its has more unknowns (all of the positions, velocities,
acceleration, and forces) than equations. However, as will be
shown, it is possible to cast the model as a differential com-
plementarity problem [CPS92, TPSL97] (a square system)
in terms of only accelerations and forces, and then discretize
the result to form time-stepping subproblems in the form of
nonlinear or linear complementarity problems, which allows
one to apply well-studied solution algorithms.

3.2. Complementarity Problems

Several standard complementarity problems that will be
used later in this section are the nonlinear, linear, mixed non-
linear, and mixed linear complementarity problems.

Definition 1 (NCP:) Nonlinear Complementarity Problem:
Given an unknown vector x ∈ Rm and a known vector func-
tion y(x) : Rm→ Rm, determine x such that:

0≤ y(x)⊥ x≥ 0, (22)

where ⊥ implies orthogonality (i.e., y(x) · x = 0).

If the function y(x) is linear, then we have:

Definition 2 (LCP:) Linear Complementarity Problem:
Given an unknown vector x ∈ Rm, a known fixed matrix
A ∈ Rm×m, and a known fixed vector b ∈ Rm, determine
x such that:

0≤ Ax+b⊥ x≥ 0. (23)

For LCPs, we adopt the shorthand notation, LCP(A,b).

Mixed complementarity problems include equalities and
unrestricted variables:

Definition 3 (mNCP:) Mixed Nonlinear Complementarity
Problem: Given unknown vectors x ∈ Rm and w ∈ Rn, and
known vector functions y(x, w) : Rm+n→ Rm and z(x, w) :
Rm+n→ Rn, find x and w such that:

z(x, w) = 0 (24)

0≤ y(x, w) ⊥ x≥ 0. (25)

Definition 4 (mLCP:) Mixed Linear Complementarity
Problem: Given unknown vectors x ∈ Rm and w ∈ Rn,
known fixed square matrices F ∈ Rm×m and D ∈ Rn×n,
known fixed rectangular matrices B∈Rm×n and C∈Rn×m,
and known fixed vectors a ∈ Rm and r ∈ Rn, determine x
and w such that:

0≤ Fx+Bw+a ⊥ x≥ 0 (26)

Cx+Dw+ r = 0. (27)

3.3. Complementarity Formulation of the
Instantaneous-Time Model

To achieve model formulation as a properly posed comple-
mentarity problem, we must rewrite all the conditions (9,17–
21) in terms of a common set of dependent variables. By tak-
ing the appropriate number of time derivatives, all equations
will be written in terms of accelerations, thus generating a
model in which all unknowns are forces and accelerations.
In addition, this model has the same number of equations
and unknowns. This transformation will be carried out be-
low in three steps. First, differentiate the distance functions
twice with respect to time to expose the acceleration vari-
ables, second, express the principle of maximum dissipation
as a system of equations and inequalities in forces and accel-
erations, and third, reformulate the Newton-Euler equation
to expose the forces.

Contact Constraints in Terms of Accelerations Contact
constraints (unilateral and bilateral) can be written in terms
of accelerations through Taylor series expansion of con-
straint functions, κCiσ(q, t); κ ∈ {b, u}; σ ∈ {n, f}. Let
q̃ = q+∆q and t̃ = t +∆t, where ∆q and ∆t are small per-
turbations. Then the Taylor expansion truncated after the
quadratic terms is:

κ̂Ciσ(q̃, t̃) = κCiσ(q, t)+
∂

κCiσ

∂q
∆q+

∂
κCiσ

∂t
∆t

+
1
2

(
(∆q)T ∂

2κCiσ

∂q2 ∆q+2
∂

2κCiσ

∂q∂t
∆q∆t +

∂
2κCiσ

∂t2 ∆t2

)
,

where κ̂Ciσ is an approximation of κCiσ. Notice that if con-
tact exists at the current values of q and t, then the first term
is zero. Dividing the linear terms by ∆t and taking the limit
as ∆t (and ∆q) goes to zero, one obtains the relative veloc-
ity, κ

νiσ at the contact. Dividing the quadratic terms by (∆t)2

and taking the limit yields the relative acceleration κaiσ:

κaiσ = κJiσu̇+ κkiσ(q,u, t), (28)

where

κJiσ =
∂(κCiσ)

∂q
H

κkiσ(q,u, t) =
∂

κJiσ

∂t
u+

∂
2(κCiσ)

∂q∂t
Hu+

∂
2(κCiσ)

∂t2 .

Stacking all the quantities above for every unilateral and
bilateral contact (as defined in equations (14) and (15)), one
arrives at the definitions of κan, κJn, and κkn. Under the
assumption that normal distance functions and the normal
components of the relative velocity are zero, equations (18-
20) can be expressed at the acceleration level as follows:

ban = 0. (30)

0≤ ufn ⊥ uan ≥ 0. (31)

J. Bender et al. / Interactive Rigid Body Simulation 11

Reformulation of maximum dissipation The principle of
maximum dissipation (21) can be replaced by an equivalent
system of equations and inequalities by formulating it as an
unconstrained optimization problem, and solving it in closed
form. To do this, however, one must choose a specific form
ofFi. In this paper, we will demonstrate the solution process
for isotropic Coulomb friction at a unilateral contact and ap-
ply the result to dry friction of constant maximum magnitude
in a one-DOF joint. The same procedure can be applied to
other friction models, including Contensou [TP97, TTP01].

Closed-form solutions of optimization problems can
sometimes be found by obtaining a system of equations
corresponding to necessary and sufficient conditions for
an optimal solution, then solving them. The most common
approach is to augment the objective function with the con-
straints multiplied by Lagrange multipliers and then obtain
the equations, known as the Karush-Kuhn-Tucker (KKT)
equations, by partial differentiation. To yield a valid solu-
tion, the system must satisfy a regularity condition (also
known as, “constraint qualification”) on the boundary of
the feasible set. In the case of isotropic Coulomb friction,
the system does not satisfy any of the possible regularity
conditions at the point of the cone (where ufin = 0), so the
method fails.

Fortunately, the more general Fritz-John conditions
[MF67] do satisfy a regularity condition everywhere on
the cone. In the case of isotropic Coulomb friction, the
augmented objective function (recall equation (21)) is:

−u
βi0(

ufit
u
νit +

ufio
u
νio)+

u
βi(µ

2
i

uf2
in− uf2

it − uf2
io), (32)

where u
βi0 and u

βi are Lagrange multipliers. To obtain a sys-
tem of equations and inequalities equivalent to the maximum
dissipation condition (21), one takes partial derivatives with
respect to the unknown friction force components and La-
grange multipliers and then imposes the constraint qualifi-
cation conditions of the Fritz-John method: u

βi0 ≥ 0 and
(u

βi0,
u
βi) 6= (0,0). Following the derivation on pages 28-

30 of [Ber09], one arrives at the following system of con-
straints:

µi
ufin

u
νit +

ufit
u
βi = 0

µi
ufin

u
νio +

ufio
u
βi = 0

u
γi = µ2

i
uf2

in− uf2
it − uf2

io ≥ 0

0≤ u
γi ⊥

u
βi ≥ 0

 ∀ i ∈ {U ∩S}, (33)

where u
γi is a slack variable for the friction limit set. Note

that u
βi =‖

u
νi f ‖ at the optimal solution, and represents

the magnitude of the slip velocity at contact i (i.e., u
βi =

‖ u
νi f ‖=

√
uν2

it +
uν2

io). Also note that this condition is not
written in terms of accelerations, because at a sliding con-
tact, the friction force (ufit ,

ufio) can be written in terms of
the normal force and eliminated. For example, in the case of
Coulomb friction, equations (6) are used.

If contact i is a one-DOF joint, we will assume that the

maximum magnitude of the dry friction force is independent
of the load in the other five component directions. Thus, the
friction limit set for a bilateral joint Fi(µi) will be:

Fi(
bfi fmax) =

{
bfi f :

∣∣∣bfi f

∣∣∣≤ bfi fmax

}
, ∀ i∈ {B∩S}, (34)

where |·| denotes the absolute value of a scalar and bfi fmax

is the nonnegative maximum magnitude of the generalized
friction force in joint i.

Notice that this joint friction model is a special case of the
result obtained for Coulomb friction; fix ufinµi to the value
of bfi fmax and remove one of the friction directions, say the
t-direction. The result is:

bfiomax
b
νio +

bfio
b
βi = 0

b
γi =

bf
2
iomax −

bf
2
io ≥ 0

0≤ b
γi ⊥

b
βi ≥ 0

 ∀ i ∈ {B∩S}. (35)

As before, b
βi =‖

b
νi f ‖ at an optimal solution.

The principle of maximum dissipation (21) must be con-
sidered further. When contact i is sliding, the solutions of
conditions (33) and (35) produce the correct results (i.e., the
friction force obtains its maximum magnitude and directly
opposes the sliding direction), and we can use these condi-
tions to eliminate κfi f . Also as required, when a contact is
sticking, these conditions allow the friction force to lie any-
where within the friction limit set. What these conditions do
not provide is a mechanism for determining if a sticking con-
tact will change to sliding. However, this problem is easily
remedied by considering equations (33) and (35) the rela-
tive velocity is zero. In this case, the relative velocity at the
onset of slipping is proportional to the relative acceleration.
Therefore, they can be replaced with the analogous acceler-
ation variables yielding:

µi
ufin

uait +
ufit

u
βi = 0

µi
ufin

uaio +
ufio

u
βi = 0

u
γi = µ2

i
uf2

in− uf2
it − uf2

io ≥ 0

0≤ u
γi ⊥

u
βi ≥ 0

 ∀ i ∈ {U ∩R}, (36)

where u
βi =‖

uai f ‖ at the optimal solution, and

bfi fmax
bai f +

bfi f
b
βi = 0

b
γi =

bf
2
i fmax −

bf
2
i f ≥ 0

0≤ b
γi ⊥

b
βi ≥ 0

 ∀ i ∈ {B∩R}, (37)

where b
βi f =

∣∣∣bai f

∣∣∣ at the optimal solution.

Exposing the Contact Forces in the Newton-Euler Equa-
tion Recall that the vector g(q,u, t) represents the resultant
generalized forces acting on the bodies, and naturally gener-
ated gyroscopic forces. In order to complete the formulation
as an NCP, g(q,u, t) is expressed as the sum of the normal
and friction forces at the unilateral and bilateral contacts and

12 J. Bender et al. / Interactive Rigid Body Simulation

all other generalized forces. The Newton-Euler equation be-
comes:

M(q)u̇ = uJn(q)T ufn +
uJ f (q)

T uf f (38)

+ bJn(q)T bfn +
bJ f (q)

T bf f +gext(q,u, t),

where gext(q,u, t) is the resultant of all non-contact forces
and moments applied to the bodies, uf f and bf f are formed
by stacking the generalized friction vectors at the unilateral
and bilateral contacts respectively, and the matrices κJσ map
contact forces into a common inertial frame.

Definition 5 (Model-dNCP) Collecting equations (17, 30,
31, 33, 35–38) a dynamic model in the form of a differential
NCP (dNCP) is defined.

If one wanted to use this model in an integration scheme,
the PATH algorithm by Ferris and Munson is the most robust,
general purpose NCP solver available [CPN11]. However,
we recommend against this, because a solution does not al-
ways exist [PT96], and when one does, it could have infinite
values. Fortunately, the existence problem can be eliminated
by discretizing Model-dNCP over time.

3.4. A Nonlinear Discrete-Time Model as an mNCP

Now we discretize the five components of the instantaneous-
time model derived above. Let t` be the current time for
which we have estimates of the configuration q(`) = q(t`)
and the generalized velocity u(`) = u(t`) of the system.
Given a positive time-step ∆t = t`+1 − t`, our goal is to
compute configurations q(`+1) = q(t` + ∆t) and veloci-
ties u(`+1) = u(t` + ∆t) that lie as close as possible to
a solution of the dNCP. To simplify our presentation, we
choose the simple backward Euler approximation of the state
derivatives, i.e., u̇(t`+1)≈ (u(`+1)−u(`))/∆t and q̇(t`+1)≈
(q(`+1)−q(`))/∆t.

Discrete-Time Newton-Euler Equations Applying the
backward Euler approximation to the Newton-Euler equa-
tion (38) yields the equation below in which all quantities
are evaluated at the end of the time step:

M(`+1)
(

u(`+1)−u(`)
)
= (uJT

n)
(`+1)up(`+1)

n (39)

+(uJT
f)

(`+1)up(`+1)
f +(bJ

T
n)

(`+1)bp
(`+1)
n

+(bJ
T
f)

(`+1)bp
(`+1)
f +(pext)

(`+1),

where the vectors are unknown generalized contact impulses
defined as p(`+1) = ∆tf(`+1) and pext = ∆tgext is the impulse
of the generalized forces applied to the bodies over the time
step. Note that in general, the inertia matrix, Jacobians, and
external impulse all depend nonlinearly on the state, (q, u).

Discrete-Time Kinematic Map Applying the backward
Euler approximation to the kinematic map (17) gives:

q(`+1)−q(`) = ∆tH(`+1)u(`+1), (40)

which is nonlinear in the unknown system configuration
q(`+1) due to the dependence of H on q. An important is-
sue arises when solving this equation for q(`+1). The “vec-
tor” q(`+1), is not a vector; the orientation part of q lives in
a curved space, not a vector space. For example, when ori-
entation is represented by a unit quaternion, then quaternion
elements of q(`) and q(`+1) must have unit length, but adding
∆tH(`+1)u(`+1) to q(`) slightly increases the length. This
problem can be solved simply by normalizing the quaternion
elements of q(`+1) after each time step.

Discrete-Time Joint and Normal Contact Constraints At
the end of each time step, the constraints should be satisfied.
Therefore, the discrete-time joint constraints, equation (18),
are simply the joint constraints enforced at time t`+1:

bC
(`+1)
n = 0, (41)

where bC
(`+1)
n denotes bCn(q`+1, t`+1).

The analogous approach applies to the normal contact
constraints, but with one additional consideration; the con-
tact normal forces must be replaced with normal impulses.
Thus, equations (19–20) become:

0≤ up(`+1)
n ⊥ uC(`+1)

n ≥ 0. (42)

Note that, in general, the right-hand inequality is nonlinear
in the unknown u(`+1). However, it can be made linear by
a Taylor series expansion. It is also important to note that
this relationship implies that the normal impulse up(`+1)

n at
the end of the time step can be nonzero only if the distance
function at the end of the time step is also zero. It says noth-
ing about what can happen during the time step.

Discrete-Time Maximum Dissipation Principle To mod-
ify the maximum dissipation condition for use in time step-
ping, one integrates the force over a short time interval to ob-
tain an impulse. If the direction of sliding changes little over
the time step, then the friction law can be well approximated
by simply replacing force variables with impulse variables.
Thus, equation (21) becomes:

κp(`+1)
i f ∈ argmax

p′
i f

{
−
(

κ
ν
(`+1)
i f

)T
p′i f : p′i f ∈ Fi(

κp(`+1)
in ,µi)

}
,

where p′i f is an arbitrary vector in the set Fi(
κp(`+1)

in , µi). As
it was the case during the formulation of the instantaneous
model, we cannot complete the formulation of the discrete-
time model without assuming a particular form of Fi.

The discrete-time forms of the friction models presented
earlier are formed simply by replacing forces with impulses
and enforcing the conditions at the end of the time step. The

J. Bender et al. / Interactive Rigid Body Simulation 13

contact friction model becomes:

µi
up`+1

in
u
ν
`+1
it + up`+1

it
u
β
`+1
i = 0

µi
up`+1

in
u
ν
`+1
io + up`+1

io
u
β
`+1
i = 0

u
γ
`+1
i = µ2

i (
up`+1

in)2− (up`+1
it)2− (up`+1

io)2 ≥ 0

0≤ u
γ
`+1
i ⊥ u

β
`+1
i ≥ 0,

(43)

where ∀ i ∈ A(q, u) and A is the set of active constraints,
typically defined by A = {i : uCin ≤ ε(u)}, where ε is an
estimate of the size of the gap between bodies that could
close during the next time step. Notice that because the ve-
locities in the discrete-time model are unknown, there is no
way to distinguish sliding and sticking contacts during prob-
lem formulation. The contact interactions are determined as
a by-product of solving the time-stepping subproblem. The
discrete-time form of dry friction in the joints is given simi-
larly:

bpiomax
b
ν
`+1
io + bp

`+1
io

b
β
`+1
i = 0

b
γ
`+1
i = bp

2
iomax
− (bp

2
io)

`+1 ≥ 0

0≤ b
γ
`+1
i ⊥ b

β
`+1
i ≥ 0

 ∀ i ∈ B. (44)

Again, one need not distinguish between sliding and sticking
contacts at the time of formulation.

Definition 6 (Model-mNCP) Equations (39–42, 43, 44) de-
fine the model as a sequence of time-stepping subproblems.

3.5. The Discrete-Time Model as an mLCP

Theoretical support and solution algorithms are better de-
veloped for LCPs than for NCPs [CPS92]. Therefore, it is
sometimes preferable to use a linearized version of Model-
mNCP. The discrete-time Newton Euler equation (39) is lin-
ear in the unknown impulses and velocities, but the inertia
and Jacobian matrices are functions of the unknown config-
uration and the external impulse (pext)

(`+1) is generally a
function of both q(`+1) and u(`+1). The standard way to ob-
tain a linear equation is to assume that all of these quantities
are equal to their values at t` and constant over the next step.

M(`)
(

u(`+1)−u(`)
)
= (uJT

n)
(`)up(`+1)

n (45)

+(uJT
f)

(`)up(`+1)
f +(bJ

T
n)

(`)bp
(`+1)
n

+(bJ
T
f)

(`)bp
(`+1)
f +(pext)

(`).

Since the values of these quantities vary over the time step,
fixing their values at t` introduces error, which reduces with
the size of the time step and the velocities of the bodies.

Equation (40) is also nonlinear due to the dependence of
H on q(`+1). As above, evaluating it at t` yields a linear ap-
proximation:

q(`+1)−q(`) = ∆tH(`)u(`+1). (46)

t̂

ô

n̂

(a) Friction Cone

t̂

ô
f

ν

(b) Limit Set

Figure 7: Example of friction cone linearization using seven
friction direction vectors. Note the linearization side-effect -
the friction force that maximizes dissipation is not exactly
opposite the relative velocity at the contact point.

Linearized Joint and Contact Constraints The contact
and joint displacement functions given in equations (18,19)
can be linearized by Taylor series expansion about t`:

̂
κC(`+1)

σ = κC(`)
σ +(κJσ)

(`)u(`+1)
∆t +

∂
κC(`)

σ

∂t
∆t, (47)

where the hat over the displacement function connotes lin-
ear approximation. For joints, the approximation of equa-
tion (47) becomes:

bC
(`)
n +(bJn)

(`)u(`+1)
∆t +

∂
bC

(`)
n

∂t
∆t = 0. (48)

Similarly, the normal complementarity condition (42) be-
comes:

0≤ up(`+1)
n ⊥ uC(`)

n +(uJn)
(`)u(`+1)

∆t +
∂

uC(`)
n

∂t
∆t ≥ 0.

(49)

It only remains to linearize the friction model. However,
this requires a specific choice of friction limit set. Therefore,
at this point, we will choose isotropic Coulomb friction and
demonstrate the process of linearization for it, which is illus-
trated in Figure 7. The friction limit set is a circle of radius
µi

up(`+1)
in (shown in Figure 7(b)). This circle is approximated

by a convex polygon whose vertices are defined by nd unit
vectors d̂i j that positively span the friction plane.

To constrain the friction impulse at contact i, up(`+1)
i f , to

lie within the polygonal limit set, we employ nonnegative
barycentric coordinates, u

αi j ≥ 0; j = {1, ...,nd}. The inte-
rior and boundary of the linearized friction impulse limit set
can be represented as follows:

up(`+1)
i f = uDi

u
αi

∑
nd
j=1

u
αi j ≤ µi

up(`+1)
in

 ∀ i ∈ U , (50)

where uDi is the matrix whose jth column is the unit vector
d̂i j and u

αi is the vector with jth element given by u
αi j.

14 J. Bender et al. / Interactive Rigid Body Simulation

For the developments in the next few paragraphs, it is im-
portant to see that if u

αi j = µi
up(`+1)

in , then the friction im-
pulse is simply µid̂i j, which is a vertex of the polygon. If
u
αi j +

u
αik = µi

up(`+1)
in , where d̂i j and d̂ik are adjacent direc-

tion vectors, then the friction impulse is on an edge of the
polygon. Importantly, these are the only ways to represent
friction impulses on the boundary of the linearized limit set
using barycentric coordinates. All other coordinate combina-
tions define a friction impulse on the interior of the polygon.

We must also enforce that at sticking contacts, the friction
impulse lies within the limit set, but while sliding, it must
maximize power dissipation, which requires the impulse to
be on the boundary of the limit set. Let the nonnegative slack
variable u

βi be a scalar sliding indicator for contact i, where
u
βi = 0 implies sticking and u

βi > 0 implies sliding. When
u
βi = 0, the friction impulse may be anywhere in the interior

of the polygon or on its boundary, but when u
βi > 0 it must

be on the boundary.

These two requirements suggest a complementarity re-
lationship between the representation (second equation in
bracketed equations just above) and u

βi:

0≤
(

µi p
(`+1)
in − ueT

i
u
αi

)
⊥ u

βi ≥ 0 ∀ i ∈ U , (51)

where ei is a vector of length nd with all elements equal to
one. This condition ensures that the friction impulse is in
the cone, but it does not enforce maximum dissipation. To
achieve the latter, one must introduce another condition that
allows only one or two consecutive barycentric coordinates
to be nonzero. One way to accomplish this is by the intro-
duction of another complementarity constraint that maps the
relative velocity of the friction subspace ν

(`+1)
i f onto the d̂i j

vectors (this can be accomplished with uDT
i

uJi f u(`+1)) and

identifies j such that d̂i j is most directly opposite to ν
(`+1)
i f .

The following linear complementarity condition, in conjunc-
tion with condition (51), identifies the correct d̂i j:

0≤
(

uDT
i

uJi f u(`+1)+ei
u
βi

)
⊥ u

αi ≥ 0 ∀ i ∈ U . (52)

Consider for a moment complementarity condition (52)
which enforces maximal dissipation. If the contact is sliding
u
βi > 0, at least one element of u

αi must be positive. The
only way to have a positive element of u

αi is to have at least
one element of the expression on the left be zero, which can
only happen when u

βi takes on its minimum value. Note that
this minimum value can never be zero as long as the vectors
d̂i j; i = 1, ...,nd positively span the friction subspace, and
furthermore, u

βi approximates the slip speed, with the ap-
proximation converging to the exact slip speed as nd goes to
infinity. If u

βi = 0, all elements of u
αi may be positive, which

corresponds to a friction force within the friction cone.

One important side-effect of the above approximation of
the principle of maximum dissipation is that a finite cone
of relative velocities at contact i leads to exactly the same

friction impulse. Even if the direction of sliding changes
smoothly, the direction of the friction impulse jumps from
one direction vector to the next.

Combining the tangential complementarity conditions for
all unilateral contacts yields linear complementarity systems
that replace equations (33) and (36) in the instantaneous-
time model:

0≤
(

uDT uJ f u(`+1)+ uEu
β

)
⊥ u

α≥ 0

0≤
(

U up(`+1)
n − uET u

α

)
⊥ u

β≥ 0,
(53)

where the column vectors u
α and u

β are formed by stacking
the vectors u

αi and scalars u
βi,

uDT is formed by stacking
the matrices uDT

i , uE is a block diagonal matrix with nonzero
blocks given by uei, and U is the diagonal matrix with ele-
ment (i, i) equal to µi.

If all joints in the system are one-DOF joints, equa-
tions (35) and (37) of the instantaneous-time model are re-
placed with the following:

0≤
(

bD
T bJ f u(`+1)+ bEb

β

)
⊥ b

α≥ 0

0≤
(

bp f max−
bE

T b
α

)
⊥ b

β≥ 0,
(54)

where the column vectors b
α and b

β are formed by stacking

the vectors b
αi and scalars b

βi,
bD

T
is formed by stacking

the matrices bD
T
i , bE is a block diagonal matrix with nonzero

blocks given by bei, and bp f max is ∆t bf f max.

The above linearized conditions, taken together, define a
time-stepping subproblem as an mLCP (see definition 4).
However, notice that our approach to linearization has de-
coupled the kinematic map, equation (46). Therefore, a
smaller mLCP can be solved for unknown generalized ve-
locity, impulses, and slack variables first, and then the kine-
matic map can be used to update the system configuration.

Definition 7 (Model-mLCP) Equations (45, 48, 49, 53, 54)
constitute an mLCP.

Using the notation of the definition of the standard mLCP
given above, the variables of the Model-mLCP are:

x`+1 =

up`+1
n

b
α
`+1

u
α
`+1

b
β
`+1

u
β
`+1

 w`+1 =

[
u`+1

bp
`+1
n

]
.

The constants are:

F =

0 0 0 0 0
0 0 0 bE

`
0

0 0 0 0 uE`

0 −(bE
`
)T 0 0 0

U 0 −(uE`)T 0 0

J. Bender et al. / Interactive Rigid Body Simulation 15

C =

[
(uJ`n)T (bJ

`
D)

T (uJ`D)T 0 0
0 0 0 0 0

]

B = CT D =

[
−M` (bJ

`
n)

T

bJ
`
n 0

]

a =

uC`
n

∆t +
∂

uC`
n

∂t
∂

bC`
f

∂t
∂

uC`
f

∂t
0

bp
`
f max

r =

[
M`u`+p`

ext
bC`

n
∆t +

∂
bC`

n
∂t

]
.

It is known that solutions always exist to Model-mLCP if
the inequalities are feasible (see [AP97]). Practically speak-
ing, they are not feasible only when bodies are forced into
situations in which overlap cannot be avoided. This can be
caused be specifying body or joint trajectories as given func-
tions of time or infeasible initial conditions.

3.6. The Discrete-Time Model as an LCP

Model-mLCP can be solved in its current form or it can be
reformulated as a standard LCP and then solved. When the
null space of bJ

(`)
n is trivial (which is usually true if there

are no kinematic loops in mechanisms), then, because M is
symmetric and positive definite, one can solve equations (45)

and (48) for u(`+1) and bp
(`+1)
n .

Definition 8 (Model-LCP) This model is the LCP(A, b),
where A = (F−BD−1C) and b = a−BD−1r.

The size of Model-LCP is the same as that of Model-mLCP
even though we have solved for the generalized velocities
and normal constraint impulses in the joints in advance.
It is also important to note that since Model-LCP was de-
rived from Model-mLCP, their solutions are identical. How-
ever, Model-LCP can be solved by pivoting methods such as
Lemke’s algorithm [CPS92].

Model Sizes The size of a model is the number of un-
knowns. In the case of models with differential equations
the unknowns are the dependent variables, which are un-
known functions of the independent variable. For the models
developed above, the independent variable is time and the
unknowns are force f or impulse p, the body velocities u,
and the body configurations q. Let nbdy, njnt, and ncnt be the
number of bodies, one-DOF joints, and unilateral contacts,
respectively. Then the sizes of the models are given in the
following table.

Model Number of unknowns
Model-dNCP 7njnt + 4ncnt +13nbdy
Model-mNCP 7njnt + 4ncnt +13nbdy
Model-mLCP 8njnt +(2+nd)ncnt + 6nbdy
Model-LCP 3njnt +(2+nd)ncnt

Several of the terms warrant some explanation. The term

7njnt appears (rather than 6njnt), because in addition to the
six components of impulse acting at each joint, there is also
an unknown slack variable that determines if the joint is
sticking or sliding. The 7 changes to 8 when the model is lin-
earized, because the friction space in each one-DOF joint has
two friction directions, and the slack variable is still needed.
The 8 then reduces to 3 in Model-LCP, because the five com-
ponents of normal impulse are solved when converting from
an mLCP to an LCP.

In the term 4ncnt, the 4 corresponds to the three contact
impulse directions and the slack variable that differentiates
between sticking and sliding. The 4 changes to 2+nd in the
linearization process. Recall that two friction directions are
replaced by nd directions.

The term 13nbdy appears, because we have assumed that
the orientations of the bodies are represented by unit quater-
nions. This term drops to 6nbdy for Model-mLCP, because
the linearization process decouples the update of q from the
others, so the impulses and velocities are found by solving
the mLCP, then u is updated. While q is still technically an
unknown, its update is extremely simple in comparison to
solving the mLCP.

3.7. Reduced Coordinate Models

The models presented so far are of a family known as “max-
imal coordinate” models, so called, because all six degrees
of freedom of every body are represented in the Newton-
Euler equation. Maximal coordinate models use bilateral
constraints, bCin = 0, to eliminate the degrees of freedom
removed by joint structures. In maximal coordinate mod-
els, one solves for all impulses, velocities, and configura-
tions simultaneously. By contrast, minimal coordinate mod-
els express as many of the unknowns as possible as functions
of independent coordinates, known as generalized coordi-
nates. Minimal coordinate formulations of multibody dy-
namics have the added benefit of eliminating all of the bi-
lateral constraints, so that constraint stabilization (required
in simulation with maximal coordinate formulations) is un-
necessary.

The equations of motion for a reduced coordinate model
can be obtained by using the Lagrange formulation [GPS02,
Fea07]. We require the Lagrangian function L = T −V ,
where T and V are the total kinetic and potential energy,
respectively. This function describes the total energy of the
system which should be conserved. By the Euler-Lagrange
equation

d
dt

∂L
∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . ,n

we get a system of differential equations for the motion of
the bodies which can be solved numerically.

Several reduced coordinate formulations for multibody
systems with unilateral contacts and frictionless joints were

16 J. Bender et al. / Interactive Rigid Body Simulation

developed by Bhalerao et al. in [BAT09]; two mLCPs and
one LCP. Unlike Model-mLCP presented above, an interest-
ing feature of these formulations is that their sizes are inde-
pendent of the number of bodies nbdy, but one is dependent
on the number of bodies with at least one unilateral contact.
This independence derives from the use of Featherstone’s
Divide and Conquer Algorithm (DCA) [Fea99].

Model Number of unknowns
Model-DCA-mLCP1 (2+nd)nc +12+6nu-bdy
Model-DCA-mLCP2 (2+nd)nc +12
Model-DCA-LCP (2+nd)nc

Note that these formulations did not incorporate dry joint
friction. However, since all bilateral constraints are elimi-
nated by the DCA algorithm, the number of unknowns in
the joints should be 3njnt for all three models.

Comparing these formulations to Model-mLCP and
Model-LCP, we find that all the quantities relating to dry
friction and unilateral contacts (x`+1, F, and a) are un-
changed. The normal constraint impulse of the bilateral

contacts (bp
(`+1)
n) is absent, which eliminates the second

block row of D, C, and r, and the second block column of
D and B. The remaining changes are in the inertia matrix
M, the Jacobian matrices in C (and B), the body velocity
vector u, and the kinematic velocity map H. In the case
of Model-DCA-LCP, M and u become vacuous, and the
Jacobians become very dense. For model-DCA-mLCP2,
M and u become (12× 12) and (12× 1), respectively. In
Model-DCA-mLCP1, the sizes grow to 6nu-bdy + 12, and
the Jacobians are the least dense.

So one might wonder, why bother with maximal coordi-
nate models at all. The main reasons are ease of implementa-
tion and sparseness of the matrices of the model, which can
be exploited for more efficient matrix inversion and parallel
implementation (see Section 5).

4. The Numerical Solution Methods

Once discrete-time models have been obtained, we must ap-
ply numerical methods to compute solutions. We start with
how to integrate the motion of free moving rigid bodies such
as bodies in ballistic motion without any collisions or con-
tact. Subsequently, in Sections 4.1- 4.4 we cover numerical
methods for computing solutions of the discrete LCP con-
tact model from Section 3.1 and approaches for simulating
articulated bodies. The methods are presented in a general
setting hence A and b are arbitary as defined in (23).

We have to perform an integration step to obtain the dy-
namic state of a body for the next time step. Therefore, we
want to introduce numerical integration methods. In con-
trast to the well-known explicit Euler, the semi-implicit Eu-
ler uses the velocity at time t0 +∆t instead of time t0 for the

integration of the position vector:

u(t0 +∆t) = u(t0)+∆t M−1 g(q,u, t0)
q(t0 +∆t) = q(t0)+∆t Hu(t0 +∆t),

where M, g(q,u, t) and H are defined by equations (1, 10,
11). The semi-implicit Euler is a first-order symplectic in-
tegrator. The advantage of integrating the velocities first
is that the new velocities can be adapted before the po-
sition integration in order to resolve collisions or to sim-
ulate damping [GBF03, MHHR07]. Runge-Kutta methods
are also very popular in the field of rigid body dynam-
ics [BWAK03, RGL05, BS06b, Ben07] to solve the initial
value problem given by the equation of motion. For more
details we refer to [BETC12].

4.1. Direct Methods

Direct solution methods are known to be computationally
heavy. Therefore, they are often not preferred for interac-
tive simulation. However, their ability to deliver accurate so-
lutions make them ideal to handle problems such as large
mass ratios. Thus, for some applications direct methods are
the only option. Among direct methods for linear comple-
mentarity problems (LCPs) based on pivoting are the Lemke
method and the Keller method [CPS92, Lac03].

Here we will present a core idea of most pivoting meth-
ods, namely a guessing approach that exploits the fact that
an LCP is a combinatorial problem. The LCP can be written
as

0≤ y ⊥ x≥ 0

where y = Ax+b. By algebraic manipulation we get[
1 −A

][y
x

]
= b.

Next we define the index set I = {1, . . . ,n} and introduce
one index set of free variables yi > 0 and one of active vari-
ables yi = 0,

F ≡ {i | yi > 0} and A≡ {i | xi > 0} .

We assume strict complementarity holds meaning we never
simultaneously have yi = 0 and xi = 0. Thus,F ∩A= ∅ and
F ∪A = {1, . . . ,n}. The idea is to create a method that can
verify if any guess ofF andA is a solution for the given LCP
formulation. Using the index sets we make the partitioning[

1·F −A·A
]︸ ︷︷ ︸

C

[
yF
xA

]
︸ ︷︷ ︸

x

= b,

where 1·F and A·A are the sub matrices given by the column
indices F and A. Our problem is simplified to verifying if
the linear programming (LP) problem

Cx = b subject to x≥ 0

has a solution. This can be done by first computing xA =

J. Bender et al. / Interactive Rigid Body Simulation 17

−A−1
AAbA, and verify if xA ≥ 0. Next one uses the feasi-

ble xA to compute yF = AFAxA+bF and finally verify if
yF ≥ 0. If that last verification succeeds, then a solution has
been found. Observe that during the verification processes
we only need to compute A−1

AA. If ‖ A ‖� n, then verifica-
tion will be fast.

In the worst case, the time complexity of guessing would
beO(n32n), which is not computationally efficient. Another
strategy is to be clever in making new guesses. For instance
by applying a pivoting or other strategy that builds up the in-
dex sets incrementally. One such algorithm was introduced
by Baraff [Bar94]. For this algorithm one can exploit incre-
mental matrix factorizations and prove that no more than n
pivot steps are needed when A has certain matrix properties.
The result is an algorithm running in O(n3). For full algo-
rithm detail and complexity analysis we refer to [BETC12].

The pivoting method is capable of finding an accurate so-
lution for the LCP whereas the iterative methods we cover in
Section 4.2 and 4.3 only find approximate solutions. How-
ever, the accuracy is at the expense of having to form the
A-matrix whereas the iterative methods often exploit a fac-
torization of the A-matrix given by the constraint Jacobians
and the mass matrix, JM−1JT . These matrices are extremely
sparse and one can evaluate matrix-vector products more ef-
ficiently using the factorization than by first assembling the
A-matrix which can be very dense even if it consists of prod-
ucts of sparse matrices.

4.2. Iterative Fixed Point Schemes

Most open source software for interactive real-time rigid
body simulation use the Projected Gauss–Seidel (PGS)
method for computing contact forces. This includes the two
most popular open source simulators Bullet and Open Dy-
namics Engine. PGS is computationally very efficient with
an iteration cost of O(n), using a careful memory layout
of sparse matrices allows for a memory footprint of O(n).
In addition to being computationally and memory-wise effi-
cient, PGS is very robust (see Figure 8) and can deal grace-
fully with ill-conditioned problems (due to many redundant
constraints) or ill-posed problems (due to badly defined con-
straints). For these reasons PGS is well suited for interac-
tive applications like computer games. Figure 9 shows dif-
ferent interactive tasks, which are accomplished in a simula-
tion with a PGS solver.

4.2.1. Matrix Splitting Methods

We introduce the matrix splitting A = M−N. Next we let
ck = b−Nxk then the LCP

0≤ x⊥ Ax+b≥ 0, (56)

becomes

0≤ xk+1 ⊥Mxk+1 + ck ≥ 0. (57)

Figure 8: More complex interacting geometry showing ro-
bustness.

Figure 9: Goal oriented task based testing for interactivity.
Stacks of objects are to be created and tipped over without
falling down.

This results in a fixed-point formulation where we hope that
for a suitable choice of M and N the complementarity sub-
problem might be easier to solve than the original problem.
The splitting method can be summarized as

Step 0 Initialization, set k = 0 and choose an arbitrary non-
negative x0 ≥ 0.

Step 1 Given xk ≥ 0 solve the LCP (57).
Step 2 If xk+1 satisfy some stopping criteria then stop oth-

erwise set k← k+1 and go to step 1.

The splitting is often chosen such that M is a Q-matrix. This
means that M belongs to the matrix class where the cor-
responding LCP has a solution for all vectors ck [Mur88,
CPS92]. Clearly if xk+1 is a solution for (57) and we have
xk+1 = xk then by substitution into the subproblem given
by (57) we see that xk+1 is a solution of the original prob-
lem (56).

Next we will use the minimum map reformulation on the
complementarity subproblem [Erl13], this is equivalent to

min(xk+1,Mxk+1 + ck) = 0. (58)

18 J. Bender et al. / Interactive Rigid Body Simulation

Subtract xk+1 and multiply by minus one,

max(0,−Mxk+1− ck +xk+1) = xk+1. (59)

Again we re-discover a fixed-point formulation. Let us per-
form a case-by-case analysis of the ith component. If(

xk+1−Mxk+1− ck
)

i
< 0 (60)

then xk+1
i = 0. Otherwise(

xk+1−Mxk+1− ck
)

i
= xk+1

i . (61)

That is,

(Mxk+1)i = ck
i . (62)

For a suitable choice of M and back-substitution of ck =
b−Nxk we have(

M−1
(

Nxk−b
))

i
= xk+1

i . (63)

Combining it all, we have derived the closed-form solution
for the complementarity subproblem,

max
(

0,
(

M−1
(

Nxk−b
)))

= xk+1. (64)

Iterative schemes like these are often termed projection
methods. The reason for this is that if we introduce the vector
zk = M−1

(
Nxk−b

)
, then

xk+1 = max
(

0,zk
)
. (65)

That is, the k+1 iteration is obtained by projecting the vector
zk onto the nonnegative orthant. In a practical implementa-
tion one would rewrite (65) into a for loop that sweeps over
the vector components and updates the x-vector in place.

One would want to use a clever splitting such that the in-
version of M is computationally inexpensive. Letting L, D
and U be the strict lower, diagonal and strict upper parts
of A, then three popular choices are: the projected Jacobi
method M = D and N = L+U, the projected Gauss–Seidel
(PGS) method M = (L+D) and N = U, and the projected
Successive Over Relaxation (PSOR) method M = (D+ γL)
and N = ((1− γ)D− γU), where 0≤ γ≤ 2 is the relaxation
parameter. For PSOR b is replaced by γb and γA = M−N.
This is because the linear relation is written as γ(Ax+b).

Using the PSOR variant (with PGS as a special case of
γ = 1) and rewriting the matrix update equation into a for
loop over the ith component then one obtains the iterative
method

1 : method PSOR(N,γ,x,A,b)
2 : for k = 1 to N
3 : for all i
4 : ri← Ai∗x+bi

5 : xi←max
(

0,xi− γ
ri
Aii

)
6 : next i
7 : next k

where N is the maximum number of allowed iterations and
γ is the relaxation parameter. In [BETC12] it is shown how
quadratic programming problems can be used to derive this
method. In the case of A being symmetric positive semi-
definite, it can be shown that the method will always con-
verge to a solution.

It is worthwhile to note that A must at least have nonzero
diagonal for these splittings to work. In general for non-
symmetric matrices one may experience divergence. This
means we cannot apply these methods directly to the LCP
model. Thus, in computer graphics an alternative model has
been used which drops the principle of maximum dissipa-
tion. This alternative allows for a matrix splitting method
to be derived [PNE10]. One may improve the accuracy and
convergence rate of the resulting numerical method by using
sub-space minimization [SNE10b] or a nonsmooth nonlinear
conjugate gradient method [SNE10a].

It seems that all hope of using matrix splitting for the LCP
model is lost. However, as we show in Section 4.2.2 and
4.2.3 a blocked version of the matrix splittings can be used
for the LCP model.

4.2.2. The Blocked Gauss–Seidel Method

The matrix splitting and QP reformulation approaches im-
ply that Gauss–Seidel methods cannot be used for the LCP
contact model due to its zero diagonal values and non sym-
metry of A. However, the splitting idea can be applied in
a blocked version. This results in a numerical method that
is very easy to implement and still preserves the good nu-
merical properties of the PGS method. A block is defined
as all variables from one contact point. In the case of a
four-sided friction pyramid the ith block will consist of the
normal impulse xn,i, four friction impulses xt1,i, xt2,i, xt3,i,
xt4,i and one slack variable βi. We introduce the block no-

tation
[
x
]

i =
[
xn,i xt1,i · · · βi

]T . Similar
[
A
]

i j is the

sub-block of A corresponding to the ith and jth contact point
variables. Thus, the blocked LCP can be written:[

y
]

i = ∑
j

[
A
]

i j

[
x
]

j +
[
b
]

i ≥ 0 ∀i, (66a)[
x
]

i ≥ 0 ∀i, (66b)[
y
]T

i

[
x
]

i = 0 ∀i. (66c)

Now we may apply the Gauss–Seidel splitting to the blocked
LCP. The result is a blocked Gauss–Seidel (BGS) method:

1 : method BGS(N,x,A,b)
2 : for k = 1 to N
3 : for all i
4 :

[
b
]′

i ←
[
b
]

i−∑ j 6=i
[
A
]

i j

[
x
]

j

5 : solve-sub-lcp(
[
x
]

i ,
[
A
]

ii ,
[
b
]′

i)

6 : next i
7 : next k

The intuition behind the numerical method is that all con-
tact point variables other than the ith block are momentarily

J. Bender et al. / Interactive Rigid Body Simulation 19

frozen while solving for the variables of the ith block. The
BGS approach is also known as a “sweeping process” or as
the non-smooth contact dynamics (NSCD) method [Mor99,
Jea99].

The sub-block LCP in line 5 can be solved using any
LCP solver. Usually one would apply another splitting to
divide the sub-block LCP into a normal impulse sub-block
and a frictional sub-block. The normal part is a 1D prob-
lem and can be solved by a projection. The frictional part
would in our case be a 5D problem. It is a bit unpleasant as
we have zero diagonal terms and non-symmetry of the fric-
tional sub-block part of A. However, the low dimensionality
would allow for an efficient direct enumeration approach or
one may drop the principle of maximum dissipation (chang-
ing the contact model) allowing us to reduce the number of
variables to a 2D problem with a symmetric positive semi-
definite frictional sub-block matrix.

From a computer science viewpoint, an implementation
of this method is indistinguishable from an implementation
of the propagation model [BETC12]. The main difference is
that this is a numerical method for solving a simultaneous
contact model whereas the other is a model in itself. The
former solves for force impulses whereas the latter solves
for collision impulses. The similarity with the propagation
model also gives intuition to some of the traits of the numer-
ical method. One may see propagation effects even though
one is using a simultaneous model.

The blocked Gauss–Seidel method offers many possibili-
ties. In Section 4.2.3, we divide an LCP into two sub-blocks:
one with normal variables only and the other containing the
rest. In fact one may use any kind of partitioning to create
the sub-blocks. For instance if the LCP includes joints, one
may create a sub-block for all the joint variables. This joint
sub-block of the LCP is known to be equivalent to a symmet-
ric positive semi-definite linear system. Thus, one may use
a preconditioned conjugate gradient (PCG) solver to solve
for joint impulses rather than a PGS method. As PCG has
the same per-iteration cost as PGS but better convergence
rate the result is much less joint drifting errors at the same
cost as PGS. If the number of joints is sufficiently small,
one may even use an incomplete Cholesky factorization to
solve for joint impulses resulting in very accurate solutions.
One may even take the BGS idea one step further and solve
the joint sub-block with a completely different approach like
the reduced coordinate formulation in Section 4.4. In the ex-
treme case, BGS can be used to partition a configuration into
sub-blocks where one can apply specialized solvers for each
sub-block. Such approaches have been termed hierarchical
solvers by the graphics and gaming community.

4.2.3. A Staggered Approach

One may combine the ideas of splitting the LCP and us-
ing QP reformulations. The idea is referred to as stagger-
ing [Löt84, KSJP08]. We partition the LCP variables into

three index sets, one corresponding to normal impulses N ,
and one to friction impulses F and the last one is simply the
slack variables β. Applying our partition would require us to
solve the two coupled LCPs,

0≤ ANN xN +(bN +ANFxF) ⊥ xN ≥ 0 and

0≤
[

AFF e
−eT 0

][
xF
β

]
+

[
bF +AFN xN

µxN

]
⊥
[

xF
β

]
≥ 0.

Taking a staggered approach one solves the top-most LCP
first (normal force problem) and then the bottom-most LCP
second (the friction force problem) and continues iteratively
until a fixed-point is reached. This is a blocked Gauss–Seidel
splitting method.

Observe that the normal force problem has a symmetric
positive semi-definite coefficient matrix ANN making QP
reformulations possible whereas the frictional problem has a
non-symmetric matrix. One may exploit a QP reformulation
anyway, because the friction LCP is the first order optimality
conditions of the QP problem

x∗F = argmin
1
2

xT
FAFFxF + cT

FxF (67)

subject to

xF ≥ 0 and cN − eT xF ≥ 0, (68)

where cN = µxN and cF = bF +BFN xN . Thus, any con-
vex QP method can be used to solve for the normal and fric-
tion forces and one is guaranteed to find a solution for each
subproblem. Whether the sequence of QP subproblems con-
verge to a fixed point is not obvious.

There exist many variations of this staggering
scheme [LL11]. One variation is to use a blocked Gauss–
Seidel method for the frictional problem rather than a QP
reformulation. This is mostly due to performance. Using
a QP solver for the normal problem helps to find accurate
normal forces, which are important for systems with with
large mass ratios among the bodies. In some interactive
applications, accurate friction forces are not as important,
which means a Gauss–Seidel method is suitable for the
friction problem.

4.3. Newton Methods

The PGS methods from Section 4.2 may suffer from vis-
cous artifacts due to linear convergence rate. An alternative
is to use Newton methods. These can provide quadratic con-
vergence rates and thus offer more accurate solutions at a
slightly higher per iteration computational cost than PGS
methods. PATH [Pat05] is a well known Newton type solver
for NCPs and used by many researchers in graphics and
robotics. One drawback of PATH is that computing time
scales quadratically in the number of contacts O(n2). Here
we will present a specialized Newton type solver and an
open source implementation can be found in [Erl11].

20 J. Bender et al. / Interactive Rigid Body Simulation

The Fischer function is defined as

φ(a,b) =
√

a2 +b2− (a+b) for a,b ∈ R. (69)

If one has the complementarity problem 0 ≤ a ⊥ b ≥ 0, a
solution (a∗,b∗) is a solution if and only if φ(a∗,b∗) = 0.
This may be proven by a case-by-case analysis of the signs
of a and b. Now consider the LCP

0≤ x ⊥ y = Ax+b≥ 0, (70)

where A ∈ Rn×n and b ∈ Rn are given constants. Using the
Fischer function the LCP may be reformulated as the nons-
mooth root search problem

F(x) = F(x,y) =

φ(x1,y1)
...

φ(xn,yn)

= 0. (71)

Thus, our problem is changed to that of finding the root of a
nonlinear nonsmooth equation. This problem may be solved
using a generalized Newton method which is an iterative
method. In the kth iteration the Newton method solves the
generalized Newton system

J∆xk =−F(xk) (72)

for the Newton direction ∆xk. Here J ∈ ∂F(xk) is any
member from the generalized Jacobian ∂F(x), for details
see [BETC12]. After having computed the Newton direc-
tion, one performs a Newton update to obtain the next iterate,

xk+1 = xk + τ
k
∆xk. (73)

Here τ
k is the step length of the kth Newton direction. A line

search method will be used to determine the value τ
k.

The Clarke generalized Jacobian of the Fischer reformu-
lation (71) can be written as

∂F(x)≡ Da(x)+Db(x)A, (74)

where Da(x) = diag(a1(x), . . . ,an(x)), Db(x) =
diag(b1(x), . . . ,bn(x)) ∈ Rn×n are diagonal matrices. If
yi 6= 0 or xi 6= 0 then

ai(x) =
xi√

x2
i +y2

i

−1, bi(x) =
yi√

x2
i +y2

i

−1 (75)

else if yi = xi = 0 then

ai(x) = αi−1, bi(x) = βi−1 (76)

for any α,β ∈ R such that ‖
[
αi βi

]T ‖≤ 1. For proof
see [BETC12].

We can choose any element in the generalized Jacobian. If
xi = yi = 0, we could choose βi = 1 and αi = 0. Thus, result-
ing in using the negative ith unit axis vector as the ith row of
J. A more practical implementation approach would simply
consist in whenever xi = yi = 0 one would use x′i = xi+ε in-
place of xi when evaluating the generalized Jacobian, where
ε is a sufficiently small value.

Figure 10: This articulated body is a tree of rigid bodies
which are connected by spherical joints.

A line search method is often used to achieve global con-
vergence of the Newton method. We propose a backtracking
line search with an Armijo condition to ensure sufficient de-
crease [NW99]. The line search uses the natural merit func-
tion of F(x) as a measure of convergence. The natural merit
function is defined as Ψ(x) = 1

2 ‖ F(x) ‖2. The Armijo con-
dition is given by

Ψ(xk +∆xk)≤Ψ(xk)+ cτ
k∇Ψ(xk)T

∆xk, (77)

where the sufficient decrease parameter is c ∈ (0,1) and
the gradient of the merit function is given by ∇Ψ(xk) =
JT F(xk).

The objective of the line search method is to find a step
length τ

k such that (77) is satisfied. The back tracking ap-
proach starts with the guess of τ

k = 1 and then tests if (77)
holds. If not, τ

k is reduced by a step reduction factor and the
test is repeated. This continues until the test passes and one
will have obtained the final value τ

k.

In comparison with the described Fischer-Newton method
we note that PATH is also based on a Fischer function refor-
mulation of a linearized boxed NCP formulation and uses a
nonmonotome line search method.

4.4. Articulated Bodies and Jointed Mechanics

In the following, we introduce methods to simulate articu-
lated bodies. An articulated body is a system of rigid bodies
connected by joints (see Figure 10). Joints define bilateral
constraints bC = 0 (see Section 2.1.3). There are two main
approaches for the simulation of articulated bodies: the re-
duced (or generalized) coordinate formulation and the max-
imal coordinate formulation (see Section 3.7).

4.4.1. Maximal coordinate formulation

Here we introduce a maximal coordinate formulation and,
because solutions of such formulations allow joint constraint
errors to build over time, we also present one possible joint
error correction method.

J. Bender et al. / Interactive Rigid Body Simulation 21

Lagrange multipliers The bilateral constraints in the sys-
tem are maintained by reaction forces. These forces can be
viewed as Lagrange multipliers (see Section 3.1). To com-
pute the reaction forces, the bilateral constraints are trans-
formed in the general constraint form:

J(q,u, t) u̇+k(q,u, t) = 0. (78)

In an n-dimensional system with an m-dimensional con-
straint the matrix J has dimension (m× n) and the vector
k has dimension m. A holonomic constraint is transformed
in the general form by differentiating the constraint function
bC twice with respect to time (cf. equation (28)).

The Lagrange multipliers λ are determined by substituting
the equation of motion u̇ = M−1 (fext +

bf) into the general
constraint (78), where bf are the constraint forces. Regarding
D’Alembert’s principle [GPS02], it follows that bf = JT

λ.
Hence, the constraint forces always act in the constrained
directions of a system. Such forces do not influence the mo-
tion of the n−m degrees of freedom of an articulated body.
Finally, we get a system of linear equations for the Lagrange
multipliers which are required to determine bf:

JM−1 JT︸ ︷︷ ︸
A

λ =−JM−1 fext−k︸ ︷︷ ︸
b

. (79)

The matrix A is positive definite if there are no conflicting
or redundant constraints. Furthermore, A is sparse for most
models since it reflects the structure of the articulated body.

David Baraff’s method [Bar96] allows the simulation of
articulated bodies without closed loops in linear time. The
system of linear equations (79) is rewritten as:(

M −JT

−J 0

)
︸ ︷︷ ︸

K

(
u̇
λ

)
=

(
0
−b

)
.

Matrix K is known as the KKT-matrix [NW99]. The matrix
A is smaller than K and positive definite if J has full rank
while K is not. Observe that A is the Schur matrix of K. A
has a row and column for each constraint while K has a row
and column for each degree of freedom and each constraint.
The advantage of this formulation is that K is always sparse
and symmetric.

The next step is to create an undirected graph for K with
a node for each block of the matrix and an edge between the
nodes i 6= j for each Ki j 6= 0. This graph is acyclic since the
model has no loops. By a depth-first search in this graph the
matrix is reordered so that the row index that corresponds to
a node in the graph is greater than the one of its children. Af-
terwards an LDLT decomposition is performed. Due to the
reordered matrix structure the decomposition introduces no
new nonzero elements, can be stored in linear space and per-
formed in linear time. The decomposition allows for solving
the linear system for the Lagrange multipliers in linear time.

The Lagrange multiplier method computes constraint
forces in order to prevent a violation of constraints due to

d

p

−p

P1

P2

Figure 11: Predicted state of a ball joint. The points P1 and
P2 have different positions which must be corrected by a pair
of impulses p and −p.

external forces. However, if the constraints are violated in a
different way (e.g., by errors that occur during numerical in-
tegration), the method cannot correct this. The problem is
that a constraint is not regarded directly. Instead it is de-
manded that its second derivative is zero. Therefore, an addi-
tional stabilization method is required to prevent joints from
breaking due to numerical errors. The method of Baum-
garte [Bau72] adds two penalty terms to equation (78). These
terms depend on the constraint function and its first time
derivative to consider position and velocity errors. Alterna-
tively, the terms can be taken into account by adding addi-
tional forces to the equation of motion [WW90]. The deter-
mination of suitable parameters for the stabilization is not
easy. Ascher et al. discuss the problems and propose an en-
hanced stabilization method [ACPR95]. This has also been
explored for NCP and LCP models [ST96, CP03].

Impulse-based error correction The impulse-based error
correction [BFS05, BS06b, Ben07, WTF06] is similar to the
Lagrange multiplier method. The main difference between
these methods is that the impulse-based approach determines
constraint impulses by using a prediction of the final state,
while the Lagrange multiplier method computes additional
forces or impulses based on the current state. In this sense, it
is like a mid-point method that considers information from
both ends of the time step to compute the update.

By differentiating a bilateral constraint function of a joint
with respect to time we get a general constraint form for ve-
locities Ju+ k = 0 which is analogous to the one of equa-
tion (78). Now a system of linear equations for the impulses
could be created which is analogous to the one of equa-
tion (79). However, the impulse-based error correction uses
a different right hand side b for the system in order to solve
the stabilization problem of the Lagrange multiplier method.
The vector b is determined by a prediction of the joint state.
This idea was first introduced by Bender et al. [BFS05] and
later also used by Weinstein et al. [WTF06].

Figure 11 shows the predicted state of a ball joint with the
bilateral constraint bC = P1−P2 = 0. For the prediction, we
assume that both rigid bodies are unconstrained. Then the
predicted position of a joint point P(t + ∆t) is determined
in two steps. First, we solve the differential equation ṙ =
ω× r for the vector r(t) = P(t)−x(t), where x is the center
of mass. Second, we solve the equation of motion for the

22 J. Bender et al. / Interactive Rigid Body Simulation

center of mass and determine the new position as P(t+∆t) =
r(t +∆t)+x(t +∆t). For the predicted state we evaluate the
constraint function and get the drift vector d(t+∆t)= bC(t+
∆t). This vector shows us the violation which would occur
without additional impulses in the system. Now we want to
compute a pair of impulses p and −p for time t to prevent
the violation. These impulses must cause a velocity change
of the joint points, so that the constraint bC(t +∆t) = 0 will
be fulfilled.

The required impulses for a constraint can be deter-
mined by solving a nonlinear equation by Newton itera-
tion [WTF06]. In a system with multiple constraints there
exist dependencies between constraints with a common
body. These dependencies are handled in an iterative way
by Weinstein et al. In contrast, Bender et al. linearize the
equation by approximating the required velocity change as
∆v = d(t + ∆t)/∆t. Bender et al. use this value as an ap-
proximation for the nonlinear case which leads commonly to
small errors [BS06b]. These errors are eliminated by solving
the following system for the impulses p iteratively

JM−1 JT p = ∆v,

where ∆v is the vector of velocity changes for all con-
straints. This system of linear equations can be solved in lin-
ear time for articulated bodies without loops [Bar96,Ben07].
Loops can be handled by splitting the model in acyclic parts
[BB08]. In [BS06a] impulse-based correction is extended by
inequality constraints in order to simulate collisions and rest-
ing contacts. Bayer et al. [BDB09] present different perfor-
mance optimizations for the impulse-based method. Numer-
ical comparisons of the impulse-based approach with other
methods can be found in [SB05, SBP05].

4.4.2. Reduced coordinate formulation

We introduced the reduced coordinate model in Section 3.7.
In the following we will discuss some methods for the sim-
ulation with this model.

Since methods based on Lagrange formulation (see Sec-
tion 3.7) have a complexity ofO(n4) [FO00], more efficient
approaches were investigated. An overview over such ap-
proaches can be found in [FO00]. One of them is the well-
known articulated-body algorithm (ABA) of Featherstone
with a complexity of O(n) for articulated bodies with tree-
structure [Fea87]. This algorithm works in three phases. In
the first phase the velocity and bias terms are determined in
a top-down traversal of the tree. Then the tree is traversed in
reverse to compute articulated-body inertias and bias forces.
Finally, the accelerations are determined in a second top-
down traversal. To provide a compact notation, Featherstone
introduced the spatial vector algebra. Spatial vectors are six-
dimensional and combine the linear and angular aspects of
rigid body motions and forces. A detailed introduction to the
spatial vector algebra and the ABA of Featherstone can be
found in [Mir96] and [Fea07].

The method of Featherstone is used in different areas
of computer graphics. One application area is the simu-
lation of rag-dolls which have a tree-structure. These are
used for example for improved motion synthesis techniques
which combine motion capture data with physical simula-
tion [MZS09]. There are also other application areas like
the simulation of strands [Had06] or in games [Kok04]. Re-
don et al. [RGL05] presented an adaptive variant of Feath-
erstone’s method in order to improve the performance. This
approach allows one to reduce the numbers of degrees of
freedom (at the cost of accuracy) while it automatically de-
termines the best set of active joints.

The degrees of freedom of a closed-loop model can vary
and forces in such a model can be indeterminate when the
system is overconstrained. Therefore, these models need
some special treatment. A common approach to handle
closed loops is to remove joints from the articulated body
until we have a tree structure [FO00]. This is done by ex-
tracting a spanning tree from the connectivity graph. Now a
simulation step is performed for the spanning tree and addi-
tional forces are added to mimic the effects of the kinematic
loops. Loop handling is explained in detail in [Fea07].

5. Parallel Processing and Optimizations

Parallelization is an important topic since multi-core sys-
tems and massively parallel GPUs are very common today.
For the simulation of bilateral constraints one has to solve
a system of linear equations (see Section 4.4). This can be
done in parallel by using a solver like PARDISO [SG04]
which is optimized for multi-core processors. Alternatively,
there exist multiple methods for solving such a system on
the GPU. Bolz et al. [BFGS03] as well as Krüger and West-
ermann [KW03] used shader programs and special textures
to implement different parallel solvers on the GPU. Opti-
mized data structures for sparse matrix operations on the
GPU have been developed in [BG09, BCL09, WBS∗13]. To
achieve a high performance a good memory layout of these
structures is very important. Weber et al. [WBS∗13] demon-
strated that reducing the kernel calls can further improve
the performance. The optimized matrix operations allow the
efficient solution of sparse systems which generally occur
in multibody simulations with bilateral constraints. Another
approach was presented by Bayer et al. [BBD09]. They cre-
ate groups of independent constraints in a precomputation
step. Then, all constraints in a group are solved in parallel
using different pixel shader programs. The dependencies be-
tween the groups are resolved by a Gauss-Seidel iteration
approach. A similar approach was used in [BB08].

The parallel computation of contact forces was a research
topic of interest in the last years. Harada [Har08] used rigid
bodies that are represented by sets of particles. This rep-
resentation makes a parallelization of the collision detec-
tion and response very simple. For the collision response
Harada used a discrete element method where repulsive,

J. Bender et al. / Interactive Rigid Body Simulation 23

damping and shear forces are computed for colliding parti-
cles. In [CA09] a parallel Gauss-Seidel iteration method for
dense matrices is introduced. This method works on multi-
core processors and GPUs. Tasora et al. [TNA08, TNA∗10]
used a Cone Complementarity Problem formulation instead
of an NCP. Tasora et al. argued that the probability for a
concurrent velocity update of contacts associated with the
same body is very small for large scenarios with hundreds
of thousands of contacts and ignored race conditions com-
pletely. Harada showed how to efficiently solve this prob-
lem by partitioning, synchronizing and scheduling the oper-
ations using local atomics within each compute unit [Har11].
More recently Tonge et al. [TBV12] approached the problem
differently by decomposing rigid bodies into smaller parts,
thereby eliminating race conditions altogether.

6. Conclusion and Future Work

Interactive rigid body simulations have become an important
part in different application areas. Such simulations require
efficient and accurate methods for handling joint and contact
constraints as well as a fast collision detection.

The simulation of more complex scenes and improve-
ments of accuracy are current goals in this field. To reach
these goals, massively parallel GPUs and multi-core pro-
cessors are taken into account. This parallelization trend re-
quires a computational rethinking and provides the possibil-
ity to develop new efficient algorithms.

In the last years, much research has been done on cou-
pling of rigid body simulations with other animation and
simulation techniques. One topic in this area is the combina-
tion of techniques like inverse kinematics with rigid bodies.
Another important one is the coupling of rigid bodies with
fluids [CMT04,RMSG∗08,RMEF09], cloth and deformable
bodies [SSIF07,SSF08]. Coupling allows the usage of differ-
ent kinds of bodies in the same environment by simulating
bilateral and unilateral constraints between these bodies.

Simulation is a good way to generate realistic looking an-
imations. But compared to keyframe techniques there is one
big drawback. The results of a simulation can only be con-
trolled indirectly by manipulating simulation parameters or
adding forces to the system. Many physical parameters have
to be defined for a simulation. It is hard to reach certain
predefined goals just by tweaking these parameters. There-
fore, more control over the simulation is required. In order to
solve this problem, different methods have been developed
which give a high-level control to the user. Some works pro-
pose inverse dynamics methods [PSE03, TJ08], others per-
form multiple simulations and discard unfitting ones [TJ07].
These methods let the user sketch a desired motion or de-
fine specific goals which must be reached by the simulation.
However, controlling the simulation is still a problem where
much work has to be done.

Acknowledgments The work of Jan Bender was supported
by the ’Excellence Initiative’ of the German Federal and
State Governments and the Graduate School CE at TU
Darmstadt. The work of Trinkle was supported in part
by NSF CCF-1208468, DARPA W15P7T-12-1-0002, and
Lockheed-Martin’s Advanced Technologies Laboratory.

References

[ACPR95] ASCHER U. M., CHIN H., PETZOLD L. R., REICH
S.: Stabilization of constrained mechanical systems with daes
and invariant manifolds. Journal of Mechanics of Structures and
Machines 23 (1995), 135–158. 21

[AG85] ARMSTRONG W. W., GREEN M. W.: The dynamics of
articulated rigid bodies for purposes of animation. The Visual
Computer 1, 4 (1985), 231–240. 1

[AP97] ANITESCU M., POTRA F.: Formulating multi-rigid-body
contact problems with friction as solvable linear complementar-
ity problems. ASME Journal of Nonlinear Dynamics 14 (1997),
231–247. 15

[Bar89] BARAFF D.: Analytical methods for dynamic simulation
of non-penetrating rigid bodies. In Proc. SIGGRAPH (1989). 1

[Bar93] BARAFF D.: Non-penetrating rigid body simulation. In
in State of the Art Reports, Eurographics ’93. Eurographics As-
sociation, Barcelona, Spain, September 1993. 1

[Bar94] BARAFF D.: Fast contact force computation for nonpen-
etrating rigid bodies. In Proc. SIGGRAPH (1994). 2, 17

[Bar96] BARAFF D.: Linear-time dynamics using lagrange mul-
tipliers. In Proc. of SIGGRAPH (New York, NY, USA, 1996),
ACM Press, pp. 137–146. 21, 22

[BAT09] BHALERAO K., ANDERSON K., TRINKLE J.: A re-
cursive hybrid time-stepping scheme for intermittent contact in
multi-rigid-body dynamics. ASME Journal of Computational
and Nonlinear Dynamics 4, 4 (2009). 16

[Bau72] BAUMGARTE J. W.: Stabilization of constraints and in-
tegrals of motion in dynamical systems. Computer Methods in
Applied Mechanics and Engineering 1 (1972), 1–16. 21

[BB08] BENDER J., BAYER D.: Parallel simulation of inexten-
sible cloth. In Virtual Reality Interactions and Physical Simula-
tions (Grenoble (France), Nov. 2008), pp. 47–56. 22

[BBD09] BAYER D., BENDER J., DIZIOL R.: Impulse-based dy-
namic simulation on the GPU. In Proc. of Computer Graphics
and Visualization (Algarve (Portugal), 2009). 22

[BBZ91] BADLER N., BARSKY B., ZELTZER D.: Making them
move: mechanics, control, and animation of articulated figures.
Morgan Kaufmann series in computer graphics and geometric
modeling. Morgan Kaufmann Publishers, 1991. 1

[BCL09] BUATOIS L., CAUMON G., LEVY B.: Concurrent num-
ber cruncher: a GPU implementation of a general sparse linear
solver. Int. J. Parallel Emerg. Distrib. Syst. 24 (June 2009), 205–
223. 22

[BDB09] BAYER D., DIZIOL R., BENDER J.: Optimized
impulse-based dynamic simulation. In Virtual Reality Interac-
tions and Physical Simulations (2009), pp. 125–133. 22

[Ben07] BENDER J.: Impulse-based dynamic simulation in linear
time. CAVW 18, 4-5 (2007), 225–233. 16, 21, 22

[Ber09] BERARD S.: Using Simulation for Planning and Design
of Robotic Systems with Intermittent Contact. PhD thesis, Rens-
selaer Polytechnic Institute, Dep. of Computer Science, 2009. 11

24 J. Bender et al. / Interactive Rigid Body Simulation

[BETC12] BENDER J., ERLEBEN K., TRINKLE J., COUMANS
E.: Interactive Simulation of Rigid Body Dynamics in Computer
Graphics. In EG 2012 - State of the Art Reports (2012), Euro-
graphics Association, pp. 95–134. 2, 3, 16, 17, 18, 19, 20

[BFGS03] BOLZ J., FARMER I., GRINSPUN E., SCHRÖDER P.:
Sparse matrix solvers on the GPU: conjugate gradients and multi-
grid. ACM Trans. Graph 22 (2003), 917–924. 22

[BFS05] BENDER J., FINKENZELLER D., SCHMITT A.: An
impulse-based dynamic simulation system for VR applications.
In Proc. of Virtual Concept 2005 (2005), Springer. 21

[BG09] BELL N., GARLAND M.: Implementing sparse matrix-
vector multiplication on throughput-oriented processors. In Proc.
High Perf. Comp., Networking, Storage and Analysis (2009). 22

[Bra91] BRACH R. M.: Mechanical Impact Dynamics: Rigid
Body Collisions. John Wiley and Sons, New York, 1991. 8

[BS06a] BENDER J., SCHMITT A.: Constraint-based collision
and contact handling using impulses. In Proc. of Computer Ani-
mation and Social Agents (2006), pp. 3–11. 22

[BS06b] BENDER J., SCHMITT A.: Fast dynamic simulation of
multi-body systems using impulses. In Virtual Reality Interac-
tions and Physical Simulations (2006), pp. 81–90. 16, 21, 22

[BWAK03] BARAFF D., WITKIN A., ANDERSON J., KASS M.:
Physically based modeling. Siggraph Course Notes, 2003. 16

[CA09] COURTECUISSE H., ALLARD J.: Parallel Dense Gauss-
Seidel Algorithm on Many-Core Processors. In Proc. of High
Perf. Comp. and Comm. (2009), IEEE CS Press. 23

[CBAT13] CHAKRABORTY N., BERARD S., AKELLA S., TRIN-
KLE J.: A geometrically implicit time-stepping method for multi-
body systems with intermittent contact. International Journal of
Robotics Research 32 (2013). in press. 8

[CMT04] CARLSON M., MUCHA P. J., TURK G.: Rigid fluid:
animating the interplay between rigid bodies and fluid. ACM
Trans. Graph. 23 (August 2004), 377–384. 23

[Con62] CONTENSOU P.: Kreiselprobleme und Gyrodynamics,
IUTAM Symposium Celerina. Springer-Verlag, Berlin, 1962,
ch. Couplage entre frottement de glissement et frottement de piv-
otement dans la théorie de la toupie, pp. 201–216. 6

[Cou13] COUMANS E.: The bullet physics library. http://
www.bulletphysics.org, 2013. 2

[CP03] CLINE M., PAI D.: Post-stabilization for rigid body sim-
ulation with contact and constraints. In Proc. of IEEE ICRA
(2003), pp. 3744 – 3751. 21

[CPN11] CPNET: Complementarity problem net. http://
www.cs.wisc.edu/cpnet, 2011. 12

[CPS92] COTTLE R., PANG J.-S., STONE R. E.: The Linear
Complementarity Problem. Academic Press, 1992. 10, 13, 15,
16, 17

[CR98] CHATTERJEE A., RUINA A.: A new algebraic rigid body
collision law based on impulse space considerations. Journal of
Applied Mechanics 65, 4 (1998), 939–951. 8

[Eri04] ERICSON C.: Real-Time Collision Detection. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004. 3

[Erl07] ERLEBEN K.: Velocity-based shock propagation for
multibody dynamics animation. ACM Trans. Graph. 26, 2
(2007), 12. 2

[Erl11] ERLEBEN K.: num4lcp. Published online at
code.google.com/p/num4lcp/, October 2011. Numerical meth-
ods for LCPs in physics-based animation. 19

[Erl13] ERLEBEN K.: Numerical methods for linear complemen-
tarity problems in physics-based animation. In ACM SIGGRAPH
2013 Courses (2013), pp. 1–42. 17

[ESHD05] ERLEBEN K., SPORRING J., HENRIKSEN K.,
DOHLMANN H.: Physics-based Animation. Charles River Me-
dia, Aug. 2005. 4

[Fea87] FEATHERSTONE R.: Robot dynamics algorithms.
Kluwer international series in engineering and computer science:
Robotics. Kluwer Academic Publishers, 1987. 22

[Fea99] FEATHERSTONE R.: A divide-and-conquer articulated-
body algorithm for parallel O(log(n)) calculation of rigid-body
dynamics. part 1: Basic algorithm. The International Journal of
Robotics Research 18, 9 (1999), 867–875. 16

[Fea07] FEATHERSTONE R.: Rigid Body Dynamics Algorithms.
Springer-Verlag New York, Inc., Secaucus, USA, 2007. 15, 22

[FO00] FEATHERSTONE R., ORIN D.: Robot dynamics: Equa-
tions and algorithms. International Conference on Robotics and
Automation (2000), 826–834. 22

[GBF03] GUENDELMAN E., BRIDSON R., FEDKIW R.: Non-
convex rigid bodies with stacking. ACM Trans. Graph. (2003).
2, 16

[Goy89] GOYAL S.: Planar Sliding of a Rigid Body with Dry
Friction: Limit Surfaces and Dynamics of Motion. PhD thesis,
Dep. of Mech. Eng., Cornell University, January 1989. 8, 9

[GPS02] GOLDSTEIN H., POOLE C., SAFKO J.: Classical me-
chanics. Addison Wesley, 2002. 4, 15, 21

[Had06] HADAP S.: Oriented strands: dynamics of stiff multi-
body system. In Proc. SCA (2006), pp. 91–100. 22

[Hah88] HAHN J. K.: Realistic animation of rigid bodies. In
Proc. SIGGRAPH (1988). 1

[Har08] HARADA T.: Real-time rigid body simulation on GPUs.
In GPU Gems 3, Nguyen H., (Ed.). Addison-Wesley, 2008,
pp. 611–632. 22

[Har11] HARADA T.: A parallel constraint solver for a rigid body
simulation. In SIGGRAPH Asia Sketches (2011). 23

[Jea99] JEAN M.: The non-smooth contact dynamics method.
Computer Methods in Applied Mechanics and Engineering 177,
3–4 (July 1999), 235–257. 19

[KEP05] KAUFMAN D. M., EDMUNDS T., PAI D. K.: Fast
frictional dynamics for rigid bodies. ACM Trans. Graph. 24, 3
(2005), 946–956. 2

[Kok04] KOKKEVIS E.: Practical physics for articulated charac-
ters. In Proc. of Game Developers Conference (2004). 22

[KSJP08] KAUFMAN D. M., SUEDA S., JAMES D. L., PAI
D. K.: Staggered projections for frictional contact in multibody
systems. ACM Trans. Graph. 27, 5 (2008). 2, 19

[KW03] KRÜGER J., WESTERMANN R.: Linear algebra oper-
ators for GPU implementation of numerical algorithms. ACM
Trans. Graph. 22, 3 (2003), 908–916. 22

[Lac03] LACOURSIERE C.: Splitting methods for dry frictional
contact problems in rigid multibody systems: Preliminary per-
formance results. In Prof. of The Annual SIGRAD Conference
(2003), Ollila M., (Ed.). 16

[Lan86] LANCZOS C.: The Variational Principles of Mechanics.
University of Toronto Press, 1986. 8, 9

[LG98] LIN M. C., GOTTSCHALK S.: Collision detection be-
tween geometric models: A survey. In In Proc. of IMA Confer-
ence on Mathematics of Surfaces (1998), pp. 37–56. 3

[LL11] LACOURSIERE C., LINDE M.: Spook: a variational time-
stepping scheme for rigid multibody systems subject to dry fric-
tional contact. Tech. Rep. UMINF 11.09, Department of Com-
puter Science, Umeå University, 2011. 19

http://www.bulletphysics.org
http://www.bulletphysics.org
http://www.cs.wisc.edu/cpnet
http://www.cs.wisc.edu/cpnet

J. Bender et al. / Interactive Rigid Body Simulation 25

[LO08] LIN M. C., OTADUY M. (Eds.): Haptic Rendering: Foun-
dations, Algorithms, and Applications. A K Peters/CRC Press,
July 2008. 1

[Löt84] LÖTSTEDT P.: Numerical simulation of time-dependent
contact and friction problems in rigid body mechanics. SIAM J.
Scientific and Statistical Computing 5, 2 (1984), 370–393. 19

[Mei70] MEIROVITCH L.: Methods of Analytical Dynamics.
McGraw-Hill, 1970. 4

[MF67] MANGASARIAN O., FROMOVITZ S.: The Fritz-John
necessary optimality conditions in the presence of equality and
inequality constraints. Journal of Mathematical Analysis and Ap-
plications 17 (1967), 37–47. 11

[MHHR07] MÜLLER M., HEIDELBERGER B., HENNIX M.,
RATCLIFF J.: Position based dynamics. J. Vis. Comun. Image
Represent. 18, 2 (2007), 109–118. 16

[Mir96] MIRTICH B. V.: Impulse-based dynamic simulation of
rigid body systems. PhD thesis, University of California, Berke-
ley, 1996. 2, 22

[Mor99] MOREAU J. J.: Numerical aspects of the sweeping pro-
cess. Computer Methods in Applied Mechanics and Engineering
177, 3–4 (July 1999), 329–349. 19

[Mur88] MURTY K. G.: Linear Complementarity, Linear and
Nonlinear Programming. Helderman-Verlag, 1988. 17

[MW88] MOORE M., WILHELMS J.: Collision detection and re-
sponse for computer animation. In Proc. SIGGRAPH (1988). 1

[MZS09] MACCHIETTO A., ZORDAN V., SHELTON C. R.: Mo-
mentum control for balance. ACM Trans. Graph. 28 (2009). 22

[NW99] NOCEDAL J., WRIGHT S. J.: Numerical optimization.
Springer Series in Operations Research. 1999. 20, 21

[Pat05] PATH: Path cpnet software, 2005. www.cs.wisc.
edu/cpnet/cpnetsoftware/. 19

[PNE10] POULSEN M., NIEBE S., ERLEBEN K.: Heuristic con-
vergence rate improvements of the projected gauss-seidel method
for frictional contact problems. In Proc. of WSCG (2010). 18

[PSE03] POPOVIĆ J., SEITZ S. M., ERDMANN M.: Motion
sketching for control of rigid-body simulations. ACM Trans.
Graph. 22 (October 2003), 1034–1054. 23

[PT96] PANG J., TRINKLE J.: Complementarity formulations
and existence of solutions of dynamic multi-rigid-body contact
problems with coulomb friction. Mathematical Programming 73
(1996), 199–226. 12

[RGL05] REDON S., GALOPPO N., LIN M. C.: Adaptive dy-
namics of articulated bodies. ACM Trans. Graph. 24 (July 2005),
936–945. 16, 22

[RMEF09] ROBINSON-MOSHER A., ENGLISH R. E., FEDKIW
R.: Accurate tangential velocities for solid fluid coupling. In
Proc. SCA (2009), pp. 227–236. 23

[RMSG∗08] ROBINSON-MOSHER A., SHINAR T., GRETARS-
SON J., SU J., FEDKIW R.: Two-way coupling of fluids to rigid
and deformable solids and shells. ACM Trans. Graph. 27 (August
2008), 46:1–46:9. 23

[SB05] SCHMITT A., BENDER J.: Impulse-based dynamic sim-
ulation of multibody systems: Numerical comparison with stan-
dard methods. In Proc. Auto. of Discrete Prod. Eng. (2005). 22

[SBP05] SCHMITT A., BENDER J., PRAUTZSCH H.: On the
Convergence and Correctness of Impulse-Based Dynamic Sim-
ulation. Internal Report 17, Universität Karlsruhe, 2005. 22

[SG04] SCHENK O., GÄRTNER K.: Solving unsymmetric sparse
systems of linear equations with PARDISO. Future Generation
Computer Systems 20, 3 (2004), 475–487. 22

[SKV∗12] SMITH B., KAUFMAN D. M., VOUGA E., TAM-
STORF R., GRINSPUN E.: Reflections on simultaneous impact.
ACM Trans. Graph. 31, 4 (July 2012), 106:1–106:12. 2

[Smi00] SMITH R.: Open dynamics engine. http://www.
ode.org, 2000. 2

[SNE10a] SILCOWITZ M., NIEBE S., ERLEBEN K.: A nons-
mooth nonlinear conjugate gradient method for interactive con-
tact force problems. The Visual Computer (2010). 18

[SNE10b] SILCOWITZ M., NIEBE S., ERLEBEN K.: Projected
Gauss-Seidel subspace minimization method for interactive rigid
body dynamics. In Proc. of Computer Graphics Theory and Ap-
plications (2010), INSTICC Press. 18

[SSF08] SHINAR T., SCHROEDER C., FEDKIW R.: Two-way
coupling of rigid and deformable bodies. In Proc. SCA (2008),
pp. 95–103. 23

[SSIF07] SIFAKIS E., SHINAR T., IRVING G., FEDKIW R.: Hy-
brid simulation of deformable solids. In Proc. SCA (2007),
pp. 81–90. 23

[ST96] STEWART D. E., TRINKLE J. C.: An implicit time-
stepping scheme for rigid body dynamics with inelastic collisions
and coulomb friction. International Journal of Numerical Meth-
ods in Engineering (1996). 21

[Stu08] STUDER C.: Augmented time-stepping integration of non-
smooth dynamical systems. PhD thesis, ETH Zürich, 2008. 3

[TBV12] TONGE R., BENEVOLENSKI F., VOROSHILOV A.:
Mass splitting for jitter-free parallel rigid body simulation. ACM
Trans. Graph. 31, 4 (July 2012), 105:1–105:8. 23

[TJ07] TWIGG C., JAMES D. L.: Many-worlds browsing for con-
trol of multibody dynamics. ACM Trans. Graph. 26 (2007). 23

[TJ08] TWIGG C., JAMES D. L.: Backward steps in rigid body
simulation. ACM Trans. Graph. 27 (2008), 25:1–25:10. 23

[TNA08] TASORA A., NEGRUT D., ANITESCU M.: Large-scale
Parallel Multi-body Dynamics with Frictional Contact on the
Graphical Processing Unit. In Proc. of Institution of Mech. Eng.,
Part K: Journal of Multi-body Dynamics (2008), pp. 315–326. 23

[TNA∗10] TASORA A., NEGRUT D., ANITESCU M., MAZHAR
H., HEYN T. D.: Simulation of Massive Multibody Systems
using GPU Parallel Computation. In Proc. of WSCG (2010). 23

[TP97] TRINKLE J., PANG J.: Dynamic multi-rigid-body sys-
tems with concurrent distributed contacts. In Proc. of IEEE ICRA
(1997), pp. 2276–2281. 11

[TPSL97] TRINKLE J., PANG J., SUDARSKY S., LO G.: On
dynamic multi-rigid-body contact problems with coulomb fric-
tion. Zeitschrift für Angewandte Mathematik und Mechanik 77, 4
(1997), 267–279. 10

[TTP01] TRINKLE J., TZITZOURIS J., PANG J.: Dynamic multi-
rigid-body systems with concurrent distributed contacts: Theory
and examples. Philosophical Trans.: Mathematical, Physical,
and Engineering Sciences 359, 1789 (2001), 2575–2593. 6, 11

[WBS∗13] WEBER D., BENDER J., SCHNOES M., STORK A.,
FELLNER D.: Efficient GPU data structures and methods to
solve sparse linear systems in dynamics applications. Computer
Graphics Forum 32, 1 (2013), 16–26. 22

[WTF06] WEINSTEIN R., TERAN J., FEDKIW R.: Dynamic
simulation of articulated rigid bodies with contact and collision.
IEEE TVCG 12, 3 (2006), 365–374. 21, 22

[WW90] WITKIN A., WELCH W.: Fast animation and control of
nonrigid structures. In Proc. SIGGRAPH (1990), pp. 243–252.
21

www.cs.wisc.edu/cpnet/cpnetsoftware/
www.cs.wisc.edu/cpnet/cpnetsoftware/
http://www.ode.org
http://www.ode.org

