
A Survey on Position-Based Simulation Methods in Computer
Graphics

Jan Bender1, Matthias Müller2, Miguel A. Otaduy3, Matthias Teschner4 and Miles Macklin2

1Graduate School CE, TU Darmstadt
2NVIDIA PhysX Research

3URJC Madrid
4University of Freiburg

Abstract
The dynamic simulation of mechanical effects has a long history in computer graphics. The classical methods
in this field discretize Newton’s second law in a variety of Lagrangian or Eulerian ways, and formulate forces
appropriate for each mechanical effect: joints for rigid bodies; stretching, shearing, or bending for deformable
bodies; and pressure, or viscosity for fluids, to mention just a few. In the last years the class of position-based
methods has become popular in the graphics community. These kinds of methods are fast, stable and controllable
which make them well-suited for use in interactive environments. Position-based methods are not as accurate as
force-based methods in general but they provide visual plausibility. Therefore, the main application areas of these
approaches are virtual reality, computer games and special effects in movies.
This state-of-the-art report covers the large variety of position-based methods that were developed in the field
of physically-based simulation. We will introduce the concept of position-based dynamics, present dynamic sim-
ulation based on shape matching and discuss data-driven upsampling approaches. Furthermore, we will present
several applications for these methods.

Keywords:

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

The simulation of solid objects such as rigid bodies, soft
bodies or cloth has been an important and active research
topic in computer graphics for more than 30 years. The
field was introduced to graphics by Terzopoulos and his
colleagues in the late eighties [TPBF87a]. Since then, a
large body of work has been published and the list is grow-
ing rapidly. There exists a variety of survey papers [GM97,
MTV05,NMK∗06,MSJT08,BETC12] which document this
development. However, due to the shear number of papers,
it has become difficult to cover the entire field in one survey.

In this state-of-the-art report we focus on a special class
of simulation methods, namely position-based approaches.
These methods were originally developed for the simulation
of solids. However, some recent works demonstrated that the
position-based concepts can even be used to simulate flu-

ids. Classical dynamics simulation methods formulate the
change of momentum of a system as a function of applied
forces, and evolve positions through numerical integration
of accelerations and velocities. Position-based approaches,
instead, compute positions directly, based on the solution to
a quasi-static problem.

Physical simulation is a well studied problem in the com-
putational sciences and therefore, many of the well estab-
lished methods have been adopted in graphics such as the Fi-
nite Element Method (FEM) [OH99], the Finite Differences
Method [TPBF87b], the Finite Volume Method [TBHF03],
the boundary element method [JP99] or particle-based ap-
proaches [DSB99, THMG04]. The main goal of computer
simulations in computational physics and chemistry is to
replace real-world experiments and thus, to be as accurate
as possible. In contrast, the main applications of physically
based simulation methods in computer graphics are special



2 Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics

effects in movies and commercials and more recently, com-
puter games and other interactive systems. Here, speed and
controllability are the most important factors and all that is
required in terms of accuracy is visual plausibility. This is
especially true for real-time applications.

Position-based methods are tailored particularly for use in
interactive environments. They provide a high level of con-
trol and are stable even when simple and fast explicit time
integration schemes are used. Due to their simplicity, robust-
ness and speed these approaches have recently become very
popular in computer graphics and in the game industry.

In this state-of-the-art report, we focus the discussion on
several geometrically motivated methods, in particular those
that directly manipulate the positions of the simulated bod-
ies. We start with a description of position-based dynam-
ics methods, which compute equilibrium positions by itera-
tively resolving geometric constraints. Then, we cover shape
matching methods, and we conclude with data-driven up-
sampling methods, which compute positions as a function
of data from precaptured deformation examples.

Collision detection is an important part of any simulation
system. However, an adequate discussion of this topic is be-
yond the scope of this report. Therefore, we refer the reader
to the surveys of Lin and Gottschalk [LG98] and the one of
Teschner et al. [TKH∗05].

2. Background

The most popular approaches for the simulation of dynamic
systems in computer graphics are force based. Internal and
external forces are accumulated from which accelerations
are computed based on Newton’s second law of motion. A
time integration method is then used to update the veloci-
ties and finally the positions of the object. A few simula-
tion methods (most rigid body simulators) use impulse based
dynamics and directly manipulate velocities. In contrast,
geometry-based methods omit the velocity layer as well and
immediately work on the positions. The main advantage of a
position-based approach is its controllability. Overshooting
problems of explicit integration schemes in force based sys-
tems can be avoided. In addition, collision constraints can be
handled easily and penetrations can be resolved completely
by projecting points to valid locations.

Among the force based approaches, one of the simplest
methods is to represent and simulate solids with mass-spring
networks. A mass spring system consists of a set of point
masses that are connected by springs. The physics of such a
system is straightforward and a simulator is easy to imple-
ment. However, there are some significant drawbacks of the
simple method.

• The behavior of the object depends on the way the spring
network is set up.
• It can be difficult to tune the spring constants to get the

desired behavior.

• Mass spring networks cannot capture volumetric effects
directly such as volume conservation or prevention of vol-
ume inversions.

The Finite Element Method solves all of the above prob-
lems because it considers the entire volume of a solid instead
of replacing it with a finite number of point masses. Here,
the object is discretized by splitting the volume into a num-
ber of elements with finite size. This discretization yields a
mesh as in the mass spring approach in which the vertices
play the role of the mass points and the elements, typically
tetrahedra, can be viewed as generalized springs acting on
multiple points at the same time. In both cases, forces at the
mass points or mesh vertices are computed due to their ve-
locities and the actual deformation of the mesh.

3. Position-Based Dynamics

In this section we present Position-Based Dynamics, an ap-
proach which omits the velocity and acceleration layer and
immediately works on the positions [MHHR07]. We will
first describe the basic idea and the simulation algorithm of
PBD. Then we will focus specifically on how to solve the
system of constraints that describe the object to be simu-
lated. After this we will provide a list of constraints that can
be used to simulate a variety of materials such as soft bod-
ies, cloth or even fluids with PBD. We will also discuss the
relation of PBD to strain limiting methods, how to include
damping and ways to parallelize the simulation algorithm.

3.1. Overview

The objects to be simulated are represented by a set of N
particles and a set of M constraints. Each particle i has three
attributes, namely

mi mass

xi position

vi velocity

A constraint j is defined by the five attributes

n j cardinality

C j : R3n j → R scalar constraint function

{i1, . . . in j}, ik ∈ [1, . . .N] set of indices

k j ∈ [0 . . .1] stiffness parameter

unilateral or bilateral type

.

Constraint j with type bilateral is satisfied if
C j(xi1 , . . . ,xin j

) = 0. If its type is unilateral then it is
satisfied if C j(xi1 , . . . ,xin j

) ≥ 0. The stiffness parameter k j

defines the strength of the constraint in a range from zero to
one.



Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics 3

Algorithm 1 Position-based dynamics
1: for all vertices i do
2: initialize xi = x0

i , vi = v0
i , wi = 1/mi

3: end for
4: loop
5: for all vertices i do vi← vi +∆twifext(xi)
6: for all vertices i do pi← xi +∆tvi
7: for all vertices i do genCollConstraints(xi→ pi)
8: loop solverIteration times
9: projectConstraints(C1, . . . ,CM+MColl ,p1, . . . ,pN )

10: end loop
11: for all vertices i do
12: vi← (pi−xi)/∆t
13: xi← pi
14: end for
15: velocityUpdate(v1, . . . ,vN )
16: end loop

Given this data and a time step ∆t, the simulation proceeds
as described by Algorithm 1. Since the algorithm simulates
a system which is second order in time, both the positions
and the velocities of the particles need to be specified in (1)-
(3) before the simulation loop starts. Lines (5)-(6) perform
a simple explicit forward Euler integration step on the ve-
locities and the positions. The new locations pi are not as-
signed to the positions directly but are only used as predic-
tions. Non-permanent external constraints such as collision
constraints are generated at the beginning of each time step
from scratch in line (7). Here the original and the predicted
positions are used in order to perform continuous collision
detection. The solver (8)-(10) then iteratively corrects the
predicted positions such that they satisfy the Mcoll external
as well as the M internal constraints. Finally, the corrected
positions pi are used to update the positions and the veloc-
ities. It is essential here to update the velocities along with
the positions. If this is not done, the simulation does not pro-
duce the correct behavior of a second order system. As you
can see, the integration scheme used here is very similar to
the Verlet method. It is also closely related to Jos Stam’s
Nucleus solver [Sta09] which also uses a set of contraints to
describe the objects to be simulated. The main difference is
that Nucleus solves the constraints for velocities, not posi-
tions.

3.2. The System to be Solved

The goal of the solver step (8)-(10) is to correct the pre-
dicted positions pi of the particles such that they satisfy
all constraints. The problem that needs to be solved com-
prises of a set of M equations for the 3N unknown po-
sition components, where M is now the total number of
constraints. This system does not need to be symmetric. If
M > 3N (M < 3N) the system is over-determined (under-
determined). In addition to the asymmetry, the equations are

in general non-linear. The function of a simple distance con-
straint C(p1,p2) = |p1−p2|2−d2 yields a non-linear equa-
tion. What complicates things even further is the fact that
collisions produce inequalities rather than equalities. Solv-
ing a non-symmetric, non-linear system with equalities and
inequalities is a tough problem.

Let p be the concatenation [pT
1 , . . . ,p

T
N ]

T and let all the
constraint functions C j take the concatenated vector p as in-
put while only using the subset of coordinates they are de-
fined for. We can now write the system to be solved as

C1(p) � 0

. . .

CM(p) � 0,

where the symbol � denotes either = or ≥. Newton-
Raphson iteration is a method to solve non-linear symmet-
ric systems with equalities only. The process starts with a
first guess of a solution. Each constraint function is then lin-
earized in the neighborhood of the current solution using

C(p+∆p) =C(p)+∇pC(p) ·∆p+O(|∆p|2) = 0.

This yields a linear system for the global correction vector
∆p

∇pC1(p) ·∆p =−C1(p)
. . .

∇pCM(p) ·∆p =−CM(p),

where ∇pC j(p) is the 1×N dimensional vector containing
the derivatives of the function C j w.r.t. all its parameters, i.e.
the N components of p. It is also the j-th row of the lin-
ear system. Both, the rows ∇pC j(p) and the right hand side
scalars −C j(p) are constant because they are evaluated at
the location p before the system is solved. When M = 3N
and only equalities are present, the system can be solved by
any linear solver, e.g. a preconditioned conjugate gradient
method. Once it is solved for ∆p the current solution is up-
dated as p← p+∆p. A new linear system is generated by
evaluating ∇pC j(p) and −C j(p) at the new location after
which the process repeats.

If M 6= 3N the resulting matrix of the linear system is non-
symmetric and not invertible. Goldenthal et al. [GHF∗07]
solve this problem by using the pseudo-inverse of the sys-
tem matrix which yields the best solution in the least-squares
sense. Still, handling inequalities is not possible directly.

3.3. The Non-Linear Gauss-Seidel Solver

In the position-based dynamics approach, non-linear Gauss-
Seidel is used. It solves each constraint equation separately.
Each constraint yields a single scalar equation C(p)� 0 for
all the particle positions associated with it. The subsystem
is therefore highly under-determined. PBD solves this prob-
lem as follows. Again, given p we want to find a correction
∆p such that C(p+∆p) � 0. It is important to notice that



4 Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics

PBD also linearizes the constraint function but individually
for each constraint. The constraint equation is approximated
by

C(p+∆p)≈C(p)+∇pC(p) ·∆p� 0. (1)

The problem of the system being under-determined is solved
by restricting ∆p to be in the direction of ∇pC which con-
serves the linear and angular momenta. This means that only
one scalar λ - a Lagrange multiplier - has to be found such
that the correction

∆p = λ∇pC(p)

solves Equation (1). This yields the following formula for
the correction vector of a single particle i

∆pi =−s wi∇piC(p), (2)

where

s =
C(p)

∑ j w j|∇p jC(p)|2

and wi = 1/mi.

As mentioned above, this solver linearizes the constraint
functions. However, in contrast to the Newton-Raphson
method, the linearization happens individually per con-
straint. Solving the linearized constraint function of a single
distance constraint for instance yields the correct result in a
single step. Because the positions are immediately updated
after a constraint is processed, these updates will influence
the linearization of the next constraint because the lineariza-
tion depends on the actual positions. Asymmetry does not
pose a problem because each constraint produces one scalar
equation for one unknown Lagrange multiplier λ. Inequali-
ties are handled trivially by first checking whether C(p)≥ 0.
If this is the case, the constraint is simply skipped.

The fact that each constraint is linearized individually be-
fore its projection makes the solver more stable than a global
approach in which the linearizations are kept fixed for the en-
tire global solve of a Newton iteration. Liu et al. [LBOK13]
pointed out that PBD can be interpreted as a heuristic vari-
ant of the variational implicit Euler method taking the iner-
tial term out of the solve and into the integration step of the
simulation.

We have not considered the stiffness k of the constraint
so far. There are several ways to incorporate it. The simplest
variant is to multiply the corrections ∆p by k∈ [0 . . .1]. How-
ever, for multiple iteration loops of the solver, the effect of k
is non-linear. The remaining error for a single distance con-
straint after ns solver iterations is ∆p(1−k)ns . To get a linear
relationship we multiply the corrections not by k directly but
by k′ = 1−(1−k)1/ns . With this transformation the error be-
comes ∆p(1−k′)ns = ∆p(1−k) and, thus, becomes linearly
dependent on k and independent of ns as desired. However,
the resulting material stiffness is still dependent on the time
step of the simulation. Real time environments typically use

Figure 1: Projection of the constraint C(p1,p2) = |p1,2|−d.
The corrections ∆pi are weighted according to the inverse
masses wi = 1/mi.

fixed time steps in which case this dependency is not prob-
lematic.

3.4. Constraint Examples

In the following we will introduce different constraint exam-
ples. For better readability we define pi, j = pi−p j.

3.4.1. Stretching

To give an example, let us consider the distance constraint
function C(p1,p2) = |p1,2|−d. The derivatives with respect
to the points are∇p1C(p1,p2) = n and∇p2C(p1,p2) =−n
with n =

p1,2
|p1,2| . The scaling factor s is, thus, s = |p1,2|−d

1+1 and
the final corrections

∆p1 =−
w1

w1 +w2
(|p1,2|−d)

p1,2

|p1,2|

∆p2 =+
w2

w1 +w2
(|p1,2|−d)

p1,2

|p1,2|
,

which are the formulas proposed in [Jak01] for the projec-
tion of distance constraints (see Figure 1). They pop up as a
special case of the general constraint projection method.

3.4.2. Bending

In cloth simulation it is important to simulate bending in
addition to stretching resistance. To this end, for each pair
of adjacent triangles (p1,p3,p2) and (p1,p2,p4) a bilateral
bending constraint is added with constraint function

Cbend(p1,p2,p3,p4) =

acos
(

p2,1×p3,1

|p2,1×p3,1|
·

p2,1×p4,1

|p2,1×p4,1|

)
−ϕ0

and stiffness kbend . The scalar ϕ0 is the initial dihedral angle
between the two triangles and kbend is a global user parame-
ter defining the bending stiffness of the cloth (see Figure 2).
The advantage of this bending term over adding a distance
constraint between points p3 and p4 is that it is independent
of stretching. This is because the term is independent of edge
lengths.

3.4.3. Triangle Collisions

Self collisions within cloth can be handled by additional uni-
lateral constraints. For vertex q moving through a triangle



Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics 5

Figure 2: For bending resistance, the constraint function
C(p1,p2,p3,p4) = arccos(n1 ·n2)−ϕ0 is used. The actual
dihedral angle ϕ is measured as the angle between the nor-
mals of the two triangles.

Figure 3: Constraint function C(q,p1,p2,p3) = (q− p1) ·
n− h makes sure that q stays above the triangle p1,p2,p3
by the cloth thickness h.

p1, p2, p3, the constraint function reads

C(q,p1,p2,p3) = (q−p1) ·
p2,1×p3,1

|p2,1×p3,1|
−h,

where h is the cloth thickness. If the vertex enters from be-
low with respect to the triangle normal, the constraint func-
tion has to be

C(q,p1,p2,p3) = (q−p1) ·
p3,1×p2,1

|p3,1×p2,1|
−h.

3.4.4. Volume Conservation

For tetrahedral meshes it is useful to have a constraint that
conserves the volume of single tetrahedron. Such a con-
straint has the form

C(p1,p2,p3,p4) =
1
6
(
p2,1×p3,1

)
·p4,1−V0,

where p1, p2, p3 and p4 are the four corners of the tetrahe-
dron and V0 is its rest volume. In a similar way, the area of a
triangle can be kept constant by introducing

C(p1,p2,p3) =
1
2

∣∣p2,1×p3,1
∣∣−A0.

3.4.5. Cloth Balloons

For closed triangle meshes, overpressure inside the mesh as
shown in Figure 5 can easily be modeled with an equality
constraint concerning all N vertices of the mesh:

C(p1, . . . ,pN) =

(
ntriangles

∑
i=1

(pt i
1
×pt i

2
) ·pt i

3

)
− kpressureV0.

Here t i
1, t

i
2 and t i

3 are the three indices of the vertices belong-
ing to triangle i. The sum computes the actual volume of the

closed mesh. It is compared against the original volume V0
times the overpressure factor kpressure. This constraint func-
tion yields the gradients

∇piC = ∑
j:t j

1=i

(pt j
2
×pt j

3
)+ ∑

j:t j
2=i

(pt j
3
×pt j

1
)+ ∑

j:t j
3=i

(pt j
1
×pt j

2
).

These gradients have to be scaled by the scaling factor given
in Equation (3.3) and weighted by the masses according to
Equation (2) to get the final projection offsets ∆pi.

Figure 5: Simulation of overpressure inside a character.

3.4.6. Fluids

It is also possible to simulate fluids in the PBD framework
even though it has been used almost exclusively for the sim-
ulation of deformable objects. We mention fluids simply as
an item in the list of possible constraints because all that is
needed to simulate liquids and gases is a specialized con-
straint.

A straightforward approach would be to model the fluid as
a system of particles constrained to maintain a minimum dis-
tance from each other, however this leads to granular-like be-
havior and will typically fail to reach hydrostatic equilibrium
when coming to rest. An alternative method is presented
by Macklin and Müller [MM13] where fluid incompress-
ibility is enforced using density constraints. Borrowing the
concept of a density estimator from Smoothed Particle Hy-
drodynamics (SPH) [Mon94,Mon92], a density constraint is
constructed for each particle i in the system as follows

Ci(p1, ...,pn) =
ρi

ρ0
−1, (3)

where ρ0 is the fluid rest density and ρi is the density at
a particle, defined as the sum of smooth kernels [MCG03]
centered at the particle’s neighbor positions

ρi = ∑
j

m jW (pi−p j,h).

Note that here each particle’s mass is assumed to be one,
and the rest density adjusted accordingly. In order to solve
these density constraints using position-based dynamics, the
derivative of the constraint function (3) with respect to each
particle’s position is required. This can be calculated using
the gradient of SPH kernels

∇pkCi =
1
ρ0

∑
j
∇pkW (pi−p j,h) if k = i

−∇pkW (pi−p j,h) if k = j.



6 Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics

Figure 4: The image shows a mesh that is simulated using stretching and bending constraints. The top row shows
(kstretching,kbending) = (1,1), ( 1

2 ,1) and ( 1
100 ,1). The bottom row shows (kstretching,kbending) = (1,0), ( 1

2 ,0) and ( 1
100 ,0).

Then, by taking advantage of symmetry in the SPH smooth-
ing kernel W , the corrective change in position due to the
particle’s own density constraint, and the density constraints
of its neighbors is given by

∆pi =
1
ρ0

∑
j

(
λi +λ j

)
∇W (pi−p j,h),

where λ is the per-constraint scaling factor (see section
3.3). Figure 6 shows a real-time water simulation using this
method.

Figure 6: A wave pool scene consisting of 128k fluid parti-
cles simulated in 10ms/frame on the GPU. Incompressibility
is enforced using density constraints solved using position-
based dynamics.

3.5. Strain Limiting

Strain limiting is an important topic in the field of cloth
simulation. The reason is that the low solver iteration
counts used in real-time applications yield stretchy cloth.
Since most cloth types are perceived by the human eye as
completely inextensible, it is important to make simulated
cloth inextensible in order to avoid disturbing visual arti-
facts [GHF∗07, BB08].

A strain limiting method makes sure that the overall
stretch of the cloth stays below a certain threshold. In force
based simulations, strain limiting is a separate pass which
is executed before or after the regular cloth solver. In most
cases, this pass moves the positions of vertices directly, even
in force based simulations. Therefore, most strain limiting
methods fall under the category of position-based methods.

A straightforward way of limiting strain is to iterate
through all edges of a cloth mesh and project the adjacent
particles of overstretched edges as shown in Figure 1 so that
the stretch of the edge does not exceed the stretch limit.
Provot [Pro95] was among the first to use this method in the
context of cloth simulation. He performs a single iteration
through all cloth edges after a force based solver. Desbrun et
al. [DSB99] and Bridson et al. [BMF03] later used the same
post solver strain limiter but with multiple iterations through
all edges. Due to its simplicity, this method is still one of the
most popular strain limiting methods used in cloth simula-
tions .

The method is very similar to position-based cloth simu-
lation. The main difference is that the strain limiting pass de-
scribed above does not influence the velocities. These are up-
dated by the force-based solver. In contrast, position-based
cloth simulation derives the new velocities from the projec-



Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics 7

tions, making an additional solver pass obsolete. Therefore,
every position-based strain limiting method used in force
based simulations can directly be used in a PBD solver.

The result of projecting along edges depends on the
structure of the mesh. To reduce this artifact, Wang et al.
[WOR10] propose to limit the principal strains of the 2D
deformation field within each triangle. The 2D deformation
field can be determined by considering the 2D coordinates
of the vertices of a triangle within the planes of the rest and
current triangle configurations. Wang et al. compute the prin-
cipal strains of the 2D deformation gradient, clamp them
and construct a new 2D transformation using the clamped
strains. With this new transformation they correct the current
positions of the triangle vertices. As before, to limit strain
globally, they iterate through all triangles multiple times in a
Gauss-Seidel fashion.

Due to the relatively slow convergence rate of a Gauss-
Seidel solver, high iteration counts are necessary to limit the
strain globally which slows down the simulation. The two
main methods to improve the convergence rate are the use of
a global Newton-Raphson solver as proposed by Goldenthal
et al. [GHF∗07] or to perform Gauss-Seidel iterations on a
hierarchy of meshes as proposed in [Mül08], [WOR10] and
[SKBK13]. However, these methods complicate the imple-
mentation and even though their convergence rate is higher,
a single iteration can be significantly more expensive than a
simple Gauss-Seidel iteration.

Recently, Kim et al. [KCM12] found a surprisingly sim-
ple and robust technique they call Long Range Attachments
(LRA) to prevent cloth from getting stretched globally with
low iteration counts. Their method exploits the fact that
stretching artifacts almost always appear when cloth is at-
tached. In this case, instead of only applying attachment con-
straints to the subset of the vertices near the region where
the cloth is attached and relying on error propagation of the
solver for all other vertices, they apply unilateral attachment
constraints to all the vertices by attaching each vertex to one
or more attachment point directly. The rest lengths of these
long range attachments can either be set to the Euclidean
distance in the rest state or via measuring geodesic lengths
along the cloth. Figure 7 demonstrates the method on a sin-
gle rope attached at one end. The method allows the simula-
tion of a piece of cloth with 90K vertices at interactive rates
as shown in Figure 8.

A similar approach was recently proposed by Müller et
al. [MKC12] to guarantee zero stretch in a single pass for
the case of attached ropes. This approach allows the simu-
lation of thousands of hair strands in real time (Figure 10).
Figure 9 visualizes the basic idea. Particle x1 is attached. To
satisfy the first distance constraint, particle x2 is moved to-
wards x1 such that their mutual distance is l0. Particle x3
is then moved towards the new position of x2 and similarly
along the chain until the last particle is reached. After this
single pass, all the distance constraints are satisfied. This

Figure 7: The Long Range Attachments (LRA) method used
to simulate an inextensible rope attached at one end. Each
particle is constrained or remain inside a sphere centered
at the attachment point (red) whose radius is the initial dis-
tance from the particle to the attachment. For each config-
uration, target positions are shown in green when particles
need to be projected. Particles inside the constraint spheres
are allowed to move freely.

Figure 8: Simulation of a piece of cloth with 90K vertices at
20fps on a GPU using LRA.

method is called Follow The Leader (FTL). While LRA guar-
antees zero stretch of all the particles w.r.t. the attachment
points, the constraint between consecutive particles can still
remain overstretched. On the other hand, in contrast to LRA
which is momentum conserving, FTL introduces unphysical
behavior. Not projecting distance constraints symmetrically
means that a system is simulated for which each particle has
infinitely more mass than its successor. To compensate for
this behavior, the authors replace the PBD velocity update
vi← (pi−xi)/∆t by

vi←
pi−xi

∆t
+ sdamping

−di+1
∆t

,

where di+1 is the position correction applied to particle i+1



8 Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics

and sdamping ∈ [0,1] a scaling factor do influence damping.
While this modification of DFTL (dynamic FTL) hides the
un-physical behavior of FTL, it introduces a certain amount
of damping which is acceptable for the simulation of hair
and fur as the author’s results show.

l0

l0

l0

1x

2x

3x
4x

Figure 9: Follow The Leader (FTL) projection. Starting
from the attachment down, each particle is moved directly
towards its predecessor such that their mutual distance con-
straint is satisfied.

3.6. Wrinkle Meshes

In cloth simulations, reducing the mesh resolution not only
reduces the cost of a single solver iteration but also the num-
ber of iterations required to get visually pleasing results.
In [MC10] the authors proposed a way to reduce the res-
olution of the dynamic mesh without losing too much vi-
sual detail. The most significant detail in cloth simulations
are small wrinkles. The method is based on the observation
that global dynamic behavior of the cloth and wrinkle forma-
tion can be separated. Therefore, expensive dynamic simu-
lation including collision handling is performed on a low-
resolution mesh. The wrinkle formation is handled on a high
resolution mesh that is attached to the dynamic mesh (see
Figures 11 and 12). Since wrinkles do not oscillate, it is suf-
ficient to use a static solver with a low iteration count on the
high-resolution mesh.

Figure 11: Basic idea of wrinkle meshes. The high resolu-
tion wrinkle mesh (white vertices) follows the low-resolution
dynamic mesh (black vertices) by restricting the white ver-
tices to remain within a certain distance (gray discs) to the
dynamic mesh.

Figure 12: Visualization of the wrinkle mesh (solid) and the
underlying dynamic mesh (wireframe).

Figure 13 shows the constraints defined on the high-
resolution mesh to make it form wrinkles and follow the dy-
namic mesh. The attachment constraints makes sure that the
vertices of the wrinkle mesh stay close to their attachment
points on the dynamic mesh. If the dynamic mesh has out-
side/inside information, a one-sided constraint can be used
which makes sure that the wrinkle vertices stay on the out-
side of the dynamic mesh, thus avoiding penetrations with
other objects. The stretching and bending constraints are re-
sponsible for wrinkle formation.

p

a

1p

2p
0l

n

a

p

1p 2p

3p

4p

Figure 13: Static constraints on a wrinkle mesh: Attach-
ment constraint (top left), one sided attachment constraint
(top right), stretch constraint (bottom left) and bending con-
straint (bottom right).

3.7. Damping

The quality of dynamic simulations can generally be im-
proved by the incorporation of an appropriate damping
scheme. As a positive effect, damping can improve the sta-
bility by reducing temporal oscillations of the point posi-
tions of an object. This enables the use of larger time steps



Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics 9

Figure 10: Dynamic FTL allows the simulation of every hair strand in real time. From left to right: 47k hair strands simulated at
25 fps including rendering and hair-hair repulsion. Long hair composed of 1.9m particles at 8 fps. Curly hair using visualization
post-processing.

which increases the performance of a dynamic simulation.
On the other hand, damping changes the dynamic motion
of the simulated objects. The resulting effects can be either
desired, e.g. reduced oscillations of a deformable solid, or
disturbing, e.g. changes of the linear or angular momentum
of the entire object.

Generally, a damping term CẊ can be incorporated into
the motion equation of an object where Ẋ denotes the vector
of all first time derivatives of positions. If the user-defined
matrix C is diagonal, absolute velocities of the points are
damped, which sometimes is referred to as point damping. If
appropriately computed, such point damping forces result in
an improved numerical stability by reducing the acceleration
of a point. Such characteristics are desired in some settings,
e.g. in the context of friction. In the general case, however,
the overall slow-down of an object, caused by point damp-
ing forces, is not desired. Point damping forces are, e.g.,
used in [TF88] or in [PB88], where point damping is used
for dynamic simulations with geometric constraints such as
point-to-nail.

In order to preserve linear and angular momentum of
deformable objects, symmetric damping forces, usually re-
ferred to as spring damping forces, can be used. Such
forces can be represented by non-diagonal entries in the ma-
trix C. Damping forces are, e.g., described by Baraff and
Witkin [BW98] or Nealen et al. [NMK∗06]. These forces
can also be applied to position-based methods. However, as
the approaches of Baraff and Witkin and Nealen et al. rely on
topological information of the object geometry, they cannot
be applied to meshless techniques such as shape matching.

Point and spring damping can be used to reduce cur-
rent velocities or relative velocities. However, it is generally
more appropriate to consider predicted velocities or relative
velocities for the next time step.

An interesting damping alternative has been presented
in [SGT09]. Here, the idea of symmetric, momentum-
conserving forces is extended to meshless representations.
Global symmetric damping forces are computed with re-
spect to the center of mass of an object. While such forces

conserve the linear momentum, the preservation of the an-
gular momentum is guaranteed by force projection onto rel-
ative positions or by torque elimination using Linear Pro-
gramming. The approach presented in [SGT09] iteratively
computes damping forces. The paper, however, also shows
the convergence of the iterative process and how the solu-
tion can be computed directly without performing iterations.
Therefore, the approach is an efficient alternative to com-
pute damping forces for arbitrary position-based deforma-
tion models with or without connectivity information. The
approach can be used to damp oscillations globally or lo-
cally for user-defined clusters.

3.8. Parallelization

Parallelization of the PBD approach is an important topic
since multi-core systems and massively parallel GPUs are
ubiquitous today.

In a single CPU implementation, the solver processes
the constraints one by one in a Gauss-Seidel-type fashion.
Thereby, after each constraint projection, the positions of af-
fected particles are immediately updated. In a parallel imple-
mentation, the constraints are processed in parallel by mul-
tiple threads. If two constraints affecting the same particle
are handled by two different threads simultaneously, they are
not allowed to immediately update the particle’s position be-
cause writing to the same position simultaneously leads to
race conditions making the process unpredictable. A solu-
tion to circumvent this problem is to use atomic operations.
Such operations are guaranteed not to be interrupted. How-
ever, atomics can slow down parallel execution significantly.

To avoid these issues, a parallel implementation of PBD
needs to split the constraints into groups or phases. In each
phase, none of the constraints are allowed to share a com-
mon particle. With this restriction, the constraints in the first
phase can be processed in parallel without conflicts. Then,
after a global synchronization, the next phase can be pro-
cessed. This cycle is repeated until all constraints are pro-
cessed.



10 Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics

As an example, if N particles are connected in a serial
chain, the constraints 1−2,3−4,5−6,7−8, .. can be pro-
cessed in phase 1 and the constraints 2−3,4−5,6−7, .. in
phase 2. This specific example corresponds to the Red-Black
Gauss Seidel scheme, where there are two sets (colors) of
constraints. For more general types of constraint such as the
stretch, shear and bending constraints of cloth, more phases
are needed. In this general case, splitting constraints into
phases corresponds to the graph coloring problem, where
each constraint corresponds to a node of the graph and two
constraints are connected by an edge if they affect one or
more common particles. The minimum number of colors de-
termines how many phases are needed in the parallel execu-
tion of PBD. Keeping the number of phases small is not the
only optimization criterion. The sets also need to have simi-
lar sizes for good load balancing.

3.9. Discussion

Position-based dynamics is fast, easy to implement and con-
trollable. Furthermore, it avoids the overshooting problems
of force-based simulation models when using an explicit
time integration scheme. The method can handle arbitrary
bilateral and unilateral constraints as long as the gradient of
the constraint function can be determined. Therefore, this
method is very flexible and has already been used to simu-
late cloth, deformable solids and fluids.

However, position-based dynamics also has some disad-
vantages. The stiffness of the model does not only depend
on the user-defined stiffness parameter but also on the time
step size and the number of solver iterations. Although the
dependency can be reduced as described in Section 3.3, it
cannot be completely removed. Therefore, it is difficult to
adjust parameters independently. Decoupling these param-
eters as well as adaptive time stepping are open problems
and important topics for future work. Another drawback is
that position-based dynamics is not convergent, i.e. the sim-
ulation does not converge to a certain solution with mesh
refinement. Hence, the usage of adaptive meshes is another
open problem.

4. Shape Matching

The geometrically motivated concept of shape matching
to simulate deformable objects was introduced by Müller
et al. [MHTG05]. Shape matching is a meshless approach
which is able to simulate visually plausible elastic and plas-
tic deformations (see Figure 14). This approach is easy to
implement, very efficient and unconditionally stable.

The basic idea of simulating elastic behavior with shape
matching is shown in Figure 15. For the simulation the ini-
tial configuration of the deformable object must be stored.
Since no connectivity information is needed, this configura-
tion is defined by the initial positions x̄i. In each time step the
positions and velocities of the particles are updated without

x1

x2
x3

x0 x1

x2 x3

x0

g0

g1g2

g3

R, c

Figure 15: The initial shape with the vertex positions x̄i is
matched to the deformed configuration xi to obtain goal po-
sitions gi. The deformed shape is pulled towards these goal
positions to simulate elastic behavior.

considering any internal constraints between the particles.
Only external forces and collision response are taken into
account. Instead of using internal constraints, goal positions
are determined by matching the initial shape with the de-
formed configuration. Then, each particle is pulled towards
its goal position.

In the following we first describe how the goal positions
are determined. Then we show how large deformations can
be simulated using region-based shape matching and intro-
duce fast summation techniques for this approach. In the end
the concept of oriented particles and different extensions of
the shape matching method are presented.

4.1. Goal Positions

In order to obtain goal positions for the deformed shape the
best rigid transformation is determined which matches the
set of initial positions x̄ and the set of deformed positions
x. The corresponding rotation matrix R and the translational
vectors c and c̄ are determined by minimizing

∑
i

wi (R(x̄i− c̄)+ c−xi)
2 ,

where wi are the weights of the individual points. The opti-
mal translation vectors are given by the center of mass of the
initial shape and the center of mass of the deformed shape:

c̄ = 1
M ∑

i
mix̄i, c = 1

M ∑
i

mixi, M = ∑
i

mi. (4)

If we minimize the term ∑i(Ar̄i − ri)
2 with ri = xi − c

and r̄i = x̄i− c̄, we get the optimal linear transformation A
of the initial and the deformed shape. This transformation is
determined by:

A =

(
∑

i
mirir̄T

i

)(
∑

i
mir̄ir̄T

i

)−1

= ArAs. (5)

In our case we are only interested in the rotational part of
this transformation. Since As is symmetric, it contains no
rotation. Therefore, we only need to extract the rotational
part of Ar to get the optimal rotation R for shape matching.



Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics 11

Figure 14: Robust and volume-conserving deformations using shape matching. Armadillos (32442 particles total), 20 ducks
and 20 tori (21280 particles total) and 20 balls (7640 particles total) were simulated in real-time on a GPU.

This can be done by a polar decomposition Ar = RS of the
transformation matrix where S is a symmetric matrix.

Finally, the goal positions are determined by

gi = T
[

x̄i
1

]
,

where T =
[
R (c−Rc̄)

]
. These goal positions are used to

compute position corrections:

∆xi = α(gi(t)−xi(t)) ,

where α ∈ [0,1] is a user-defined stiffness parameter which
defines how far the particles are pulled to their goal posi-
tions.

Shape matching can be seen as a form of constraint pro-
jection which can directly be integrated in the position-based
dynamics algorithm. By performing shape matching in line
(9) of Algorithm 1 it can be easily combined with other
position-based constraint.

4.2. Region-Based Shape Matching

The shape matching algorithm described above allows only
for small deviations from the initial shape. For the sim-
ulation of large deformations the concept of region-based
shape matching became popular, see e.g. [MHTG05, RJ07,
DBB11]. The idea is to perform shape matching on several
overlapping regions of the original shape. In each region we
can have a small deviation from the corresponding part of
the initial shape which results in a large deformation over all
regions.

Diziol et al. [DBB11] propose to define a region for each
particle of the model where the i-th region contains all parti-
cles in the ω-ring of the i-th particle in the original mesh of
the model. Shape matching is a meshless method but Diziol
et al. require a mesh to define the shape matching regions.
Rivers and James [RJ07] use a regular lattice instead to de-
fine their regions. No matter which kind of regions are used,

Figure 16: The stiffness of the model depends on the re-
gion size. Smaller regions (top) allow larger deformations
than larger regions (bottom). The hexagons in the left im-
ages represent the overlapping regions of the model. The
right images show the goal positions after one particle is
moved away.

the stiffness of the model depends on the size of the overlap-
ping regions (see Figure 16). Enlarging the regions results in
a more global shape matching and therefore the stiffness of
the simulated model is increased.

In region-based shape matching a particle is part of multi-
ple regions. In the following we denote the set of regions
to which a particle i belongs by <i. Since particles can
belong to more than one region, Rivers and James [RJ07]
proposed to use modified particle masses m̃i = mi/|<i| for
shape matching. This ensures that a particle which is part of
many regions has not more influence than others. The opti-
mal translation vectors for a region i are determined by

c̄i =
1

M̃i
∑

j∈<i

m̃ jx̄ j, ci =
1

M̃i
∑

j∈<i

m̃ jx j, (6)

where M̃i = ∑ j∈<i
m̃ j is the effective region mass which can

be precomputed. The optimal rotation matrix R is computed



12 Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics

by extracting the rotational part of the following matrix:

Ar,i = ∑
j∈<i

m̃ jx jx̄T
j − M̃icic̄T

i . (7)

In this form the first term depends on the particles j of the
region while the second term depends on the region i. This
isolation of the dependencies is required for fast summation
techniques (see below).

After performing shape matching for all regions, we get
multiple goal positions for each particle. The final goal po-
sition for a particle is determined by blending the goal posi-
tions of the corresponding regions:

gi =
1
|<i| ∑

j∈<i

T j

[
x̄i
1

]
.

4.3. Fast Summation Techniques

In the case of region-based shape matching the stiffness in-
creases with growing region size ω. However, at the same
time the computation of the optimal translation c and the
transformation matrix Ar becomes a bottleneck since large
sums have to be computed for each region. For a mesh with
the dimension d and n regions, O(ωdn) operations are re-
quired with the naive approach.

4.3.1. Regular Lattices

Rivers and James demonstrated in [RJ07] how the number of
operations for computing the sums can be reduced to O(n)
for regular lattices (d = 3). Their optimization is closely re-
lated to the concept of summed-area tables [Cro84]. In their
approach they compute the summation for a set of parti-
cles just once and reuse it for all regions that contain this
set. This reduces redundant computations significantly for
a system with large overlapping regions. The fast summa-
tion of Rivers and James is based on the usage of cubical
regions. These cubical regions can be subdivided in two-
dimensional plate regions which can again be subdivided in
one-dimensional bar regions. The region summation is per-
formed in three passes. In the first pass the sum for each
bar is determined. The results are used to compute the sums
for the plates which are again used to obtain the final region
sum. Each pass requires O(ω) operations. However, the re-
gion sum can even be determined in constant time if we take
into account that the sum of two neighboring bars, plates or
cubes only differs by one element. Lattice shape matching
can be performed in linear time if the sums in Equations (6)
and (7) are evaluated using the fast summation technique de-
scribed above.

The FastLSM method of Rivers and James has several
limitations. To handle regions where the lattice is not reg-
ular, e.g. on the boundary, several sums are defined in a pre-
processing step for the corresponding node. In the case of
fracturing the definition of these sums must be performed
at run-time which is expensive to compute. Small features

need a fine sampling to obtain realistic results. Since a regu-
lar lattice is used, a fine sampling yields an explosion of the
computational costs. FastLSM does not support a varying
region size to simulate inhomogeneous material.

4.3.2. Adaptive Lattices

Steinemann et al. [SOG08] introduce an adaptive shape
matching method which is based on lattice shape matching
to overcome these limitations. A fast summation is realized
by an octree-based sampling and an interval-based definition
of the shape matching regions. The hierarchical simulation
model is created by starting with a coarse cubic lattice and
then performing an octree subdivision. The subdivision pro-
cess can be controlled by a user-defined criterion. At the end
of the process a simulation node is placed at the center of
each leaf cell and a virtual node at the center of each non-
leaf cell. A virtual node stores the sum of all its descendant
simulation nodes.

The fast summation for the hierarchical model is per-
formed by an interval-based method which requires O(1)
operations per region. For each simulation node ni a shape
matching region is defined by a region width ωi. To perform
a fast summation, all summation nodes of the region i are de-
termined in a pre-processing step. First, for each node n j of
the octree the interval of minimum and maximum distances
of all descendant leaves of n j to ni are determined. Then,
during a top-down traversal each node n j where the maxi-
mum distance is smaller than the region width is added to
region i. If the descendant leaf nodes are contained only par-
tially in region i, the current node must be refined. Only in
this case the traversal continues.

The top-down traversal assigns O(1) summation nodes to
each region. A fast summation can now be performed in two
steps. In the first step the sums of all nodes in the hierarchy
are determined. This is done by first computing the sums
for the simulation nodes which are the leaf nodes of the hi-
erarchy, and then updating the sums of the virtual nodes in
a bottom-up fashion. The second step sums up the values
of the summation nodes for each region. For a roughly bal-
anced octree the computation of the sums takes O(n) time
where n is the number of simulation nodes. Hence, the adap-
tive shape matching method requires linear time when using
the described fast summation technique to evaluate Equa-
tions (6) and (7).

4.3.3. Triangle Meshes

In contrast to Rivers and James, Diziol et al. [DBB11] only
use the surface mesh of a volumetric model to simulate its
deformation. Therefore, no interior elements are required
for the simulation which reduces the computational costs.
Diziol et al. introduce a fast summation technique for arbi-
trary triangle meshes (d = 2) to compute the large sums of
the region-based approach efficiently. This technique only



Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics 13

P0

P1

P2

P3

P4

−
x0+x1+x2

−
x1+x2+x3

Path P0 sum
in regions

x0+x1x0 x0+x1+x2+x3x0+x1+x20Prefix sum P0

x0 x1 x2 x3

Figure 17: Fast summation technique for arbitrary triangle
meshes [DBB11]. First the prefix sums for the disjoint paths
are determined. Then the region sum is computed by adding
the difference of the intersection interval for each path.

requires O(ωn) operations instead of O(ω2n) and can be per-
formed very efficiently in parallel.

The fast summation technique of Diziol et al. is based on
a subdivision of all particles of the mesh in disjoint paths. A
path i is a set of vertices xi1 , . . . ,xin which are connected by
edges. The paths are determined in a precomputation step.
The goal of the path construction algorithm is that each re-
gion is intersected by a minimum number of paths. To de-
termine the optimal path layout is computationally expen-
sive. Therefore, a heuristic is used to find a good path layout.
Starting with a single vertex, adjacent vertices are added to a
path until the path length exceeds a maximum size or cannot
be extended any further. The heuristic tries to avoid gaps by
choosing vertices which have neighbors that are already part
of a path. To obtain paths which are as parallel as possible
we add the vertex which is closest to a plane passing through
the starting vertex of the current path, e.g. the xy-plane.

The fast summation is split in two phases (see Figure 17).
In the first phase the prefix sum for each path i is computed
with j ∈ [1,ni]:

cp
i j
=

j

∑
k=1

m̃ik xik , Ap
i j
=

j

∑
k=1

m̃ik xik x̄T
ik .

Since the prefix sums for all paths are independent of each
other, they can be computed in parallel. The sums for a re-
gion r are computed by first setting cr := 0 and Ar := 0.
Then for each path i which intersects the region in the inter-
val [ik, . . . , il ], the following terms are added:

cr := cr + cp
il − cp

ik−1
, Ar := Ar +Ap

il −Ap
ik−1

. (8)

The final translational vector and the affine matrix are de-
termined by cr := (1/M̃r)cr and Ar := Ar− M̃rcr c̄T

r respec-
tively.

4.4. Oriented Particles

For a small number of particles or particles that are close
to co-linear or co-planar (as in Figure 18), the matrix Ar in
Equation (5) becomes ill-conditioned and the polar decom-
position needed to obtain the optimal rotation tends to be
numerically unstable.

To solve this problem, Müller et al. [MC11] proposed to
use oriented particles. By adding orientation information to
particles, the polar decomposition becomes stable even for
single particles. The moment matrix of a single spherical
particle with orientation R ∈ R3×3 and finite radius r at the
origin is well defined and can be computed via an integral
over its volume as

Asphere =
∫

Vr

ρ(Rx)xT dV = ρR
∫

Vr

xxT dV

=
4
15

πr5
ρR =

4
15

πr5 m
Vr

R

=
1
5

mr2R,

where Vr is the volume of a sphere of radius r. Since R is an
orthonormal matrix, Ai always has full rank and an optimal
condition number of 1. For an ellipsoid with radii a,b and c
we get

Aellipsoid =
1
5

m

 a2 0 0
0 b2 0
0 0 c2

R.

However, the moment matrices of the individual particles
cannot simply be added because each one is computed rel-
ative to the origin. We need the moment matrix of particle i
relative to the position xi− c.

Fortunately, this problem can be fixed easily. As we saw
above, the equation for computing the moment matrix

A = ∑
i

mi(xi− c)(x̄i− c̄)T (9)

can be re-written as

A = ∑
i

mixix̄T
i −Mcc̄T ,

where c̄ and c are the centers of mass of the initial and the
deformed shape, respectively (see Equation (4)).

Therefore, shifting the evaluation from the origin to the
position xi− c yields

Aglobal
i = Ai +mixix̄T

i −micc̄T .

Equation (9) now generalizes to

A = ∑
i

(
Ai +mixix̄T

i

)
−Mcc̄T

= ∑
i

(
Ai +mi(xi− c)(x̄i− c̄)T

)
.

As you can see, the last form looks like Equation (9) but with
all the individual particle moment matrices added in the sum.



14 Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics

In addition to position x and velocity v, oriented particles
carry a rotation which can be defined as an orthonormal ma-
trix R as above or a unit quaternion q. They also carry the
angular velocity ω. In the prediction step of position-based
dynamics, these two quantities have to be integrated as well:

xp← x+v∆t

qp←
[

ω

|ω| sin(
|ω|∆t

2
),cos(

|ω|∆t
2

)

]
q.

For stability reasons, qp should directly be set to q if |ω|< ε.

After the prediction step, the solver iterates multiple times
through all shape match constraints in a Gauss-Seidel type
fashion as before. To simulate objects represented by a mesh
of linked particles, Müller and Chentanez [MC11] define one
shape matching group per particle. A group contains the cor-
responding particle and all the particles connected to it via a
single edge. The positions of the particles in a group are up-
dated as in regular shape matching by pulling them towards
the goal positions while the orientation of the center particle
only is replaced by the optimal rotation of shape matching.

After the solver has modified the predicted state (xp,qp),
the current state is updated using the integration scheme

v← (xp−x)/∆t

x← xp

ω← axis(qpq−1) · angle(qpq−1)/∆t

q← qp,

where axis() returns the normalized direction of a quaternion
and angle() its angle. Again, for stability reasons, ω should
be set to zero directly if |angle(qpq−1)| < ε. There are two
rotations, r = qpq−1 and −r transforming q into qp. It is
important to always choose the shorter one, i.e. if rw < 0 use
−r, where rw is the real part of the quaternion. As in tradi-
tional PBD for translation, changing the rotational quantity
qp in the solver also affects its time derivate ω through the
integration step creating the required second order effect.

The orientation information of particles cannot only be
used to stabilize shape matching but also to move a visual
mesh along with the physical mesh. With position and ori-
entation, each particle defines a full rigid transformation at
every point in time. This allows the use of traditional linear
blend skinning with particles replacing skeletal bones.

An additional advantage of having orientation informa-
tion is that ellipsoids can be used as collision volumes for
particles. This allows a more accurate approximation of the
object geometry than with the same number of spherical
primitives (see Figure 19).

4.5. Extensions

There exist several extensions for shape matching. In the fol-
lowing we will introduce volume conservation and plastic
deformation.

Figure 18: This underwater scene demonstrates the ability
of the oriented particle approach to handle sparse meshes
such as the one-dimensional branches of the plants or the
fins of the lion fish.

Figure 19: The rotation information of oriented particles
cannot only be used to stabilize shape matching, it also al-
lows the use of ellipsoids as collision primitives. The figure
shows how the same mesh is approximated much more accu-
rately with ellipsoids (right) than with the same number of
spheres (left).

4.5.1. Volume Conservation

The conservation of volume plays an important role in the
dynamic simulation of deformable bodies [HJCW06, ISF07,
DBB09]. Since most soft biological tissues are incompress-
ible, this is an essential extension in the field of medical sim-
ulation. However, it is also used in the field of shape model-
ing [vFTS06] since volume conserving deformations appear
more realistic.

In the following we introduce the position-based approach
for volume conservation of Diziol et al. [DBB11]. This
method considers only the surface of a simulated object and



Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics 15

does not require interior particles which reduces the compu-
tational effort. The volume V of a volumetric 3D shape V can
be determined by using the divergence theorem as proposed
in [Mir96] and [HJCW06]:∫∫∫

V

∇·xdx =
∫∫
∂V

xTndx = 3V, (10)

where ∂V is the boundary of the shape and n is the surface
normal. If the boundary is given as triangle mesh, the inte-
gral can be written as sum over all triangles i:

V (X) :=
1
3

∫∫
∂V

xTndx =
1
9 ∑

i
Ai(xi1 +xi2 +xi3)

Tni, (11)

where Ai is the area and i1, i2 and i3 are the vertex indices
of the i-th triangle. Now we can define a volume constraint
C := V (X)−V (X̄) = 0 and compute a corresponding posi-
tion correction (see Section 3):

∆xV
i =− wiC(X)

∑ j w j‖∇x jC(X)‖2∇xiC(X). (12)

The weights wi are used to realize a local volume conserva-
tion (see below). The gradient can be approximated by

∇C(X)≈ 1
3
[nT

1 , . . . ,n
T
n ]

T,

where ni = ∑A jn j is the sum of the area weighted normals
of all triangles which contain particle i.

The weights in Equation (12) are chosen as follows:

wi = (1−α)wl
i +αwg

i , wl
i =

‖∆xi‖
∑ j ‖∆x j‖

, wg
i =

1
n
,

where wl
i and wg

i are the weights for local and global vol-
ume conservation, respectively, and the user-defined value
α ∈ [0,1] is used to blend between both. The vector ∆xi con-
tains the position change of the i-th particle in the shape
matching step. Hence, strongly deformed particles partici-
pate more in volume correction. The weight of a colliding
particle is set to zero in order to ensure that a collision con-
straint is not violated during the position correction for the
volume conservation. Finally, the weights are smoothed by
a Laplacian filter.

Diziol et al. also propose another definition for the local
weights wl

i . To propagate volume changes through the ob-
ject, they first determine pairs of opposing particles in a pre-
processing step by intersecting the geometry with multiple
rays. For each particle i one particle k on the opposite side
of the volumetric body is stored. Then they choose a local
weight which does not only depend on the position change
∆xi of a particle but also on the distance changes ∆di of the
corresponding particle pairs:

wl
i =

βsi∆di +(1−β)‖∆xi‖
∑ j
(
βs j∆d j +(1−β)‖∆x j‖

) ,
where si is a user-defined stiffness parameter and β ∈ [0,1]
is used to define the influence of the distance changes.

Figure 20: Four spheres with different volume conservation
squeezed by a plate. Left to right: global conservation, lo-
cal conservation with distance constraints, local conserva-
tion without distance constraints and no volume conserva-
tion. The maximum volume loss was 0.6%, 0.7%, 0.7% and
40% respectively.

Analogous to the positions correction we perform a veloc-
ity correction to fulfill the constraint ∂C/∂t = 0. This leads
to a divergence free velocity field.

In Figure 20 different configurations for the presented vol-
ume conservation method are compared with each other.

4.5.2. Plastic Deformation

Shape matching can be extended in order to simulate plastic
deformations [MHTG05]. If we perform a polar decompo-
sition Ar = RS for the linear transformation matrix Ar (see
Equation (5)), we get a rotational part R and a symmetric
part S = RT Ar. The matrix S represents a deformation in
the unrotated reference frame. Hence, for each region we
can store the plastic deformation state in a matrix Sp which
is initialized with the identity matrix I. As proposed by Gok-
tekin et al. [GBO04], we use two parameters cyield and ccreep
to control the plastic behavior of the material. If the condi-
tion ‖S− I‖2 > cyield is fulfilled for the deformation matrix
S of the current time step, the plastic deformation state is
updated as follows:

Sp← [I+∆tccreep(S− I)] Sp.

After this update, Sp is divided by 3
√

det(Sp) in order to
conserve the volume. The plastic state Sp is integrated in the
shape matching process by deforming the reference shape in
Equation (5). This is done by replacing the definition of r̄i



16 Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics

Figure 21: A stiff cloth model with 32467 triangles is sim-
ulated using multi-resolution shape matching with five hier-
archy levels.

(see Section 4.1) with

r̄i = Sp (x̄i− c̄) .

Note that the plasticity can be bound by the condition
‖Sp− I‖2 > cmax where cmax is the threshold for the max-
imum plastic deformation. If this condition is fulfilled, we
use Sp← I+ cmax(Sp− I)/‖Sp− I‖2.

4.6. Cloth Simulation

Stumpp et al. [SSBT08] present a region-based shape match-
ing approach for the simulation of cloth. In their work they
define a region for each triangle in the model. But instead
of using the triangles directly as regions for shape match-
ing, overlapping regions are defined. The region of a trian-
gle is defined by the outer corners of its adjacent triangles.
These overlapping regions enable the bending resistance of
the cloth model. Since the model of Stumpp et al. uses re-
gions with only three vertices, the stiffness of high resolu-
tion models is too low for realistic results. Therefore, they
introduce so-called fiber clusters to increase the stretching
stiffness. These one-dimensional regions are determined in
a pre-processing step by subdividing the mesh into multiple
edge strips. During the simulation each strip is traversed in
both directions to obtain additional goal positions. The re-
sulting displacements are translated so that they sum up to 0
to preserve the momentum of the model. The final goal po-
sitions are blended with the goal positions of the triangular
regions.

The usage of fiber clusters increases the stiffness of the
cloth model. However, this effect is limited and for high-
resolution models the stiffness is still too low to achieve
a realistic cloth behavior. Bender et al. [BWD13] solve
this problem by the introduction of multi-resolution shape
matching (see Figure 21) which is based on the idea of multi-

0x′
1 x′

2

x′
3

g′
1

g′
2

g′
3

a′
x

a′
y

0

x̄′
1 x̄′

2

x̄′
3

ā′
x

ā′
y

Figure 22: 2D shape matching. The initial configuration of
a triangle in 2D (left) is matched to the deformed configu-
ration (middle) by projecting the deformed triangle into 2D
and computing the optimal translation and rotation to get
goal positions (right).

grid solvers [Hac85]. A shape matching region is defined for
each edge and each triangle in a cloth model. To increase the
influence of these simple regions and therefore the stretching
and shearing stiffness of the model, shape matching is per-
formed on different resolution levels. Multi-resolution shape
matching enables the robust simulation of stiff cloth models
in linear time.

In the following we first describe 2D shape matching for
triangular regions and then introduce multi-resolution shape
matching.

For a cloth simulation with triangular regions, shape
matching is performed per triangle in the two-dimensional
space of the triangle plane. First the optimal translation vec-
tors of the regions are computed by evaluating Equation (6).
Then, for each triangle with the vertices x1, x2 and x3 and
the normal n a projection matrix is determined:

P =

(
aT

x
aT

y

)
∈ R2×3

with

ax =
x2−x1
‖x2−x1‖

, ay =
n×ax

‖n×ax‖
.

The matrix P is used to project the vectors r and r̄ in Equa-
tion (5) to get a 2D version of the matrix Ar:

r̄′i = P̄(x̄i− c̄) , r′i = P(xi− c) ,

where r̄′i ∈ R2 can be precomputed. The optimal rotation
for shape matching is obtained by performing a 2D polar
decomposition [SD92] for the resulting matrix A′r ∈ R2×2.
This rotation matrix is used to compute 2D goal positions g′i
for the particles and the corresponding 2D position changes
∆x′i :

g′i = R′r̄′i , ∆x′i = α
1
|<i|

(g′i−x′i).

Finally, the vectors ∆x′i are transformed to world space by
∆xi = PT

∆x′i and the particle positions are updated. This
process is shown in Figure 22.



Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics 17

In a simulation with multi-resolution shape match-
ing [BWD13] two intergrid transfer operators are required
to couple the different meshes in the multi-resolution hierar-
chy. The restriction operator Il

l+1 transfers values from level
l+1 to the next coarser level l and the prolongation operator
Il+1

l transfers values in the opposite direction. These oper-
ators can be defined by barycentric coordinates [GW06]. In
each simulation step first the positions of the finest mesh
are updated by time integration. For non-nested models the
positions of the coarser meshes are interpolated using the
restriction operator. Then multi-resolution shape matching
is performed in a V-cycle as described by Algorithm 2.

Algorithm 2 Multi-resolution shape matching
1: for l = lmax to 1 do
2: Store current positions: x̂l ← xl

3: Perform shape matching
4: xl−1 := xl−1 + Il−1

l (xl− x̂l)
5: end for
6: for l = 0 to lmax do
7: Store current positions: x̂l ← xl

8: Perform shape matching
9: if l 6= lmax then

10: xl+1 := xl+1 + Il+1
l (xl− x̂l)

11: end if
12: end for

In the restriction phase the hierarchy is traversed from
the finest to the coarsest mesh performing a shape matching
step on each level and projecting the resulting position dif-
ferences xl − x̂l to the next coarser level with the restriction
operator. In the prolongation phase the hierarchy is traversed
in the opposite direction. On each level a shape matching
step is performed and the position differences are interpo-
lated and added to the next finer level. Since only position
differences are propagated between the levels, fine details
are conserved on finer levels. However, fine details could get
lost if the original shape matching method is used on the
coarse levels of the hierarchy. Wrinkles on a fine resolution
cause a compression of elements on a coarser level. Shape
matching reduces this compression and thus eliminates fine
details. Therefore, Bender et al. [BWD13] propose a modi-
fied computation of the goal positions on the coarse levels of
the hierarchy so that shape matching only prevents stretch-
ing on these levels but not a compression.

4.7. Parallelization

In Section 4.3 we presented different fast summation tech-
niques for shape matching. The one of Diziol et al. [DBB11]
is best suited for a parallel implementation on the GPU.
In the following the GPU implementation of this technique
with CUDA is described in detail. For such an implementa-
tion memory access and memory layouts play an important
role as well as the number of kernel calls.

Since each kernel call introduces a computational over-
head, the particles of all objects in a simulation are packed
into one single array. This array is ordered according to the
path layout which is used for the fast summation (see Sec-
tion 4.3). Since the array contains the paths one after an-
other, a segmented prefix sum [SHZO07] can be used to de-
termine the prefix sums of all paths at once. To avoid nu-
merical problems due to the 32 bit floating-point arithmetics
on the GPU, the path length is limited to 512. The resulting
prefix sums are stored in texture memory to benefit from the
texture cache when the translational vectors and the affine
matrices are determined (see Equation (8)).

The volume conservation introduced in Section 4.5.1 can
also be performed efficiently on the GPU. This is done by
evaluating the volume integral (see Equation (10)), the inte-
gral which is required to obtain a divergence free velocity
field and the weights for the local volume conservation in
parallel. Both integrals can be written as sums over the ver-
tices (see Equation (11)). Hence, the integrals as well as the
weights can be computed by a segmented sum reduction. Fi-
nally, the smoothing of the weights by a Laplacian filter can
be performed in parallel using the fast summation technique
as described above.

The multi-resolution approach described in Section 4.6
can be implemented on the GPU as follows. Shape matching
on each level of the hierarchy is performed by computing
the goal positions per element in parallel in a first step. The
results are stored for each element. In a second step shape
matching is completed by summing up the contributions of
all elements containing a vertex to get a final goal position
for the vertex. The restriction and the prolongation of the
results can be performed efficiently using the sparse matrix
data structure of Weber et al. [WBS∗13]. This implementa-
tion allows to simulate the deformation of a cloth model with
more than 200k triangles on the finest level in 22 ms/step on
a GeForce GTX 470.

4.8. Discussion

Shape matching is efficient, unconditionally stable and easy
to implement. However, the shape matching algorithm can
only handle small deformations. Therefore, the concept of
region-based shape matching was introduced as well as
corresponding fast summation techniques. Although this
method is a meshless approach, many implementations use
a mesh to define the required overlapping regions. Shape
matching can even handle sparse structures by the usage of
oriented particles.

We also want to discuss the drawbacks of shape matching.
Being a geometric approach, only visually plausible results
can be obtained. The stiffness of the model does not only
depend on the user-defined stiffness parameter α but also on
the time step size and the region sizes or, in case of multi-
resolution shape matching, the number of hierarchy levels.



18 Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics

Moreover, the physical behavior depends on the mesh ge-
ometry and does not converge to a certain solution as the
mesh is refined. Hence, adaptive time stepping and the ap-
plication of level-of-detail methods are open problems for
further research.

5. Data-Driven Upsampling Methods

The behavior of solid objects can be accurately described us-
ing well-known mechanical models, but real-world materi-
als display other inherent sources of complexity that largely
limit the results of traditional models in computer anima-
tion. Complexity is produced, for example, by nonlinear or
anisotropic behaviors, by heterogeneous properties, or by a
wide frequency spectrum. These sources of complexity are
typically addressed by designing complex nonlinear consti-
tutive models to describe the mechanical behavior of diverse
materials. However, these models require computationally
expensive simulation algorithms, and their parameters are
difficult and tedious to tune, particularly if the properties are
heterogeneous. All in all, the animation of solid objects is
limited by the domain of effects captured by the underlying
physical models, but also by their parameterization accuracy.

Data-driven methods offer an alternative to complex con-
stitutive models, as they turn the modeling metaphor into
the knowledge of a system’s response under several ex-
ample conditions. This section describes geometric data-
driven methods in computer animation. It formulates a two-
scale representation of geometry and dynamics, describes
the computation of detailed geometry as the interpolation of
example data, and discusses several successful examples.

5.1. Two-Scale Geometry and Dynamics

Let us consider the surface of a solid object (e.g., the cloth
in Figure 23), with vertex positions x ∈ R3. These positions
can be decomposed into a low-resolution position x0 and a
fine-scale displacement ∆x, expressed in a local reference
system for each vertex (i.e., with orientation R):

x = x0 +R∆x.

This definition of vertex positions essentially decomposes
large-scale geometry (i.e., the overall shape of a solid object)
from the small-scale deformation (i.e., wrinkles).

The large-scale and fine-scale geometry can be repre-
sented at different resolutions, connected through subdivi-
sion schemes. As shown in Figure 23 for a cloth object, a
low-resolution feature mesh defines the large-scale defor-
mation. A high-resolution smooth mesh is obtained by sub-
dividing the feature mesh a user-defined number of times,
and can be regarded as an upsampled version of the fea-
ture mesh. Finally, a high-resolution detail mesh is obtained
by adding local displacements onto the smooth mesh. The
smooth and detail meshes fully share the connectivity, thus
trivially defining their correspondence.

Once large-scale and fine-scale geometry are separated,
they can be computed using different models. The choice
of models can be made based on the following observa-
tions. First, for many objects such as the face or cloth, the
most salient dynamic effects can be captured at a large
scale. For example, Bickel et al. [BLB∗08] and Ma et
al. [MJC∗08] compute the large-scale face geometry from
an actor’s performance, using a single face scan and sparse
mocap markers as input, and a linear deformation model.
Wang et al. [WHRO10], Zurdo et al. [ZBO13], and Kavan et
al. [KGBS11] compute the large-scale geometry of cloth us-
ing a low-resolution dynamics model with contact handling.

A second important observation is that plausible high-
resolution wrinkles can often be defined as a quasi-static
function in a reduced low-resolution domain u. All authors
mentioned in the previous paragraph follow this observation
to some extent. For the face, and due to the repetitive na-
ture of facial expressions, tissue becomes weaker at certain
locations, and expressive wrinkles appear in a deterministic
fashion as a function of large-scale deformation, and indi-
rectly as a function of muscle activations and facial bone
configurations. For cloth, even though real wrinkles require
a large number of degrees of freedom to capture their true di-
versity, plausible wrinkles can be defined in the reduced do-
main of large-scale deformation. We can formally write the
dependency between high-resolution detail ∆x and the low-
resolution configuration u as ∆x = f (u), where the function
f is a position-based model.

The reduced-domain definition presents some limitations,
which should be mentioned upfront. Fine-scale wrinkle dy-
namics cannot be captured, as wrinkles are defined quasi-
statically. And the model captures only a limited set out of all
the possible wrinkles that a solid object might present. How-
ever, the power of data-driven methods is that the generic
function f makes use of data from real deformation exam-
ples; therefore, data-driven wrinkles preserve natural char-
acteristics such as length, width, and consistency over time,
and they appear plausible despite their limitations.

5.2. Data-Driven Geometric Detail

At this point, we have a suitable setting to define a position-
based data-driven model. For data collection, we need to
record example deformations (denoted by the subscript
i), with vertex displacements {∆xi} and low-resolution
configurations {ui} in correspondence. Then, we apply
learning methods to design a data-driven approximation of
the function f , which can be formally defined as ∆x ≈
f̂ (u,{∆xi},{ui}).

A general and successful approach to define a data-driven
approximation f̂ is through a linear combination of example-
based basis functions,

∆x = ∑
j

w j(u)b j (13)



Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics 19

Figure 23: Data-driven animation of cloth wrinkles. On the left, a low-resolution feature mesh, a smooth mesh obtained by
subdivision, and a high-resolution detail mesh. On the right, a schematic depiction of the data-driven wrinkle computation.
The feature mesh is subdivided to obtain the smooth mesh, and then detailed wrinkles are added in a local reference frame by
combining detail from examples.

Figure 24: Example of facial animation with the data-driven method of Bickel et al. [BLB∗08]. From left to right: large-scale
deformation interpolating mocap markers, full result data-driven detail computation, the same result with full shading, and
comparison to the real actor’s face.

with weights w j computed as a function of the low-
resolution configuration u. In the expression above, b j ∈ R3

constitutes an example-based detail displacement, and rep-
resents the values associated with one vertex in the jth basis
function.

In the rest of this section, we discuss several examples of
position-based data-driven deformation models, which differ
in terms of the choice of low-resolution configuration, basis
functions, or interpolation method.

5.2.1. Weighted Pose-Space Deformation

Bickel et al. [BLB∗08] proposed a data-driven method to
compute facial wrinkles as a function of large-scale defor-
mation and a small set of example deformations, and later
Zurdo et al. [ZBO13] followed a similar strategy for cloth
animation. Figure 24 shows an example facial animation by
Bickel et al., and Figure 25 an example cloth animation by
Zurdo et al.

In their methods, the basis function combination in Equa-
tion (13) follows the weighted pose-space deformation
(WPSD) approach [KM04]. In a nutshell, the basis functions



20 Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics

constitute local vertex displacements in example deforma-
tions, called poses, and the weights w are convex weights for
each of the poses. The weights of the poses are computed us-
ing scattered-data interpolation based on radial basis func-
tions (RBFs) in pose space. In this case, the pose space is
given by the large-scale deformation u.

As shown by Zurdo et al., pose weights can be com-
puted through WPSD on the sparse vertices of the feature
mesh, and then simply interpolated to the vertices of the de-
tail mesh using subdivision weights. For the computation of
pose weights on a given vertex, WPSD requires a local def-
inition of the pose space u. Both Bickel et al. and Zurdo et
al. use a metric of local low-resolution strain, formed by con-
catenating the deformation of the 16 closest edges of the fea-
ture mesh, multiplied by fast-decaying weights. With RBF
interpolation, the weight of each pose is computed as

w j = ∑
i

ωi, j φ(‖u−ui‖).

The RBF weights ωk, j are precomputed such that pose
weights fulfill the Kronecker delta for the database of poses,
i.e., w j(ui) is 0 if j 6= i and 1 if j = i, for poses j and i in the
database. The function φ represents a specific type of RBF.
Both Bickel et al. and Zurdo et al. use RBFs with global sup-
port φ(r) = r, as they avoid complex tuning of support radii
for unevenly sampled data [CBC∗01].

The selection of poses starts with the generation of train-
ing data, which requires a database of synchronized fea-
ture and detail meshes. Zurdo et al. employ the TRACKS
method [BMWG07] to precompute cloth simulations where
the detail mesh tracks the motion of the feature mesh. In
the training simulations, contact is solved both on the fea-
ture mesh and the detail mesh, and then the high-resolution
information in the poses captures the response to contact.
From all mesh pairs in the database, Zurdo et al. select only
a small number of poses (typically 6), until the L2 error be-
tween synthesized animations and the training dataset is be-
low a certain threshold. The set of poses is grown in a greedy
manner, adding each time the mesh pair with largest L2 error
between the training and synthesized configurations.

5.2.2. Polynomial Displacement Maps

Ma et al. [MJC∗08] designed Polynomial Displacement
Maps (PDM), a method for data-driven computation of wrin-
kles in facial animation, following the computational strat-
egy of Polynomial Texture Maps [MGW01]. Despite the
computational differences, the method shares many similar-
ities with the WPSD approach of Bickel et al. [BLB∗08].

In the general data-driven framework described by Equa-
tion (13), the low-resolution configuration of PDM is defined
as a two-dimensional local strain metric of the feature mesh,
u = (u1,u2). In particular, this metric is obtained through
principal component analysis of a five-dimensional vector
formed by the local vertex offset and the in-plane strain of

the feature mesh. Based on this low-resolution configura-
tion, the weights in Equation (13) are defined based on bi-
quadratic polynomials, w(u) = (u2

1 u2
2 u1u2 u1 u2 1). Finally,

the detail position of each vertex in the detail mesh, ∆x, is de-
fined as a scalar displacement in the local normal direction.

Due to the choice of biquadratic PDMs, the per-vertex dis-
placements are computed through linear combination of six
basis functions, which are stored in texture maps. Ma et al.
compute the coefficients in these texture maps as the result
of a least-squares problem that minimizes the fitting error
over the training data.

5.2.3. Physics-Inspired Upsampling

Kavan et al. [KGBS11] proposed a data-driven method
to compute cloth animations with detailed wrinkles at
videogame frame rates. In their approach, high-resolution
cloth positions are computed following a position-based
data-driven method, but the data is learned from dynamic
simulations with tracking of high-resolution and low-
resolution geometry, similar to the approach by Zurdo et
al. [ZBO13] described earlier.

In physics-inspired upsampling (PIU), the weights w in
Equation (13) correspond directly to the vertex positions of
the feature mesh. The basis functions coefficients b extend
subdivision schemes, and are learned from a database of ex-
ample deformations.

For the description of the method in more detail, let us
define the low-resolution deformation u as a vector that con-
catenates the vertex positions of the low-resolution feature
mesh. We also define a matrix B of upsampling basis func-
tions, being each row of B the basis function for one vertex
coordinate. Finally, we define a vector X that concatenates
all vertex positions of the high-resolution detail mesh. Note
that the method of Kavan et al. computes high-resolution
positions directly, not local displacements as discussed ear-
lier. With these definitions, the data-driven detail from Equa-
tion (13) can be rewritten as X = Bu.

Given the data captured in training simulations, expressed
as example deformations of the feature mesh, {ui}, and the
detail mesh, {Xi}, Kavan et al. compute basis functions
through an optimization problem

B = argmin∑
i
‖Bui−Xi‖.

The optimization must satisfy additional constraints. In par-
ticular, the basis functions B must constitute a partiton of
unity, and the objective function includes a regularization
term to prevent overfitting.

As mentioned earlier, one of the limitations of pure
position-based data-driven methods is that wrinkles are
quasi-static functions of low-resolution deformations. In
PIU, Kavan et al. add oscillatory modes to allow the sim-
ulation of traveling waves.



Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics 21

Figure 25: Top row: a low-resolution model of a dress, with only 381 triangles, defines the dynamics, the large-scale defor-
mation, and response to contact. The dress is then subdivided to 24384 triangles for rendering. Bottom row: high-resolution
wrinkles are interpolated from 6 example poses based on the large-scale deformation of the dress, using the data-driven method
of Zurdo et al. [ZBO13].

5.3. Parallelization

One of the most attractive features of position-based data-
driven methods is that they can be massively parallelized on
GPUs. Taking as reference Equation (13), the multiplication
of basis weights times the basis values follows the same pro-
cedure at all vertices of the detail mesh, but it can be exe-
cuted in a completely independent manner on each vertex.
Therefore, this multiplication is very well suited for paral-
lel implementation on GPUs. In fact, it can be handled as a
dense matrix-vector product.

Moreover, the evaluation of weights w can also be done
independently for each basis. In the PIU method described
above, the weights are trivially defined as the positions of
vertices in the feature mesh, hence they do not need fur-
ther evaluation. In the WPSD and PDM methods, on the
other hand, these weights are computed as a function of low-
resolution deformation. As shown by Zurdo et al. [ZBO13],
the nonlinear weights at feature vertices can be evaluated
easily on the CPU, and then interpolated to detail vertices
using subdivision weights. This interpolation step is trivial
to parallelize on SIMD architectures.

Thanks to the highly parallel nature of data-driven algo-
rithms, existing implementations exhibit very high perfor-
mance. For example, Zurdo et al. [ZBO13] simulate cloth
with 25.6K triangles at 125 fps including contact handling
on the feature mesh, Kavan et al. [KGBS11] simulate a cape
with 10K vertices at 1kHz, and Bickel et al. [BLB∗08] ani-
mate a face with more than 1M triangles at 30 fps.

5.4. Discussion

The particular data-driven methods discussed here present
different pros and cons. Among all methods, PIU is prob-
ably the fastest method, as it relies on simple matrix-vector
multiplication. However, the result is limited to a linear oper-
ator, and wrinkles may appear smoothed. WPSD and PDM,
on the other hand, allow nonlinear operators, and the combi-
nation of the input data is decided in a local manner.

With WPSD and PDM, the representation is more com-
pact, thanks to the choice of low-resolution strain as inter-
polation domain. Low-resolution strain also has been used
as a parameter space for cloth wrinkles in procedural mod-
els [RPC∗10], or in the Wrinkle Meshes method [MC10]. In
the position-based Wrinkles Meshes method, described in
Section 3.6, the low-resolution strain affects wrinkle model-
ing indirectly, as it influences the deformation of the high-
resolution cloth. Seiler et al. [SSH12] propose a different in-
terpolation domain based on local contact data, as their work
targets the animation of high-resolution effects due to con-
tact interactions.

One limitation of most data-driven methods is that
wrinkles are defined as a quasi-static function of the
feature mesh, hence they exhibit no dynamics. Kavan et
al. [KGBS11] somewhat alleviate this problem by adding
oscillatory modes, but the solution does not support all
dynamic effects. The work of de Aguiar et al. [dASTH10]
offers an interesting approach to data-driven simulation of
dynamic effects, but it models low-resolution motion, not
high-resolution details.

The data-driven cloth upsampling method of Feng et
al. [FYK10] departs from those presented here. It not only
defines fine-scale details in a data-driven manner, but also a



22 Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics

mid-scale transformation from a coarse cloth simulation. Its
two deformation transformers, for fine-scale and mid-scale
deformations, are learned using regression with rotation-
invariant data. The method of Feng et al. produces high-
quality results if the training sequence captures the dynam-
ics that will appear at runtime, but it will suffer larger errors
otherwise.

This section has covered position-based data-driven meth-
ods for animating high-resolution effects on solids, but re-
cent advances open the possibility to extend this paradigm
also to fluids. The recent work of Kim et al. [KTT13] intro-
duces a decomposition of liquid surface geometry into a low
resolution surface plus high-resolution ripples, just like the
one defined for solid surfaces in Section 5.1 above. How-
ever, for liquids, a quasi-static definition of high-resolution
details is a particularly severe limitation. Kim et al. propose a
model that decouples low-resolution and high-resolution dy-
namics, and they use the iWave model [Tes04] to synthesize
high-resolution liquid ripples. We envision that such ripples
could also be synthesized from precomputed data using a
data-driven model.

6. Applications

In this section we introduce different application areas of
position-based methods. These methods are mainly used in
interactive applications where performance, controllability
and stability are more important than accuracy, like e.g.
in [SGdA∗10,DB13]. But there exist also other works which
use a position-based approach for stabilization.

One application area for position-based methods is
interactive surgical simulation. In this area Wang et
al. [WXX∗06] introduce a mass-spring model based on
a surface mesh to simulate deformable bodies in real-time.
Since such a model can neither preserve its volume nor
resume its rest shape in the absence of external forces, the
authors propose to couple the surface model with a rigid core
by using spring forces. This rigid core is simulated using
shape matching [MHTG05] which results in a fast and sta-
ble simulation. Kubiak et al. [KPGF07] present a simulation
method for surgical threads which is based on the position-
based dynamics approach of Müller et al. [MHHR07]. Their
method simulates the stiffness, bending and torsion of a
thread and also provides feedback for a haptic device. For
the simulation Kubiak et al. define distance constraints for
stiffness and bending, torsion constraints, contact constraints
and friction constraints. The presented method allows for an
interactive and robust simulation of knots.

The simulation of complex hairstyles using a shape
matching approach is presented by Rungjiratananon et
al. [RKN10]. Their approach is based on Lattice Shape
Matching which was originally introduced by Rivers and
James [RJ07]. For the simulation each hair strand is rep-
resented by a chain of particles which is subdivided in

overlapping chain regions. After shape matching an addi-
tional position-based strain limiting is applied to each strand
which moves the particles in the direction of their root.
Different hair styles are realized by using appropriate initial
configurations and by modifying the region sizes of a chain.

O’Brien et al. [ODC11] use position-based dynamics for
the physically plausible adaptation of motion-captured an-
imations. In their work they use a vertex-based character
skeleton and different constraints to preserve the skeleton
structure, to define joint limits and to implement a center of
mass control. In addition to the kinematic constraints, they
define a couple of dynamics constraints which consider ver-
tices in multiple frames. Dynamics constraints are used to
enforce smooth acceleration and dynamical correctness.

Fierz et al. [FSAH12] introduce a position-based ap-
proach to stabilize a finite element simulation. When us-
ing an explicit time integration for a finite element simu-
lation, the time step size is typically limited by the stiffness
of the model and its spatial discretization. In each simula-
tion step Fierz et al. use the Courant-Friedrichs-Lewy (CFL)
condition to determine the maximum allowed time step size
for each tetrahedral element in their volumetric simulation
model. However, instead of using the time step size given by
the CFL condition to perform a stable simulation step with
an explicit integration scheme, they use a fixed size and mark
all elements where the condition is not met. The marked el-
ements are then simulated using a shape matching approach
while for all other elements a linear finite element method is
used for the simulation.

7. Conclusion

In this survey, we focused on a popular and practically rele-
vant subset of approaches for dynamically deforming solids,
namely on position-based approaches. Such geometrically
motivated techniques are not force-driven and are partic-
ularly appropriate in interactive applications due to their
versatility, robustness, controllability and efficiency. We ex-
plained general ideas of position-based methods, shape-
matching approaches and data-driven techniques. Various
deformation aspects for 2D and 3D solids and efficient so-
lution strategies were discussed with a particular focus on
the benefits of position-based approaches compared to force-
driven techniques.

References

[BB08] BENDER J., BAYER D.: Parallel simulation of inexten-
sible cloth. In VRIPHYS 08: Fifth Workshop in Virtual Reality
Interactions and Physical Simulations (2008), pp. 47–56. 6

[BETC12] BENDER J., ERLEBEN K., TRINKLE J., COUMANS
E.: Interactive Simulation of Rigid Body Dynamics in Computer
Graphics. In EG 2012 - State of the Art Reports (2012), Cani M.-
P., Ganovelli F., (Eds.), Eurographics Association, pp. 95–134.
1



Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics 23

[BLB∗08] BICKEL B., LANG M., BOTSCH M., OTADUY M. A.,
GROSS M.: Pose-space animation and transfer of facial details.
In Proc. of the ACM SIGGRAPH / Eurographics Symposium on
Computer Animation (2008), pp. 57–66. 18, 19, 20, 21

[BMF03] BRIDSON R., MARINO S., FEDKIW R.: Simulation of
clothing with folds and wrinkles,. In Proc. ACM/Eurographics
Symposium on Computer Animation (2003), pp. 28–36. 6

[BMWG07] BERGOU M., MATHUR S., WARDETZKY M.,
GRINSPUN E.: TRACKS: Toward directable thin shells. Proc.
of ACM SIGGRAPH (2007). 20

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simula-
tion. In Proceedings of Computer graphics and interactive tech-
niques (1998), SIGGRAPH ’98, ACM, pp. 43–54. 9

[BWD13] BENDER J., WEBER D., DIZIOL R.: Fast and stable
cloth simulation based on multi-resolution shape matching. Com-
puters & Graphics (2013). 16, 17

[CBC∗01] CARR J. C., BEATSON R. K., CHERRIE J. B.,
MITCHELL T. J., FRIGHT W. R., MCCALLUM B. C., EVANS
T. R.: Reconstruction and representation of 3D objects with ra-
dial basis functions. In Proc. of ACM SIGGRAPH (2001), pp. 67–
76. 20

[Cro84] CROW F. C.: Summed-area tables for texture mapping.
SIGGRAPH Comput. Graph. 18, 3 (Jan. 1984), 207–212. 12

[dASTH10] DE AGUIAR E., SIGAL L., TREUILLE A., HODGINS
J. K.: Stable spaces for real-time clothing. ACM Trans. Graph.
29, 4 (July 2010), 106:1–106:9. 21

[DB13] DEUL C., BENDER J.: Physically-Based Character Skin-
ning. In VRIPHYS 13: 10th Workshop on Virtual Reality Interac-
tions and Physical Simulations (Lille, France, 2013), Eurograph-
ics Association, pp. 25–34. 22

[DBB09] DIZIOL R., BENDER J., BAYER D.: Volume conserv-
ing simulation of deformable bodies. In Short Paper Proceedings
of Eurographics (Mar. 2009). 14

[DBB11] DIZIOL R., BENDER J., BAYER D.: Robust real-time
deformation of incompressible surface meshes. In Proceedings
of the 2011 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (2011), SCA ’11, Eurographics Association. 11,
12, 13, 14, 17

[DSB99] DESBRUN M., SCHRÖDER P., BARR A.: Interactive an-
imation of structured deformable objects. In Proc. of SIGGRAPH
99 (1999), ACM, pp. 1–8. 1, 6

[FSAH12] FIERZ B., SPILLMANN J., AGUINAGA I., HARD-
ERS M.: Maintaining large time steps in explicit finite element
simulations using shape matching. Visualization and Computer
Graphics, IEEE Transactions on 18, 5 (may 2012), 717 –728. 22

[FYK10] FENG W.-W., YU Y., KIM B.-U.: A deformation trans-
former for real-time cloth animation. ACM Trans. Graph. 29, 4
(July 2010), 108:1–108:9. 21

[GBO04] GOKTEKIN T. G., BARGTEIL A. W., O’BRIEN J. F.:
A method for animating viscoelastic fluids. ACM Trans. Graph.
23, 3 (Aug. 2004), 463–468. 15

[GHF∗07] GOLDENTHAL R., HARMON D., FATTAL R.,
BERCOVIER M., GRINSPUN E.: Efficient simulation of inex-
tensible cloth. ACM Trans. Graph. 26, 3 (2007), 49. 3, 6, 7

[GM97] GIBSON S. F., MIRTICH B.: A survey of deformable
modeling in computer graphics. Tech. Rep. TR-97-19, Mit-
subishi Electric Research Lab., 1997. 1

[GW06] GEORGII J., WESTERMANN R.: A multigrid frame-
work for real-time simulation of deformable bodies. Computer
& Graphics 30 (2006), 408–415. 17

[Hac85] HACKBUSCH W.: Multi-Grid methods and applica-
tions, vol. 4 of Springer Series in Computational Mathematics.
Springer, 1985. 16

[HJCW06] HONG M., JUNG S., CHOI M., WELCH S.: Fast
volume preservation for a mass-spring system. IEEE Comput.
Graph. Appl. 26 (2006), 83–91. 14, 15

[ISF07] IRVING G., SCHROEDER C., FEDKIW R.: Volume con-
serving finite element simulations of deformable models. ACM
Trans. on Graphics 26, 3 (July 2007), 13:1–13:6. 14

[Jak01] JAKOBSEN T.: Advanced character physics. In Proceed-
ings, Game Developer’s Conference 2001 (2001). 4

[JP99] JAMES D. L., PAI D. K.: Artdefo: accurate real time
deformable objects. In Proc. of SIGGRAPH 99 (1999), ACM,
pp. 65–72. 1

[KCM12] KIM T.-Y., CHENTANEZ N., MÜLLER M.: Long
Range Attachments - A Method to Simulate Inextensible Cloth-
ing in Computer Games. In Eurographics/ ACM SIGGRAPH
Symposium on Computer Animation (2012), Lee J., Kry P.,
(Eds.), Eurographics Association, pp. 305–310. 7

[KGBS11] KAVAN L., GERSZEWSKI D., BARGTEIL A. W.,
SLOAN P.-P.: Physics-inspired upsampling for cloth simulation
in games. Proc. of ACM SIGGRAPH (2011). 18, 20, 21

[KM04] KURIHARA T., MIYATA N.: Modeling deformable hu-
man hands from medical images. In Proc. of the ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation
(2004), pp. 357–366. 19

[KNE10] KELAGER M., NIEBE S., ERLEBEN K.: A Triangle
Bending Constraint Model for Position-Based Dynamics. In
VRIPHYS 10: 7th Workshop on Virtual Reality Interactions and
Physical Simulations (2010), Erleben K., Bender J., Teschner M.,
(Eds.), Eurographics Association, pp. 31–37. 4

[KPGF07] KUBIAK B., PIETRONI N., GANOVELLI F., FRATAR-
CANGELI M.: A robust method for real-time thread simulation.
In Proceedings of the 2007 ACM symposium on Virtual reality
software and technology (2007), VRST ’07, ACM, pp. 85–88.
22

[KTT13] KIM T., TESSENDORF J., THÜREY N.: Closest point
turbulence for liquid surfaces. ACM Trans. Graph. 32, 2 (Apr.
2013), 15:1–15:13. 22

[LBOK13] LIU T., BARGTEIL A. W., O’BRIEN J. F., KAVAN
L.: Fast simulation of mass-spring systems. ACM Transactions
on Graphics 32, 6 (Nov. 2013), 209:1–7. Proceedings of ACM
SIGGRAPH Asia 2013, Hong Kong. 4

[LG98] LIN M. C., GOTTSCHALK S.: Collision detection be-
tween geometric models: A survey. In In Proc. of IMA Confer-
ence on Mathematics of Surfaces (1998), pp. 37–56. 2

[MC10] MÜLLER M., CHENTANEZ N.: Wrinkle meshes. In Pro-
ceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (2010), SCA ’10, Eurographics Associ-
ation, pp. 85–92. 8, 21

[MC11] MÜLLER M., CHENTANEZ N.: Solid simulation with
oriented particles. ACM Trans. Graph. 30, 4 (July 2011), 92:1–
92:10. 13, 14

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Proceed-
ings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation (2003), SCA ’03, Eurographics Associa-
tion, pp. 154–159. 5

[MGW01] MALZBENDER T., GELB D., WOLTERS H.: Polyno-
mial texture maps. In Proceedings of ACM SIGGRAPH 2001
(Aug. 2001), Computer Graphics Proceedings, Annual Confer-
ence Series, pp. 519–528. 20



24 Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics

[MHHR07] MÜLLER M., HEIDELBERGER B., HENNIX M.,
RATCLIFF J.: Position based dynamics. Journal of Visual Com-
munication and Image Representation 18, 2 (2007), 109–118. 2,
22

[MHTG05] MÜLLER M., HEIDELBERGER B., TESCHNER M.,
GROSS M.: Meshless deformations based on shape matching.
ACM Trans. Graph. 24, 3 (2005), 471–478. 10, 11, 15, 22

[Mir96] MIRTICH B.: Fast and accurate computation of polyhe-
dral mass properties. J. Graph. Tools 1, 2 (Feb. 1996), 31–50.
15

[MJC∗08] MA W.-C., JONES A., CHIANG J.-Y., HAWKINS T.,
FREDERIKSEN S., PEERS P., VUKOVIC M., OUHYOUNG M.,
DEBEVEC P.: Facial performance synthesis using deformation-
driven polynomial displacement maps. ACM Trans. Graph.
(Proc. of ACM SIGGRAPH Asia) 27, 5 (2008). 18, 20

[MKC12] MÜLLER M., KIM T.-Y., CHENTANEZ N.: Fast Sim-
ulation of Inextensible Hair and Fur. In VRIPHYS 12: 9th Work-
shop on Virtual Reality Interactions and Physical Simulations
(2012), Eurographics Association. 7

[MM13] MACKLIN M., MÜLLER M.: Position based fluids.
ACM Trans. Graph. 32, 4 (July 2013), 104:1–104:12. 5

[Mon92] MONAGHAN J. J.: Smoothed particle hydrodynamics.
Annual Review of Astronomy and Astrophysics 30, 1 (1992), 543–
574. 5

[Mon94] MONAGHAN J. J.: Simulating free surface flows with
sph. J. Comput. Phys. 110, 2 (Feb. 1994), 399–406. 5

[MSJT08] MÜLLER M., STAM J., JAMES D., THÜREY N.: Real
time physics: class notes. In ACM SIGGRAPH 2008 classes
(2008), SIGGRAPH ’08, ACM, pp. 88:1–88:90. 1

[MTV05] MAGNENAT-THALMANN N., VOLINO P.: From early
draping to haute couture models: 20 years of research. The Visual
Computer 21 (2005), 506–519. 1

[Mül08] MÜLLER M.: Hierarchical Position Based Dynamics.
In VRIPHYS 08: Fifth Workshop in Virtual Reality Interactions
and Physical Simulations (2008), Faure F., Teschner M., (Eds.),
Eurographics Association, pp. 1–10. 7

[NMK∗06] NEALEN A., MÜLLER M., KEISER R., BOXERMAN
E., CARLSON M.: Physically based deformable models in com-
puter graphics. Computer Graphics Forum 25, 4 (December
2006), 809–836. 1, 9

[ODC11] O’BRIEN C., DINGLIANA J., COLLINS S.: Space-
time vertex constraints for dynamically-based adaptation of
motion-captured animation. In Proceedings of the 2011 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(2011), SCA ’11, ACM, pp. 277–286. 22

[OH99] O’BRIEN J. F., HODGINS J. K.: Graphical model-
ing and animation of brittle fracture. In SIGGRAPH ’99: Pro-
ceedings of the 26th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1999), ACM
Press/Addison-Wesley Publishing Co., pp. 137–146. 1

[PB88] PLATT J. C., BARR A. H.: Constraints methods for
flexible objects. In Proceedings of the 15th annual conference
on Computer graphics and interactive techniques (1988), SIG-
GRAPH ’88, ACM, pp. 279–288. 9

[Pro95] PROVOT X.: Deformation constraints in a mass-spring
model to describe rigid cloth behavior. In In Graphics Interface
(1995), Davis W. A., Prusinkiewicz P., (Eds.), Canadian Human-
Computer Communications Society, pp. 147–154. 6

[RJ07] RIVERS A. R., JAMES D. L.: FastLSM: fast lattice shape
matching for robust real-time deformation. In SIGGRAPH ’07:
ACM SIGGRAPH 2007 papers (2007), ACM, p. 82. 11, 12, 22

[RKN10] RUNGJIRATANANON W., KANAMORI Y., NISHITA T.:
Chain shape matching for simulating complex hairstyles. Com-
puter Graphics Forum 29, 8 (2010), 2438–2446. 22

[RPC∗10] ROHMER D., POPA T., CANI M.-P., HAHMANN S.,
SHEFFER A.: Animation wrinkling: Augmenting coarse cloth
simulations with realistic-looking wrinkles. ACM Trans. Graph.
29, 5 (2010), 157:1–157:8. 21

[SD92] SHOEMAKE K., DUFF T.: Matrix animation and polar de-
composition. In Proceedings of the conference on Graphics inter-
face ’92 (1992), Morgan Kaufmann Publishers Inc., pp. 258–264.
16

[SGdA∗10] STOLL C., GALL J., DE AGUIAR E., THRUN S.,
THEOBALT C.: Video-based reconstruction of animatable human
characters. ACM Trans. Graph. 29, 6 (Dec. 2010), 139:1–139:10.
22

[SGT09] SCHMEDDING R., GISSLER M., TESCHNER M.: Opti-
mized damping for dynamic simulations. In Spring Conference
on Computer Graphics (2009), pp. 205–212. 9

[SHZO07] SENGUPTA S., HARRIS M., ZHANG Y., OWENS
J. D.: Scan primitives for GPU computing. In Proc. of the
22nd ACM SIGGRAPH/Eurographics Symp. on Grap. Hardware
(2007), Eurographics Association, pp. 97–106. 17

[SKBK13] SCHMITT N., KNUTH M., BENDER J., KUIJPER A.:
Multilevel Cloth Simulation using GPU Surface Sampling. In
VRIPHYS 13: 10th Workshop on Virtual Reality Interactions and
Physical Simulations (Lille, France, 2013), Eurographics Asso-
ciation, pp. 1–10. 7

[SOG08] STEINEMANN D., OTADUY M. A., GROSS M.: Fast
adaptive shape matching deformations. In Proceedings of the
2008 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (2008), SCA ’08, Eurographics Association, pp. 87–
94. 12

[SSBT08] STUMPP T., SPILLMANN J., BECKER M., TESCHNER
M.: A Geometric Deformation Model for Stable Cloth Simula-
tion. In VRIPHYS 08: Fifth Workshop in Virtual Reality Inter-
actions and Physical Simulations (2008), Faure F., Teschner M.,
(Eds.), Eurographics Association, pp. 39–46. 16

[SSH12] SEILER M., SPILLMANN J., HARDERS M.: Enriching
coarse interactive elastic objects with high-resolution data-driven
deformations. In Proceedings of the ACM SIGGRAPH/Euro-
graphics Symposium on Computer Animation (2012), SCA ’12,
Eurographics Association, pp. 9–17. 21

[Sta09] STAM J.: Nucleus: Towards a unified dynamics solver
for computer graphics. IEEE International Conference on
Computer-Aided Design and Computer Graphics (2009), 1–11.
3

[TBHF03] TERAN J., BLEMKER S., HING V. N. T., FEDKIW
R.: Finite volume methods for the simulation of skeletal muscle.
In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on
Comput. Anim. (2003), Eurographics Association, pp. 68–74. 1

[Tes04] TESSENDORF J.: Simulating ocean water. ACM SIG-
GRAPH 2004 Course Notes (2004). 22

[TF88] TERZOPOULOS D., FLEISCHER K.: Deformable models.
The Visual Computer 4 (1988), 306–331. 9

[THMG04] TESCHNER M., HEIDELBERGER B., MULLER M.,
GROSS M.: A versatile and robust model for geometrically com-
plex deformable solids. In Proceedings of the Computer Graph-
ics International (Washington, DC, USA, 2004), CGI ’04, IEEE
Computer Society, pp. 312–319. 1

[TKH∗05] TESCHNER M., KIMMERLE S., HEIDELBERGER B.,
ZACHMANN G., RAGHUPATHI L., FUHRMANN A., CANI M.-
P., FAURE F., MAGNENAT-THALMANN N., STRASSER W.,



Bender et al. / A Survey on Position-Based Simulation Methods in Computer Graphics 25

VOLINO P.: Collision detection for deformable objects. Com-
puter Graphics Forum 24, 1 (Mar. 2005), 61–81. 2

[TPBF87a] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER
K.: Elastically deformable models. In Proceedings of the 14th
annual conference on Computer graphics and interactive tech-
niques (1987), SIGGRAPH ’87, ACM, pp. 205–214. 1

[TPBF87b] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER
K.: Elastically deformable models. In Computer Graphics (Pro-
ceedings of SIGGRAPH 87) (1987), vol. 21, ACM, pp. 205–214.
1

[vFTS06] VON FUNCK W., THEISEL H., SEIDEL H.-P.: Vector
field based shape deformations. ACM Trans. on Graphics 25, 3
(July 2006), 1118–1125. 14

[WBS∗13] WEBER D., BENDER J., SCHNOES M., STORK A.,
FELLNER D.: Efficient GPU data structures and methods to
solve sparse linear systems in dynamics applications. Computer
Graphics Forum 32, 1 (2013), 16–26. 17

[WHRO10] WANG H., HECHT F., RAMAMOORTHI R.,
O’BRIEN J.: Example-based wrinkle synthesis for clothing
animation. ACM Trans. Graph. 29, 4 (July 2010), 107:1–107:8.
18

[WOR10] WANG H., O’BRIEN J., RAMAMOORTHI R.: Multi-
resolution isotropic strain limiting. ACM Trans. Graph. 29, 6
(Dec. 2010), 156:1–156:10. 7

[WXX∗06] WANG Y., XIONG Y., XU K., TAN K., GUO G.: A
mass-spring model for surface mesh deformation based on shape
matching. In Proceedings of the 4th international conference on
Computer graphics and interactive techniques in Australasia and
Southeast Asia (2006), GRAPHITE ’06, ACM, pp. 375–380. 22

[ZBO13] ZURDO J. S., BRITO J. P., OTADUY M. A.: Animating
wrinkles by example on non-skinned cloth. IEEE Transactions
on Visualization and Computer Graphics 19, 1 (2013). 18, 19,
20, 21


