
Position-Based Rigid Body Dynamics

Crispin Deul, Patrick Charrier and Jan Bender
Graduate School of Excellence Computational Engineering

Technische Universität Darmstadt, Germany
{deul | charrier | bender}@gsc.tu-darmstadt.de

Abstract
We propose a position-based approach for large-
scale simulations of rigid bodies at interactive
frame-rates. Our method solves positional con-
straints between rigid bodies and therefore inte-
grates nicely with other position-based methods.
Interaction of particles and rigid bodies through
common constraints enables two-way cou-
pling with deformables. The method exhibits
exceptional performance and stability while
being user-controllable and easy to implement.
Various results demonstrate the practicabil-
ity of our method for the resolution of colli-
sions, contacts, stacking and joint constraints.

Keywords: real-time, rigid body dynamics,
two-way coupling, position-based dynamics

1 Introduction

Computer games and virtual reality applications
strive for ever greater realism in increasingly
complex virtual environments. Such environ-
ments typically include a vast number of dy-
namic deformable and rigid objects. Simulating
these objects according to the laws of motion re-
quires sophisticated methods and has a long his-
tory in computer graphics. In this context the
animation of rigid bodies and their interactions
under the influence of constraints such as col-
lisions or joints is perhaps the most researched
concern. Numerous physics engines, like Bul-
let [1] or PhysX [2] have come to public atten-
tion. While many methods achieve results of
great fidelity, their computational effort can not
be justified in real-time applications. The quest

Figure 1: A large-scale mobile simulation in-
volving 127 constraints. A simulation
step requires 0.83 ms on average.

for methods that are both robust and fast at the
same time is still ongoing.

The position-based dynamics method by
Mueller et al. [3] has been applied to particle-
based deformable bodies and fluids [4]. It
allows for very stable animations at interactive
frame-rates. However, it does not yet support
rigid body dynamics under the influence of
constraints and collisions.

We present a novel approach that extends
position-based dynamics to rigid bodies while
maintaining its significant properties. Our ap-
proach excels in large-scale simulations at in-
teractive frame-rates while being robust under a



vast number of constraints, as depicted in Fig-
ure 1. Furthermore, the proposed method is easy
to implement, controllable and supports two-
way coupling of deformable and rigid bodies.

2 Related Work

The field of rigid body dynamics has a long
history in computer animation and may be de-
composed into the four subfields integration
schemes, collision detection, collision response
and constraint resolution. The survey of Bender
et al. [5] describes all subfields in more detail,
but only the two latter ones are of primary inter-
est in this paper.

In previous work collision handling was per-
formed by the application of forces [6], by solv-
ing linear complementary problems [7] or by us-
ing impulse-based methods [8, 9, 10]. Müller et
al. [3] even introduce a method that resolves col-
lisions by directly modifying positions for the
simplified case of individual particles. How-
ever, an extension to rigid bodies has not been
shown yet. In contrast to that, Kaufman et
al. [11] present a method which projects the ve-
locities of the bodies in order to prevent pene-
trations. Later, Kaufman et al. [12] introduced
a staggering approach for frictional contacts.
Multi-impact problems were focused by Smith
et al. [13]. In order to increase the performance
of large-scale simulations, shock propagation
methods were introduced [9, 14]. Furthermore,
different GPU-based methods were presented to
simulate large systems in real-time [15, 16].

To simulate an articulated system with joints,
equality constraints are defined for the rigid bod-
ies. A classic approach to solve these constraints
in real-time is to use reduced coordinate meth-
ods. Featherstone demonstrated that a simula-
tion with reduced coordinates can be performed
in linear time for acyclic systems [17, 18]. Re-
don et al. [6] introduced an adaptive variant of
this approach which uses a reduced number of
degrees of freedom to improve the performance.
Baraff [19] introduced a Lagrange multiplier
method which also has a linear-time complex-
ity for acyclic models. Later, Bender [20, 21]
demonstrated that the idea of Baraff can also
be applied to impulse-based simulation. While
Bender proposed to solve a linearized equation

based on a prediction of the joint state [22], We-
instein et al. [23] solved the nonlinear equation
by a Newton iteration method.

Position-based methods became popular in
the last years since they are fast, robust and con-
trollable while no implicit time integration is re-
quired. A survey of position-based methods is
presented by Bender et al. [24]. Müller et al. [3]
introduced position-based dynamics as a gener-
alized framework capable of solving a large va-
riety of constraints. They demonstrated its ap-
plication on deformable solids [3, 25] and later
also on fluids [4]. Diziol et al. [26] introduced
a shape matching method with a volume conser-
vation for deformable solids to achieve more re-
alistic results. In order to make shape matching
more robust, Müller and Chentanez [25] added
an orientation to the particles of their model.
This allows them to simulate bodies with solid
components and basic joints. Although they
treat each particle as a rigid body with posi-
tion and orientation, they apply the standard
position-based constraints that depend solely on
particle positions. In constrast, our work incor-
porates position and orientation in the deriva-
tion of constraint equations. This allows us
to form constraints between arbitrary points of
rigid bodies.

3 Preliminaries

In this section we first start with a brief intro-
duction to the position-based dynamics frame-
work (PBD). Then we continue with the basics
of rigid body simulation.

The original position-based dynamics ap-
proach [3] is used to simulate a model defined
by particles and constraints between these parti-
cles. The constraints are solved at the position
level by applying correction displacements onto
the particle positions. In order to measure the
constraint violation, preview positions of the
particles are computed in a first step by integrat-
ing the particle velocities under the influence
of external forces. Then the particle positions
are integrated with the new velocities yielding a
symplectic Euler scheme. In the second step the
system of constraints is solved in a Gauss-Seidel
type iteration. The third step updates the particle
velocities depending on the difference between



the particle positions at the start of the time step
and the new particle positions multiplied by the
inverse time step size. In a final step the new
velocities are modified to handle friction and
damping.

As mentioned before, we want to solve con-
straints on rigid bodies, which are defined by six
parameters. The translational motion parame-
ters are the position x, the velocity v, and the
mass m, which rigid bodies have in common
with particles. In addition to that, the three ro-
tational parameters are the orientation ϑ, the an-
gular velocity ω, and the inertia tensor I.

These parameters are employed in a symplec-
tic Euler scheme as follows. The equations for
velocity and position integration are defined by

v(t0 + h) = v(t0) +
Fexternal

m
h

x(t0 + h) = x(t0) + v(t0 + h)h

while the equations for the rotational parameters
are given by

ω(t0 + h) = ω(t0) + hI−1·
(τ external − (ω(t)× (I · ω(t))))

q(t0 + h) = q(t0) +
h

2
ω̃(t0 + h) · q(t0),

where ω̃ is the quaternion [0, ωx, ωy, ωz]. Af-
ter the preview positions of the bodies are in-
tegrated with the equations above position con-
straints are solved in several iterations. How-
ever, in constrast to the original PBD approach,
that updates the velocities after the constraint
solver step, we update the velocities of con-
straints whenever a correction displacement is
applied to a rigid body. The required impulse to
update the velocities is computed be multiplying
the mass weighted displacement with the inverse
time step size. By updating the velocities during
the position iterations we can apply our friction
resolution approach whose details are presented
in section 6.

4 Constrained Rigid Bodies

In this section we describe how to extend the
PBD solver to solve constraints between rigid
bodies. The standard solver works by itera-
tively handling each constraint on its own by

applying displacements to the according parti-
cles. The displacements are computed by solv-
ing constraints of the following form:

C(p + ∆p) = 0, (1)

where p = [p1, . . . ,pn]T is the concatenated
vector of particle preview positions and ∆p =
[∆p1, . . . ,∆pn]T contains the corresponding
correction displacements.

In order to solve a constraint function a first-
order Taylor approximation

C(p+∆p) ≈ C(p)+∇pC(p) ·∆p = 0, (2)

is used to linearize the constraint. However, this
equation is underdetermined. By restricting the
direction of the position correction to the gra-
dient direction this problem is solved [3]. The
final displacement vector is determined by

∆pi = − wiC(p)∑
j wj

∣∣∣∇pj
C(p)

∣∣∣2∇pi
C(p), (3)

where wi is the inverse mass of particle pi.
As an extension to the particle constraint han-

dling of PBD our approach handles constraints
between rigid bodies. In contrast to particles an
orientation is associated to rigid bodies. Points
pi that are attached to a rigid body with index j
can be described by the following formula

pi(xj ,R(ϑj)) = xj + R(ϑj)ri, (4)

where xj is the center of mass and R(ϑj) the ro-
tation matrix of the rigid body with index j. The
local position of the point i in the body frame
is encoded in ri. Using the definition of body
attached points (see Eq. 4) in the Taylor approx-
imation of the constraint (see Eq. 2) yields:

C(p(x + ∆x,R(ϑ+ ∆ϑ))) ≈
C(p(x,R(ϑ)))+

JC(x, ϑ) · [∆xT
1 ,∆ϑ

T
1 , . . . ,∆xT

n ,∆ϑ
T
n ]T ,

(5)

where x = [xT
1 , · · · .xT

n ]T and ϑ =
[ϑT1 , · · · , ϑTn ]T are the vectors containing all
positions and orientations of the n constrained
bodies. Furthermore, the function p com-
putes the concatenated vector of m positions
p = [p1(x1,R(ϑ1))

T , . . . ,pm(xn,R(ϑn))T ]T

that are constrained by C(p). Due to the fact,



that the entries of p depend on a function (see
Eq. 4), the chain rule has to be applied to
the constraint function C(p) to compute its
derivative. As a result, the gradient ∇pC(p)
in Eq. 2 is replaced by the k × 6n Jacobian
JC(x, ϑ) =

(
∂C
∂x

∂C
∂ϑ

)
of the constraint function

with respect to the rigid body positions and
orientations, where k is the dimension of the
codomain of C(p).

Let Mj be the 6×6 mass matrix of rigid body
j with the mass on the first three entries of the
diagonal and the moment of inertia tensor Ij in
the lower right 3 × 3 submatrix. By rearrang-
ing Eq. 5 the same way that led from Eq. 2 to
Eq. 3 and replacing the inverse particle mass wj

with the inverse mass matrix M−1
j , the formula

to compute the vector of rigid body corrections
for constraint C(p) is:

[∆xT
i ,∆ϑ

T
i , . . . ,∆xT

n ,∆ϑ
T
n ]T =

−M−1JT
C

[
JCM−1JT

C

]−1
C(p),

(6)

where the matrix M−1JT
C converts the mass

weighted displacement to a displacement in
world space. The matrix

[
JCM−1JT

C

]−1
is the

mass matrix in constraint space.
The question now is how to parameterize the

rotations of the rigid bodies to compute a Jaco-
bian JC that can be multiplied with the inverse
mass matrix M−1

j . Orientations can be param-
eterized in different ways like Euler angles or
quaternions. Accordingly, all these parameteri-
zations lead to a different Jacobian. Neverthe-
less, a solution can be found by starting at the
velocity level. The relationship between angu-
lar momentum and angular velocity is L = Iω.
Taking the first order integration, with the as-
sumption that the axis of rotation stays constant
during the time step, and rearranging the result
gives I−1Lh = ωh = ϑ, where h is the time
step size. The vector ϑ represents a rotation of
|ϑ| about the axis ϑ/ |ϑ| and is known as the ex-
ponential map from R3 to S3 [27], where S3 is
the space of rotation quaternions . The paper of
Grassia [27] also presents the derivation of the
rotational part ∂R(ϑ)/∂ϑ of the Jacobian JC

which is not repeated here.

5 Joints

Defining translational joint constraints between
two rigid bodies is straight forward using the
constraint definition of section 4. The transla-
tional constraints have in common that the dis-
tance of two joint points a and b, each attached
to one of the two bodies A and B, is constrained
to be zero. The only difference is the dimension
of the constraint space. A simple translational
constraint is the ball joint

C(a,b) = a− b = 0

that removes all translational degrees of freedom
between the linked bodies. It follows that the
joint points and with them the according bodies
can not move away from each other. However,
the two bodies can freely rotate around the joint
position. In order to define a translational con-
straint that removes only two translational de-
grees of freedom the constraint space has to be
reduced to a plane. The plane is defined by the
joint point of one of the two bodies and the plane
normal that is also attached to this body. It fol-
lows that the joint points have to be projected
into the plane to measure the constraint viola-
tion. Then, the correction is computed in the
two-dimensional constraint space. In a final step
the mass weighted correction displacement must
be projection back into the three-dimensional
space. Similarly, the constraint space of a joint
constraining one translational degree of freedom
is defined by attaching a unit vector to one of the
rigid bodies. Again, the constraint violation is
measured by first projecting the joint points onto
the constraint space and then computing the dis-
tance.

Constraints that remove only rotational de-
grees of freedom can be defined analogously by
constraining the orientation of the linked bodies.

6 Collision Handling

In this section we present our solution to handle
collisions, contact, and friction. In the follow-
ing paragraphs we combine the terms collision
and contact under the term proximity and use
the special terms only where differences occur.

Proximity Detection We perform only one
discrete proximity detection step to ensure a



high performance of our method. The drawback
is that, intersections may occur after the posi-
tion integration or during the position solver it-
erations. These intersections are corrected in the
next time step. It follows that, we can not guar-
antee an intersection free state at the end of the
time step. But, we did not encounter severe ar-
tifacts in our examples. A further implication
of performing only one collision detection step
is, that we need to classify proximity constraints
into collisions or contacts by using a threshold
velocity. Therefore, we apply the threshold pro-
posed by Mirtich [8].

Intersection resolution Intersections of rigid
bodies are handled during the position solver it-
erations. If an intersection between bodies A
and B is detected, a proximity constraint is cre-
ated. Let n be the intersection normal defined
by the surface normal of body B. In order to
solve the intersection, a displacement has to be
computed that moves the intersection point a of
body A along the positive direction of the inter-
section normal and moves the intersection point
b of body B along the negative direction of the
intersection normal. The constraint is given by

C(a,b) = nT (a− b) ≥ 0.

It follows that the constraint formula resembles
a distance constraint along the intersection nor-
mal. The exception to the distance constraint
is, that the displacements should be only repul-
sive. To ensure that the total displacement of the
constraint stays repulsive during the solver iter-
ations, every intersection constraint tracks the
sum of the already applied displacements. If
the sum from the previous steps with the current
displacement in iteration step i becomes smaller
than zero ∆pcorrected = −

∑i−1
j=1 ∆pj corrects

the displacement.
A problem that arises when correcting the

whole intersection in a single time step is, that
objects of the scene might receive an unwanted
high velocity change, when deep intersections
occur. The intersections either are the result
of high body velocities in combination with the
discrete collision detection or they are caused
by the position corrections in the previous time
step. Therefore, we use a stiffness parameter s
as introduced in the original PBD approach also

for proximity constraints. Furthermore, to avoid
even deeper penetrations caused by the correc-
tion of other constraints, the required correction
displacement is split into two parts. Before per-
forming the position solver iterations the current
intersection depth d is computed. In addition
d is clamped to negative values including zero
d = min(d, 0) to avoid cases when the colli-
sion detection finds a collision due to the colli-
sion tolerance value while the colliding objects
do not intersect. Then, during each iteration step
the current constraint violation value c is modi-
fied as follows:

cmodified = min(0, c− d) + s ·max(c, d).

The first term is unequal to zero if a deeper inter-
section than the initial intersection is computed.
The second term corrects the initial intersection
depth. In this equation the max function is used,
because c and d are negative values in case of an
intersection.

After performing the position correction it-
erations a shock propagation method similar to
the approach of Guendelman [9] corrects the re-
maining violated proximity constraints.

Friction Besides solving or preventing inter-
sections, a plausible rigid body simulation also
has to handle friction and collisions. Coulomb’s
friction model can easily be expressed in the ve-
locity domain. Therefore, we compute friction
effects at the velocity level. Furthermore, we
apply a second friction approximation at the po-
sition level to correct changes in tangential ve-
locity of objects in proximity caused by position
correction constraints.

At the velocity level a Gauss-Seidel type
solver iterates over all proximity constraints in
five iterations to handle contact, collision and
friction constraints. This is done immediately
after the velocity integration and before the po-
sition integration of rigid bodies. As a result, an
object under static friction on an inclined plane
will nearly stay at the same position. Without
this velocity correction, the object would move
under gravity. As a result, the position correc-
tion would push the object out of the plane along
the plane normal. And finally the uncorrected
position change tangential to the inclined plane
would cause the object to slide.



The second stage of friction correction takes
place during the position correction iterations.
Although the position constraint solver works
with weighted displacements we apply the fric-
tion corrections as impulses to reuse the same
friction handling as at the velocity level. In
order to compute the friction impulse the cur-
rent velocity between the objects in contact is
needed. As a result of our velocity update imme-
diately after a displacement has been applied in
the position iterations, the current tangential ve-
locity is available for each proximity constraint.
Then the friction impulse is computed to re-
duce the tangential velocity. This impulse is cor-
rected to lie in the friction cone before being ap-
plied to the rigid bodies. It follows that the im-
pulse along the intersection normal is required
to correct the friction impulse. Therefore, we
sum up the mass weighted displacements of the
proximity constraints during the position correc-
tion step. Then the mass weighted displace-
ment is multiplied with the inverse time step
size. Thus, an approximation for the impulse in
the direction of the intersection normal is com-
puted. This impulse is used in conjunction with
the friction law to correct the friction impulse.

7 Two-way Coupling

A main advantage of integrating rigid body sim-
ulation in the PBD framework is to gain stable
two-way coupling between rigid bodies and de-
formable models simulated with particles. The
alternative of using for example an impulse
based framework for the rigid bodies and in-
terleaving the simulation with a PBD simula-
tion may lead to stability issues. The problem
with interleaving is, that both simulations do not
”see” constraints induced by the other frame-
work.

With the extension of PBD constraints to han-
dle rigid bodies like in section 4 it is very easy
to couple rigid bodies and particles with a sin-
gle constraint by using the concept of connec-
tors introduced by Witkin et al. [28]. The idea is
to split the Jacobian JC into a constraint and a

connector part. For a rigid body the splitting is

JC =
∂C(p(x,R(v)))

∂p(x,R(v))
·(

∂p(x,R(v))

∂x

∂p(x,R(v))

∂v

)T

,

where the first factor is the constraint Jacobian
with respect to the constrained points and the
second factor is the rigid body connector Jaco-
bian. Besides rigid bodies also particles can be
handled by Eq. 4. Therefore, the Jacobian has to
be computed with respect to the position param-
eter x of the particle. As a result the splitting
is

JC =
∂C(p)

∂p

∂p

∂x
=
∂C(p)

∂p
.

The particle connector Jacobian ∂p/∂x is the
identity matrix. Furthermore, the mass matrix
of the rigid body has to be exchanged with the
3×3 particle mass matrix containing the particle
mass on each of the diagonal elements. To sum
up, by using the concept of connectors, points
defined on rigid bodies and points defined by
particles can be simultaneously used in position
constraints. Consequently a full two-way cou-
pling is achieved.

8 Results

We tested our algorithm on a total of four exam-
ples that are shown in the accompanying video:

1. The mobile example in Figure 1 demon-
strates the exceptional stability of a sys-
tem under a large number of constraints.
Figure 4 shows that the average computa-
tion times scale linearly with the number
of bodies.

2. A cloth example, exemplifying the two-
way interaction between deformable and
rigid bodies (see Figure 3). A number of
tori deform the cloth by dropping on it.
They react on the cloth’s response, but set-
tle in a steady and jitter-free state after a
few seconds.

3. A pile example (see Figure 2) involving a
massive number of collisions between two
types of dropped rigid bodies with each



Figure 2: Massive collision scene with 2000
rigid bodies stacking up on the ground.

Figure 3: Scene demonstrating the two-way in-
teraction of rigid and deformable bod-
ies. A number of tori are falling onto
a piece of cloth, thereby deforming it.

other, the ground plane and a few surround-
ing poles. The system settles in an almost
steady state with only small movements.
No visually noticeable jumps and irregular-
ities are observed after reaching this state.

4. An elk aggressively collides with a duck
that blocks its way. The scene demon-
strates interaction between rigid bodies and
deformable cloth balloons [3].

For the four examples we measured the aver-
age computation times over 10 s of simulation
time on an Intel Core i7 3820 CPU with a clock
rate of 3.8 GHz. All times were measured run-
ning on a single core. Collision Detection tim-
ings are excluded from the measurements. We
used a constant time step size of h = 0.01 s, and
a maximum number of five position and five ve-
locity iterations for the first three examples. The
simulation of the cloth balloon in example four
required to increase the position iteration count
to 150. This high iteration count is required to

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  1000  2000  3000  4000

Po
si

tio
n 

co
rr

ec
tio

n 
tim

e 
(m

s)

Number of constraints

Figure 4: The time in milliseconds required for
the position correction step of the mo-
bile example in Figure 1 for a varying
number of constraints.

get a stable deformable model and does not de-
pend on the coupling.

Most notably the pile model (see Figure 2) ro-
bustly handles about 4000 contacts without jit-
tering, which clearly demonstrates the stability
of our method. In terms of performance our
method required a computation time of 17 ms on
average to resolve the 4000 contacts. The cloth
model with 1681 particles and ten tori needs
about 7.13 ms and the mobile model with 127
constraints needs about 0.17 ms.

For the mobile example we varied the number
of constraints between 3 and 4095 and measured
the time required on the position correction step.
As expected, this time scaled linearly with re-
spect to the number of constraints in the scene,
as depicted in Figure 4. Moreover, our method
is about 2.5 times faster than real time even for
a system with 4095 constraints.

9 Conclusion

We have presented a method for the simula-
tion of rigid bodies that is fast and behaves ro-
bust under a large number of constraints. We
have demonstrated its practical application in
four complex scenes involving large-scale simu-
lations and two-way coupling. Like all position-
based methods, it is easy to implement and con-
trollable from a user’s point of view.

The method not only offers the advantages de-
scribed above, but fits nicely into the already ex-
isting position-based dynamics framework. Be-



Figure 5: Interaction between a toy elk and a
cloth balloon duck. The elk model
consists of five rigid bodies represent-
ing the body of the elk and the four
wheels. The collision between the elk
and the duck is simulated by our two-
way coupling.

sides the demonstrated two-way coupling of
cloth and rigid bodies, a fluid-solid interaction
is feasible and subject of our future work.

The simulation has been implemented exclu-
sively for single-core processing so far. A multi-
core or GPU implementation is an advantageous
goal for the future and has in principal already
been solved for force-based methods. Its ap-
plication to position-based rigid bodies still has
to be evaluated. A few other components such
as motors are still missing in the position-based
rigid body framework. However, their imple-
mentation should be feasible and straightfor-
ward.

10 Acknowledgments

This work was supported by the Excellence
Initiative of the German Federal and State Gov-
ernments and the Graduate School of Excellence
Computational Engineering at Technische Uni-
versität Darmstadt. The authors would like to
thank Daniel Thul who investigated the appli-
cability of our basic idea in his bachelor thesis.
Furthermore, we acknowledge the source of the
models shown in our examples. The elk model
used in scenes one, three and four is provided
courtesy of MPII by the AIM@SHAPE Shape
Repository. The dolphin model and the isidore

horse used in scene one is provided courtesy
of INRIA by the AIM@SHAPE Shape Repos-
itory. Additionally, scene 3 uses the model
’Adventure Kid’ by Clint Bellanger available at
http://opengameart.org/content/
adventure-kid under a Creative Commons
Attribution 3.0 Unported. Full terms at http:
//creativecommons.org/licenses/
by/3.0/. Furthermore, a modified version of
the duck model ’Rubberduck’ by rubberduck
available at http://opengameart.org/
content/rubberduck under a CC0 1.0
Universal Public Domain Dedication is used in
scene four.

References

[1] Erwin Coumans. The bullet
physics library. http://www.
bulletphysics.org, February
2014.

[2] NVIDIA. PhysX. http://
developer.nvidia.com/physx,
February 2014.

[3] Matthias Müller, Bruno Heidelberger,
Marcus Hennix, and John Ratcliff. Posi-
tion based dynamics. J. Vis. Comun. Image
Represent., 18(2):109–118, April 2007.

[4] Miles Macklin and Matthias Müller. Po-
sition based fluids. ACM Trans. Graph.,
32(4):104:1–104:12, July 2013.

[5] Jan Bender, Kenny Erleben, and Jeff Trin-
kle. Interactive simulation of rigid body
dynamics in computer graphics. Computer
Graphics Forum, 33(1):246–270, 2014.

[6] Stephane Redon, Nico Galoppo, and
Ming C. Lin. Adaptive dynamics of articu-
lated bodies. ACM Trans. Graph., 24:936–
945, July 2005.

[7] David Baraff. Fast contact force compu-
tation for nonpenetrating rigid bodies. In
Proc. SIGGRAPH, 1994.

[8] Brian V. Mirtich and John F. Canny.
Impulse-based simulation of rigid bodies.
In Proc. Interactive 3D graphics, pages
181–ff. ACM Press, 1995.



[9] Eran Guendelman, Robert Bridson, and
Ronald Fedkiw. Nonconvex rigid bodies
with stacking. ACM Trans. Graph., 2003.

[10] Jan Bender and Alfred Schmitt.
Constraint-based collision and con-
tact handling using impulses. In Proc.
Computer Animation and Social Agents,
pages 3–11, 2006.

[11] Danny M. Kaufman, Timothy Edmunds,
and Dinesh K. Pai. Fast frictional dynam-
ics for rigid bodies. ACM Trans. Graph.,
24(3):946–956, 2005.

[12] Danny M. Kaufman, Shinjiro Sueda,
Doug L. James, and Dinesh K. Pai. Stag-
gered projections for frictional contact in
multibody systems. ACM Trans. Graph.,
27(5), 2008.

[13] Breannan Smith, Danny M. Kaufman, Eti-
enne Vouga, Rasmus Tamstorf, and Eitan
Grinspun. Reflections on simultaneous im-
pact. ACM Trans. Graph., 31(4):106:1–
106:12, July 2012.

[14] Kenny Erleben. Velocity-based shock
propagation for multibody dynamics an-
imation. ACM Trans. Graph., 26(2):12,
2007.

[15] A. Tasora, D. Negrut, and M. Anitescu.
Large-scale Parallel Multi-body Dynamics
with Frictional Contact on the Graphical
Processing Unit. In Proc. of Institution of
Mech. Eng., Part K: Journal of Multi-body
Dynamics, pages 315–326, 2008.

[16] Daniel Weber, Jan Bender, Markus Sch-
noes, André Stork, and Dieter Fellner. Ef-
ficient GPU data structures and methods
to solve sparse linear systems in dynamics
applications. Computer Graphics Forum,
32(1):16–26, 2013.

[17] Roy Featherstone and David Orin. Robot
dynamics: Equations and algorithms. In-
ternational Conference on Robotics and
Automation, pages 826–834, 2000.

[18] Roy Featherstone. Rigid Body Dynamics
Algorithms. Springer-Verlag New York,
Inc., Secaucus, USA, 2007.

[19] David Baraff. Linear-time dynamics using
lagrange multipliers. In Proc. SIGGRAPH,
pages 137–146. ACM Press, 1996.

[20] Jan Bender. Impulse-based dynamic sim-
ulation in linear time. Computer Anima-
tion and Virtual Worlds, 18(4-5):225–233,
2007.

[21] Jan Bender. Impulsbasierte Dynamiksim-
ulation von Mehrkörpersystemen in der
virtuellen Realität. PhD thesis, University
of Karlsruhe, Germany, 2007.

[22] Jan Bender, Dieter Finkenzeller, and Al-
fred Schmitt. An impulse-based dynamic
simulation system for VR applications. In
Proc. Virtual Concept. Springer, 2005.

[23] Rachel Weinstein, Joseph Teran, and Ron
Fedkiw. Dynamic simulation of articu-
lated rigid bodies with contact and colli-
sion. IEEE TVCG, 12(3):365–374, 2006.

[24] Jan Bender, Matthias Müller, Miguel A.
Otaduy, and Matthias Teschner. Position-
based methods for the simulation of solid
objects in computer graphics. In EURO-
GRAPHICS State of the Art Reports. Eu-
rographics Association, 2013.

[25] Matthias Müller and Nuttapong Chen-
tanez. Solid simulation with oriented par-
ticles. ACM Trans. Graph., 30(4):92:1–
92:10, July 2011.

[26] Raphael Diziol, Jan Bender, and Daniel
Bayer. Robust real-time deformation of
incompressible surface meshes. In Proc.
ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation. Eurograph-
ics Association, 2011.

[27] F. Sebastian Grassia. Practical parameter-
ization of rotations using the exponential
map. Journal of Graphics Tools, 3:29–48,
1998.

[28] Andrew Witkin, Michael Gleicher, and
William Welch. Interactive dynamics. In
Proc. Interactive 3D Graphics, pages 11–
21. ACM, 1990.


