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Figure 1: Cloth draped over a sphere. A coarse triangle mesh with 5100 vertices (left) is used for collision handling on the
CPU while a high-resolution regular grid with 230k particles is simulated on the GPU to get fine wrinkles (middle). The right
image shows a close-up view of the high-resolution mesh used for rendering.

Abstract
Today most cloth simulation systems use triangular mesh models. However, regular grids allow many optimiza-
tions as connectivity is implicit, warp and weft directions of the cloth are aligned to grid edges and distances
between particles are equal. In this paper we introduce a cloth simulation that combines both model types. All
operations that are performed on the CPU use a low-resolution triangle mesh while GPU-based methods are
performed efficiently on a high-resolution grid representation. Both models are coupled by a sampling operation
which renders triangle vertex data into a texture and by a corresponding projection of texel data onto a mesh. The
presented scheme is very flexible and allows individual components to be performed on different architectures,
data representations and detail levels. The results are combined using shader programs which causes a negligible
overhead. We have implemented CPU-based collision handling and a GPU-based hierarchical constraint solver
to simulate systems with more than 230k particles in real-time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Several physical models for cloth simulation have been sug-
gested, with discrete systems being among the most com-

mon. In the beginning several works focused on grid struc-
tures [BHW94, Pro95]. However, the concept was soon
generalized for arbitrary triangle meshes [VMT97, BW98].
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Grids had a resurgence when first attempts were made to
simulate cloth on graphics hardware [KLRS04, Zel05].

Regular grids have various advantages: No explicit con-
nectivity data structure is required; the anisotropic proper-
ties of cloth can be incorporated without transformation into
a local coordinate system and edge lengths are uniform. Es-
pecially in the light of GPU computing where grids are effi-
ciently represented by texture samplers there are numerous
optimizations which can be performed. Triangle meshes are
often preferred for modelling since they are flexible enough
to represent irregularly shaped pieces of cloth. Moreover,
most collision handling algorithms are based on triangle
meshes (e.g. [BWK03]).

Our idea is to combine both data representations by sam-
pling changes on a coarse triangle mesh into high-resolution
grids and projecting updated positions back onto vertices. In
order to demonstrate the viability of our approach we imple-
ment a simple collision handler on the CPU and a hierarchi-
cal solver for Position Based Dynamics [MHHR07] on the
GPU. Because upsampling and downsampling of grids can
be run efficiently on the GPU, the implementation causes
less overhead than approaches based on explicit hierarchies.
This allows us to simulate highly detailed grids with more
than 230k particles in real-time at large time steps while the
time-consuming collision handling on the CPU is performed
on a lower level of complexity (see Figure 1).

2. Related Work

Cloth simulation has a long history in computer graph-
ics [TPBF87]. Thalmann et al. [MTV05] as well as Choi et
al. [CK05] give surveys of this research area.

In the beginning many works investigated mass-spring
systems and used explicit time integration schemes in order
to perform interactive simulations [BHW94, Pro95]. Since
real textiles do not stretch significantly under their own
weight, stiff materials are required for realistic results. How-
ever, explicit integration methods are not suited to simulate
such materials due to stability problems [HES03]. Hence,
in the following years unconditionally stable implicit inte-
gration methods were investigated [BW98, CK02]. In gen-
eral these methods must solve a large system of equations.
Therefore, GPU-based solvers became popular in the area of
physically-based simulation [BCL09, CA09, WBS∗13].

Since the quality of the results becomes more and more
important, different works focused on the development of
methods based on continuum mechanics [EKS03,VMTF09,
BD13]. At the same time position-based approaches were
developed [MHHR07, SSBT08, MC10]. These kinds of
methods are fast, unconditionally stable and controllable
which makes them well-suited for interactive simulation.
The main application areas are virtual reality, computer
games and special effects since they only provide visually

plausible results. A survey on these methods is given by Ben-
der et al. [BMOT13].

A realistic simulation of textiles requires stiff cloth mod-
els. Hence, the limitation of the maximal strain is an im-
portant topic in the area of cloth simulation. Provot [Pro95]
modifies positions to reduce the strain of his model. In con-
trast, Bridson et al. [BFA02] use an impulse-based strain
limiting approach to avoid self-penetrations. While these
methods use discrete models, continuum-based approaches
are presented by Thomaszewski et al. [TPS09] and Wang et
al. [WOR10]. The simulation of totally inextensible cloth is
also a research topic and approaches based on constrained
Lagrangian mechanics [GHF∗07] or impulse-based tech-
niques [BB08] were investigated.

Different works use multigrid methods to increase the
convergence rate of their solvers [Mül08,DGW11a,WOR10,
BWD13]. Müller et al. [Mül08] use a hierarchical model
in their non-linear Gauss-Seidel solver for a faster position-
based simulation. Bender et al. [BWD13] introduce a multi-
resolution approach to simulate cloth models efficiently
with shape matching. Strain limiting is accelerated by
Wang et al. [WOR10] using a multigrid approach. Dick et
al. [DGW11b] use a regular hexahedral mesh to perform an
efficient multigrid finite element simulation on the GPU.

The idea of mapping arbitrary triangle meshes onto grids
for easy access via samplers in GPU programs is not new to
cloth simulation [Zel05]. Zink et al. [ZH07] develop a mass-
spring based framework which leverages the grid layout for
faster integration methods. In both works geometry images
introduced by Gu et al. [GGH02] are the basis for mapping
vertex positions onto a regular grid. The parameterization
distorts relative edge length and angles to make use of the
entire space of the texture. We choose an isometric param-
eterization instead, allowing separate simulation of stretch
and shear forces and making explicit storage of rest lengths
redundant. In contrast to the above-mentioned frameworks
we continue to use the triangular base mesh for simulation
rather than discarding it.

The framework presented by Li et al. [LWM11] also uses
CPU and GPU for simulation tasks. In contrast to our work
the same geometry model is used and transferred between
both architectures in each frame. The authors argue that the
sequential nature of strain limiting algorithms make them
better suited for the CPU. However, in our work we show
how an efficient parallel constraint solver can be imple-
mented on the GPU.

3. Concept

We propose a multilevel approach where a low-resolution
triangle mesh is kept in sync with a high-quality regular
grid. Depending on complexity and parallelizability algo-
rithms are either executed on the CPU using the coarse tri-
angle mesh, or on the GPU using the advantages of the grid
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(a) (b) (c)
Figure 2: Overview of the presented process. (a) The ini-
tial low resolution triangle mesh is rendered to a texture
using the triangle mesh’s U/V parameterization. The tex-
els represent particles of a high resolution regular grid. (b)
Mipmap levels of the texture are used to perform a hierar-
chical physics simulation. (c) The result is mapped to a high
resolution mesh for rendering as well as back to the low res-
olution mesh.

representation (cf. [BDW∗10]). To couple both models we
define a sampling operation which transforms vertex data
such as position changes and velocities into grid particles.
Furthermore, we introduce a projection operation which ap-
plies changes made on the grid to the vertices of the triangle
mesh. The same method is used to project the grid’s particle
positions onto a high-resolution version of the triangle mesh
for rendering purposes. An overview of this process can be
seen in Figure 2.

The sampling process is implemented as a render-to-
texture operation where vertex positions or velocities are
written into the texels. Projection is accomplished in the ver-
tex stage of the rendering pipeline by looking up texel val-
ues depending on a 2D parameterization of the surface. By
implementing the mapping between the two models as GPU
programs the data transfer between both architectures is han-
dled implicitly.

In contrast to previous approaches which use position tex-
tures, we use an isometric parameterization of the cloth sur-
face. While this bears various limitations regarding the struc-
ture of the mesh, it ensures strain limiting is performed cor-
rectly along the warp and weft directions of the fabric. In-
consistencies occurring at the borders of non-square surfaces
are handled by a dynamic border growing algorithm at the
sampling stage and an extrapolation scheme at the projec-
tion stage.

In order to demonstrate the advantages of the grid rep-
resentation for high-resolution cloth models, a variation of
the Position Based Dynamics [MHHR07] approach is im-
plemented on the GPU. Moreover, we perform a compari-
son between particle-based and edge-based solvers regard-
ing their performance on current graphics hardware.

As the particle count increases, the efficiency of itera-
tive constraint solvers decreases significantly. The structural
properties of regular grids can be used to build a hierarchy
of systems easily and to define up- and downsampling oper-
ations as fragment programs. The resulting multi-resolution
solver is several times faster than regular iterative constraint
enforcement.

4. Surface Mapping

In order to map vertex data of an irregular triangle mesh onto
a regular grid a suitable parameterization which maps co-
ordinates from R3 to R2 is required. An isometric param-
eterization, where the area of each triangle and the angles
between edges are preserved, has the advantage of simpli-
fying subsequent operations and ensuring the asymmetric
behaviour of cloth is taken into account. While such a pa-
rameterization restricts triangle meshes to developable sur-
faces without loops, we argue that this is not a severe limi-
tation in the field of garment simulation. Individual patches
of cloth are usually designed as 2D patterns and stitched to-
gether (see also [KKK10b, KKK10a]).

The vertex data of the triangle mesh is sampled by using
the input parameterization coordinates as position output of
the rendering pipeline’s vertex stage. This data is passed to
the fragment stage which writes it into a 32bit floating point
texture. The GPU rasterizes the triangle mesh into a grid by
picking data values of the triangle mesh at texel centres and
interpolating between vertices when necessary.

The projection operation is implemented in the vertex
stage, receiving only the parameterization coordinates as in-
put. These are used to fetch positions from the sampled tex-
ture, which can then be processed as usual. For the simu-
lation they are directly written into a buffer and no frag-
ment pass is performed. For rendering they are altered ac-
cording to world, view and projection transformations with
normals computed on-the-fly during the fragment stage for
better quality.

Unfortunately, relying on the GPU’s bilinear filtering for
texture lookups causes errors at texture and mesh boundaries
as demonstrated in Figure 3. Texture boundary problems oc-
cur due to the fact that a n×n texture only covers the range
[ 1

2n ,1−
1

2n ] and OpenGL will interpolate values outside that
range by either clamping or wrapping border texels. Either
behaviour leads to erroneous data being read.

A solution is to apply a transformation to the input pa-
rameterization, restricting it to the texture range and prevent-
ing any texture boundary collisions. However, this leads to
problems. Texels which the mesh intersects with, but whose
centres are not covered, are discarded by the rasterizer. The
same phenomenon can be observed at the boundaries of non-
square meshes which inevitably cause holes in the parame-
terization. In Section 4.1 a technique to deal with the prob-
lem by covering additional texels at the sampling stage is de-
scribed, while Section 4.2 presents a method to ensure only
valid texels are read during the projection operation.

4.1. Sampling

If all texels which are covered by the mesh to some de-
gree were written, more information would be available and
problems at the mesh boundary would be greatly reduced.
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Figure 3: Left: Interpolation problems at texture bound-
aries due to clamping. The blue vertex is approximated by
its four surrounding texels, but only one of them is within
texture boundaries. Right: The mesh intersects with red tex-
els but their centre is not covered and no data is written.

The literature provides a solution to the coverage problem
called Conservative Rasterization [HAMO05]. Triangles are
enlarged in the geometry stage of the rendering process to
cover the centres of all texels the triangle intersects. Unfor-
tunately this causes additional texels to be covered not only
at the boundaries of the mesh, but also for each individual
triangle within. Adjacent triangles overlap each other and
incorrect data may be written depending on which triangle
is rendered first. The approach provides no means of extrap-
olating vertex data either.

We propose an enhanced version of the Conservative Ras-
terization approach. By creating a specialized index buffer it
is possible to create borders only at the outline of the mesh.
The border is created by generating additional triangles in
the geometry stage and vertex data is correctly extrapolated
to allow subsequent simulation and projection of the data.

Building the index buffer Creating the outline border for a
mesh in the geometry stage requires three inputs: The three
vertices of the triangle primitive, a flag which determines
whether the triangle has one, two or no outer edges, and
any adjacent outer edges. By rendering the mesh as trian-
gles with adjacency, six input indices can be passed to the
geometry program. Three are used by the triangle itself, two
by adjacent outer edges and the last one is used as index
for a special buffer storing the triangle type (i.e. outer edge
count).

Figure 4 shows two different configurations occurring in
a triangle mesh and how they are stored in the index buffer.
Depending on which of the triangle edges are outer edges,
there are three permutations of t1 and t2. Triangle indices
read from the mesh are rearranged and written to the buffer
such that the order with respect to the location of the outer
edges is always as depicted. This enables the geometry pro-
gram to treat all permutations equally.

Figure 4: Different types of triangles are based on their
outer edges (marked red). Six vertex indices are encoded into
a buffer for each triangle and ordered as depicted to identify
adjacent edges in the geometry shader.

Figure 5: Border vertices x0 and x1 are determined from
intersecting shifted edges.

Creating border triangles For triangles with no outer
edges no border is generated, the geometry program sim-
ply passes the vertices through. In case there is one outer
edge (t1) two new vertex locations have to be determined
and two additional triangles are generated (see Figure 5).
If there are two outer edges (t2) there are three new vertex
locations and four triangles to generate. Apart from these
differences the process of computing new vertex positions
is largely the same. Edges are determined from vertex posi-
tions in UV space and the normals of these edges are used
to compute offsets. Offsets are diagonals chosen depending
on the quadrant the normal resides in and the size of a texel
in order to reliably cover the centres of any texel the mesh
intersects [HAMO05]. The offsets are then applied to each
edge. Positions of the new border vertices are set to the in-
tersection points of the lines through the shifted edges.

Extrapolating vertex data Having determined the posi-
tions in UV space for the new vertices, the next step is to
infer their data. This is done by first computing the intersec-
tion points si between the lines from new vertices xi to the
inner vertex of the triangle v4 and the line defined by the
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Figure 6: Further intersections s0 and s1 allow extrapola-
tion of data from the triangle’s vertices.

Figure 7: The four texels closest to a vertex are marked red.
An offset of (0,1) is required on the left, leading to the four
texels outlined in red. The next scenario requires an offset of
(1,1). With the offset determined, extrapolation between the
selected texels can commence (right).

outer edge e1 (see Figure 6). Data for si can be interpolated
from v1 and v2. Finally, the data for xi is extrapolated using
v4 and si and the relative distance ti between both points.
The computation of vertex data for triangles with two outer
edges requires different lines but follows the same concept.

4.2. Projection

The method suggested in the previous section reduces the
information loss during the sampling process due to inter-
polation with empty texels significantly. However, there are
still cases where regular bilinear filtering will cause issues
when reading position values from a texture in the projec-
tion stage. This section describes a method to identify such
cases and deal with them by extrapolating from the closest,
non-empty texel.

Figure 7 shows two cases where not all of the four texels
which are closest to a vertex are defined and suggests nearby
texels as basis for extrapolation. Offsets o ∈ Z2 define the
shift in x and y direction which, when applied to texel co-
ordinates, results in a coverage mask where all texels con-
tain values. As offsets only depend on the parameterization
which remains unchanged during simulation, they can be de-
termined in a pre-computation step by starting with a zero
offset, examining consecutively higher offsets, and halting
as soon as a valid coverage mask is found.

Given a texture of size n, UV coordinate u ∈ R2 and the
offset o ∈ Z2, the final value of a vertex is read from the
texture as follows. First, texel indices and the distance to the
texel centre are determined:

1: u← u ·n−0.5
2: r← u−floor(u)
3: i← floor(u)+o
4: l← max(0,abs(o)−1)

Then, the four closest, covered texels tix,iy , tix+1,iy , tix,iy+1 and
tix+1,iy+1 are retrieved. Given two texel values t0 and t1 the
approximated value is computed by either using extrapola-
tion if the offset is not zero, or regular bilinear filtering oth-
erwise. Parameters o, l ∈ Z and r ∈ R correspond to the x or
y component of the vectors defined above, depending on the
orientation of the two texels.

1: function EXTRAPOLATE(t0, t1,o,r, l)
2: if o = 0 then
3: return t0(1− r)+ t1r
4: else if o > 0 then
5: return t0− (l− (1− r))(t1− t0)
6: else if o < 0 then
7: return t1 +(l + r)(t1− t0)

The final value is determined by first extrapolating the
bottom and top two texels and then combining the two re-
sults (see Figure 7).

4.3. Error Evaluation

Our intention is to upsample coarse triangle meshes with rel-
atively evenly spread vertices into high-resolution textures
for cloth simulation. This ensures the sampling resolution
is always sufficiently high and the relative distance between
the values stored into texels remains smooth, thereby keep-
ing the error from interpolations low. However, accuracy re-
mains a high priority in garment simulation and a quantifi-
cation of the error is required.

We measured error terms in an experimental setting cho-
sen to reflect common hazards of surface mapping. A snap-
shot of our cloth simulation is used including high curvature
regions and stretch deformation up to 10%. Irregularly tri-
angulated regions exist at the borders and the curvy shape
causes holes in the parameterization. The per-vertex error ev
is defined as the difference between original vertex data and
vertex data after projection, normalized by the surface’s di-
mension D.

ev =
‖(vnew)− (vold)‖

‖D‖

The total error is calculated as the average error over all ver-
tices in the mesh.

In this setting the average error was generally below
0.06 %. Error terms at mesh borders rise up to 0.5 % where
cloth deformation is high but we have discovered no notable
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artefacts in simulation. The error can be reduced even fur-
ther by applying a pre-processing step to the mesh, snapping
inner vertices to the nearest texel centre and thus ensuring an
accurate sampling. Borders must remain unchanged in order
to preserve the mesh shape.

5. Hierarchical Solver

The cloth simulation is performed on the GPU using the reg-
ular grid representation. We use a high resolution for the
finest level to enable detailed folds and wrinkles. A position-
based approach [MHHR07] is employed to simulate defor-
mation of the surface. We define distance constraints for
neighbouring particles in the grid and solve them iteratively
in order to guarantee a given maximum strain. The iteration
process is accelerated by a multi-resolution solver.

A distance constraint between two particles p1 and p2
with rest length l0 is defined by C(p) = ‖p2−p1‖− l0 = 0
and enforced by moving both particles along their shared
edge:

∆pi =−k wi
C(p)

∑ j w j|∇p jC(p)|2
∇piC(p), (1)

where wi = 1/mi is the inverse particle mass and k ∈ [0,1]
adjusts the strength of the correction. Since constraints with
common particles influence each other, a global enforcement
is required.

5.1. Global Solvers

The most popular approach is to use a Gauss-Seidel solver to
solve the system of non-linear equations which is implied by
the constraints. This is an iterative method which computes
a local position change ∆p for each constraint and applies
it immediately. Subsequent constraints take the changed po-
sitions into account. The sequential nature of the algorithm
makes it ill-suited for an implementation on the GPU. Each
particle position is part of multiple constraints which conse-
quently cannot be processed in parallel.

The Jacobi method treats each constraint independently.
Local position changes are based solely on the values at the
start of the current iteration. For each particle the position
changes of all corresponding constraints are averaged to get
an approximation for the next step. This allows constraints
to be processed in parallel but at a slower convergence rate
as the Gauss-Seidel solver.

5.2. Implementation

We implemented two approaches for a comparison: an edge-
based and a particle-based approach.

The edge-based method, which was introduced in the
original paper [MHHR07], iterates over all edges (i.e. con-
straints). For each edge it determines the position changes

Figure 8: Four independent sets each for stretching and
shearing constraints.

for both corresponding particles. In GPU terms this means
one thread per edge which needs to write two values, re-
quiring multiple framebuffers or arbitrary writes into global
memory. Furthermore, one particle is affected by multiple
constraints and thus multiple threads, leading to synchro-
nization issues.

The particle-based approach spawns one thread per par-
ticle instead. Each thread computes the position changes for
all corresponding constraints and writes exactly one value
to the texture. All threads may run in parallel and only one
framebuffer is required, however each constraint must be
handled twice since it depends on two particles.

Each particle is part of at most eight constraints (or out-
going edges), thus the implementation of Gauss-Seidel re-
quires eight separate render calls to ensure each constraint is
solved based on the results of previous constraints. Indepen-
dent sets can be formed as shown in Figure 8 [Zel05]. Our
edge-based implementation passes particle indices of con-
straints to a vertex shader and updates particle positions via
the image operations of OpengGL 4. The particle-based ap-
proach was not implemented in combination with the Gauss-
Seidel solver. Due to the sequential nature of Gauss-Seidel,
the advantage of parallel execution cannot be incorporated,
but constraints would still have to be computed twice.

The Jacobi method on the other hand can be executed in a
particle-based fashion by binding the output texture to the
framebuffer and computing updated positions in the frag-
ment shader. Only one memory location is written per in-
stance, thus only a single render call is required and all con-
straints are processed in parallel. Implementing the Jacobi
method in an edge-based manner would require multiple
output textures to allow parallel writes without clashes, as
well as at least one additional render call to perform a reduc-
tion which averages the collected per-constraint values for
each particle.

5.3. Multi-Resolution Solver

Independently of whether the interleaved Gauss-Seidel or
the parallel Jacobi approach is chosen, the number of iter-
ations necessary to enforce low strain throughout the cloth
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increases dramatically with a higher grid resolution. We
use a multigrid scheme which allows faster propagation of
changes through the cloth model to reduce the number of re-
quired iterations and therefore to improve the performance.

A hierarchy of grids is built by downsampling the high-
est resolution positions. The final level runs on the full-
resolution grid while each preceding level halves the reso-
lution. Downsampling is implemented by sampling only ev-
ery second (every fourth, every eighth, etc.) texel of the full-
resolution texture. Upsampling from one level to the next
higher level is implemented by looking up coordinates in-
between texel centres, leaving the bilinear interpolation of
the two neighbouring particles to the graphics card.

One iteration of the hierarchical solver can be summarized
as follows:

1. downsample positions for all levels
2. perform strain limiting algorithm on the first level
3. compute the position differences by subtracting the initial

values and upsample these differences to the next level
4. apply position changes on next level and perform strain

limiting
5. if the final level is not reached, continue with step 3

6. Results

The cloth simulator used in the following tests combines the
techniques presented in this paper. It first projects the current
particle state stored in the position textures onto the low-
resolution triangle mesh. A simple CPU-based algorithm is
used to detect collisions with rigid bodies. Collision han-
dling is performed by projecting colliding vertices onto the
surface of the corresponding body. The resulting position
changes are written into the mesh’s vertex buffer and sam-
pled into an offset texture. This is incorporated into a Verlet
integration step on the GPU which also applies gravity as an
external force. The resulting positions from the integration
are then adjusted by running the hierarchical solver. All tim-
ings were measured on an AMD Radeon HD 7850 graphics
card.

The first experiment is conducted with a square piece of
cloth which is fixed at two corners and draped over a sphere.
The highest resolution grid has 50k particles, resulting in
roughly 150k constraints to be solved in the last level of
the multigrid scheme. Collisions are handled using a coarse
triangle mesh with 1300 vertices. Timings given in Table 1
show the GPU-based simulation only requires 3 ms (19%) of
simulation time using a time step size of 1/60 s, leaving the
rest for collision detection and rendering. The overhead in-
curred by using two different models on different hardware
is minimal. Sampling and projection steps need together less
than 0.1 ms per step.

The times were achieved by running the particle-based Ja-
cobi and the edge-based Gauss-Seidel relaxation steps at dif-
ferent stages of the hierarchical solver. A direct comparison

Timestep 16 ms

Surface mapping Inte- Hierarchical solver
Sample Project gration 0 1 2 3 4

0.06 0.02 0.08 0.27 0.31 0.49 0.37 1.62

Table 1: Time measurements of GPU tasks in ms.

of both approaches is given in Figure 9. While one iteration
of the edge-based algorithm is much slower due to expensive
image operations and synchronization between independent
sets, it does require far less iterations to converge. This re-
sults in both approaches being equally viable to enforce a
certain strain limit.

For particle systems of size 10k and higher neither ap-
proach produces acceptable results. Therefore, we intro-
duced a multi-resolution solver which allows us to target
higher resolutions in real-time without sacrificing the fixed
strain limit of 10 %. A different iterative solver can be used
at each level of the hierarchy. Figure 10 suggests that using
the edge-based Gauss-Seidel solver at lower and the particle-
based Jacobi method at the highest resolutions yields the best
overall performance. The simulation of a 230k particle sys-
tem with 6 stages takes 16.6 ms when Gauss-Seidel is used
for all resolutions. If the last two stages are solved with the
Jacobi method, 21 instead of 4 iterations are required to keep
strain at 10 %, but the total process only takes 6 ms. The
Jacobi method’s disadvantage of slow propagation through
large grids led to poor overall performance despite extremely
fast single iteration times (see Figure 9). Solving the system
on lower resolutions compensates for this weakness. This
explains the Jacobi method’s exceptional performance in a
hierarchical environment. Experiments with more complex
cycles up and down the hierarchy did not lead to improve-
ments over simply using more iterations on each level or re-
ducing the timestep.

While the introduction of additional levels leads to sig-
nificant reduction of strain in cloth (see Figure 11), the vi-
sual quality starts to suffer if the resolution drops too low.
Folds diagonal to the grid become blocky unless the num-
ber of iterations on the highest level is sufficiently large to
smooth the artefacts out. We found that a size of approxi-
mately 20× 20 for the lowest resolution grid typically pro-
vides the greatest boost to performance without negatively
impacting visual quality. It is also important to solve com-
pression and bending constraints only at the highest reso-
lution, as reducing edge compression on low levels of the
hierarchy impairs bending of the cloth.

7. Conclusion and Future Work

The resolution of cloth models is limited in real-time simu-
lation due to the complexity of solving systems of equations
and collision handling algorithms. We presented a method
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Figure 9: Comparison of particle-based Jacobi and edge-based Gauss-Seidel constraint relaxation without multi-resolution.
Both methods show similar execution times when enforcing a strain limit of 10 % but the Jacobi method requires far more
iterations (left). Due to its parallel nature, the single iteration time is however less affected by increasing grid resolution
(right).

Figure 11: Hierarchical solver running on a 100×100 grid at 100 frames per second. Left: 1 level, 1 ms, 60 % strain. Middle:
3 levels, 1.2 ms, 16 % strain. Right: 4 levels, 1.3 ms, 8 % strain.

to combine the flexibility and low complexity of a coarse tri-
angle mesh with the efficiency and detail of high-resolution
regular grids.

Simulation of irregularly shaped triangle meshes is shown
in Figure 12. By choosing an isometric parameterization the
constraint solver can reflect the asymmetric behaviour of
cloth. However, several restrictions are imposed on the na-
ture of the input mesh. Only surfaces which can be flattened
with minimal distortion are applicable. Stitching of individ-
ual pieces of cloth can be handled by the constraint solver
but requires an additional data structure. Neighbouring tex-
els are implicitly treated as connected; if they are to be sev-
ered by a cut a separate connectivity texture must be utilized.
Apart from these limitations there is also a slight error every
time the mesh is mapped from its triangle representation to
the regular grid and back. However, our results show that the
error does not negatively impact simulation behaviour.

The implemented hierarchical solver takes full advantage
of the grid layout and allows massively parallel simulation
of cloth with more than 230k particles in real-time. At the
same time complex tasks such as collision handling need

not be affected by the large amount of particles as they are
resolved on a mesh with only 10k triangles. Our approach
allows complete freedom of choice over which part of the
simulation is executed on which data structure, architecture
and level of detail. The GPU-based sampling and projection
algorithms cause virtually no performance overhead.

Future work will concentrate on implementing further
collision and self-collision handlers and exploring the po-
tential of combining GPU-based detection methods (e.g.
image-based or voxel-based) with CPU-based resolution.
There are also opportunities to improve performance of the
Gauss-Seidel solver when the compute shader introduced in
OpenGL 4.3 reaches maturity.
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Figure 10: Timings at varying number of solver stages and
two different resolutions. Cloth strain is limited to 10 %.
Gauss-Seidel produces better results at low levels while the
Jacobi method excels at higher resolutions, leading to the
combined approach.

Figure 12: Irregularly shaped triangle mesh simulated by
our grid-based solver (left) using an isometric parameteri-
zation (right).
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