
Fast and stable cloth simulation based on multi-resolution shape matching

Jan Bendera, Daniel Weberb, Raphael Diziolc

aGraduate School CE, TU Darmstadt
bFraunhofer IGD, Darmstadt

cKarlsruhe Institute of Technology

Abstract

We present an efficient and unconditionally stable method which allows the deformation of very complex stiff cloth models
in real-time. This method is based on a shape matching approach which uses edges and triangles as 1D and 2D regions
to simulate stretching and shearing resistance. Previous shape matching approaches require large overlapping regions to
simulate stiff materials. This unfortunately also affects the bending behavior of the model. Instead of using large regions,
we introduce a novel multi-resolution shape matching approach to increase only the stretching and shearing stiffness.
Shape matching is performed for each level of the multi-resolution model and the results are propagated from one level
to the next one. To preserve the fine wrinkles of the cloth on coarse levels of the hierarchy we present a modified version
of the original shape matching method. The introduced method for cloth simulation can perform simulations in linear
time and has no numerical damping. Furthermore, we show that multi-resolution shape matching can be performed
efficiently on the GPU.

Keywords: cloth simulation, shape matching, multi-resolution model, GPU-based simulation

1. Introduction

Interactive simulation of cloth has been an important
research topic in computer graphics for many years. An in-
teractive simulation demands efficient and unconditionally
stable methods.

In the beginning simple spring-mass systems in combi-
nation with explicit integration schemes were used in order
to obtain a high performance. The problem is that either
such models generally stretch significantly under their own
weight or the high performance is lost since a small time
step size is required for a stable simulation of stiff ma-
terials. However, a stiff model is required to obtain re-
alistic results. In the following years implicit integration
methods were investigated in order to perform an efficient
and stable simulation of stiff materials. These integration
methods are unconditionally stable and therefore allow to
perform larger time steps. The drawback of using implicit
integration is that a large non-linear or a linear system has
to be solved in each step. Furthermore, popular methods
like the implicit Euler introduce numerical damping which
is not desired.

In this paper we present a geometrically motivated
method based on shape matching [1] to simulate the physi-
cally plausible deformation of a cloth model. Shape match-
ing is simple to implement, unconditionally stable and very
efficient. Moreover, it does not introduce numerical damp-
ing to the system. Shape matching approaches usually
subdivide the particles of a model into several overlapping
regions. For each region the initial configuration of the
model is matched to the current deformed state in order to

Figure 1: Dancing Woody. The finest mesh of the multi-resolution
cloth model consists of 32467 triangles whereas the total number of
triangles in all five hierarchy levels is 62888. The simulation of the
deformation requires 3.89 ms per step on average.

define goal positions. Then the particles are pulled towards
this goal configuration to simulate elasticity. The global
stiffness of the model depends on the region sizes. The
simulation of cloth requires a high stretching and shearing
stiffness while the bending resistance is low. The problem
is that region-based approaches cannot differentiate be-
tween stretching, shearing and bending. Furthermore, the
computation time for the simulation of arbitrary meshes
depends not only on the size of the mesh but also on the
region size.

Therefore, we introduce a novel shape matching

Preprint submitted to Computers & Graphics August 30, 2013

method which uses a multi-resolution model instead of
large overlapping regions. Multi-resolution shape match-
ing allows us to simulate realistic fabrics with a high
stretching and shearing stiffness. Moreover, this novel
approach is very fast since the computation time depends
linearly on the size of the cloth model. The use of a multi-
resolution model has also the advantage that information
is propagated very fast through a mesh. This permits
more realistic results especially for high resolution models.

Our contributions:

• An efficient cloth simulation method based on shape
matching and an analysis of its performance compared
to standard methods.

• A multi-resolution approach to increase the stretching
and shearing stiffness of the cloth model by perform-
ing shape matching on different resolution levels of the
model.

• A method to conserve the wrinkles of the finest mesh on
the coarser levels of the multi-resolution hierarchy.

• An efficient GPU implementation of the simulation
method.

2. Related Work

The physically-based simulation of cloth models has a
long history in computer graphics. Surveys are given by
Thalmann and Volino [2] as well as Nealen et al. [3].

In the first years of research many works treated cloth
as an elastic material and used explicit integration meth-
ods to solve the equation of motion, e.g. [4, 5]. The prob-
lem is that many real fabrics are not very stretchable and
explicit integration methods have to use a very small step
size to simulate stiff materials without getting numerically
instable [6]. Therefore, Provot [5] proposed to manipulate
the vertex positions of the cloth model after each simula-
tion step in order to get a stiffer material. Later, implicit
methods which are unconditionally stable became popu-
lar [7, 8, 9] since these methods allow to perform larger
time steps for stiff models. While in the beginning dis-
crete models were typically used to simulate cloth, later
continuous models were also investigated since such mod-
els provide a more accurate representation. Etzmuss et
al. [10] presented an efficient simulation approach for ar-
bitrary triangle meshes based on a linear finite element
method (FEM) with a corotational formulation. Volino
et al. [11] introduced a cloth simulation system based on
continuum mechanics. This system is able to simulate non-
linear anisotropic materials.

Instead of treating cloth as an elastic material differ-
ent works introduce methods to simulate totally inexten-
sible cloth by using hard constraints [12, 13, 14]. Golden-
thal et al. [12] introduced a method based on constrained
Lagrangian mechanics in combination with a fast projec-
tion to simulate inextensible cloth efficiently. English and

Bridson [14] simulated inextensible cloth by using a tri-
angle mesh with hard distance constraints. They solved
the locking problem which occurs with such a simulation
model by using a nonconforming mesh for the simulation.

Strain limiting is an important research topic in the
area of cloth simulation. The goal of strain limiting
is to guarantee some limits for the strain of the cloth
model. Cloth is treated as an elastic material until a
certain maximum strain and then hard constraints are
used to limit the strain. Therefore, it is a kind of com-
bination between methods for elastic and inextensible ma-
terials. Continuum-based strain limiting was introduced
by Thomaszewski et al. [15]. Wang et al. [16] proposed
a strain limiting approach for finite element simulations.
They first compute the deformation gradient for each ele-
ment of the model. Then a singular value decomposition
is performed to get the principal strains. In order to limit
the strain of the model, the principal strains are clamped
and a new deformation gradient is constructed. In this way
strain limiting is coordinate-independent. Finally, the po-
sitions of the triangle vertices are corrected using the new
deformation gradient. Global strain limiting is performed
using Gauss-Seidel iteration. Bridson et al. [17] limited the
strain and the strain rate of their cloth model by impulses
instead of manipulating the positions directly in order to
prevent self-penetrations.

In the last years, position-based simulation methods
for deformable objects became popular. A survey on this
topic is given by Bender et al. [18]. Position-based ap-
proaches are unconditionally stable, controllable and faster
than traditional simulation methods. However, position-
based methods are generally not as accurate as traditional
ones but provide visual plausibility. Müller et al. [1] pro-
posed a meshless method for physically plausible deforma-
tions based on shape matching. Shape matching has the
advantages that it is very fast and unconditionally sta-
ble. In order to simulate large deformations Müller et al.
proposed to perform shape matching for overlapping re-
gions and to combine the results. In each time step shape
matching is performed just once per region for the sake
of performance. A maximum strain cannot be guaran-
teed in this way and only elastic materials without strain
limit can be simulated. However, increasing the region
size allows to simulate very stiff materials. Later, region-
based shape matching was optimized for lattices [19, 20]
and incompressible surfaces [21]. Recently, an extension
of the original shape matching method was provided by
Müller and Chentanez [22]. They used so-called oriented
particles to add rotational information to each particle.
In this way shape matching gets robust for sparse struc-
tures. This kind of methods perform shape matching for
overlapping regions to allow large deformations where the
stiffness of the model depends on the size of the regions.
The position-based dynamics method of Müller et al. [23]
solves constraints on the position level in order to simu-
late deformations. In [24] a multi-resolution approach was
introduced to speed up the convergence of their constraint

2

solver. Müller et al. use only simple one-dimensional dis-
tance constraints to simulate the in-plane stiffness of their
cloth models. In contrast to them we introduce 2D shape
matching which simulates stretching resistance in warp
and weft direction as well as shearing resistance. More-
over, in our work we do not have to solve a linear system.
We use the multi-resolution model to enlarge the influence
of the shape matching regions which results in a higher
stiffness.

Stumpp et al. [25] presented an efficient approach for
cloth simulation based on region-based shape matching.
They define a region for each triangle by taking the ad-
jacent triangles into account. In this way they get over-
lapping regions with three vertices. The vertices of the
adjacent triangles are generally not coplanar. Therefore,
this approach induces out-of-plane forces which influence
the bending stiffness and depend on the size of the model.
In general, this behavior is undesired in cloth simulation.
Another problem of this approach is that a high stretching
and shearing stiffness cannot be obtained for large models
due to small shape matching regions. The authors add
additional fiber clusters to increase the stiffness, but this
cannot guarantee a high stiffness for large models.

In contrast to the approach of Stumpp et al., we use a
multi-resolution model in this paper to solve the problem
of low stretching and shearing stiffness. Furthermore, we
propose novel shape matching methods and show how fine
wrinkles are conserved with our approach.

3. Overview

In this section we want to give a short overview of our
cloth simulation method before we discuss each step in
detail.

Our cloth model is a triangular mesh of particles where
each particle has a mass m, a position x and a velocity v.
The masses of the particles are determined by assuming a
constant density ρ of the material. Using this assumption,
the mass of a particle i is approximated by

mi = ρ · a, a =
1
3

∑
j∈tri(i)

a j, (1)

where tri(i) is the set of adjacent triangles of the vertex
i and a j is the area of the triangle j. To normalize the
weights of the particles during the shape matching process,
we also define the mass per region m̃i = mi/|<i| as proposed
in [19] where |<i| is the number of shape matching regions
which contain particle i.

A simulation step for this cloth model is performed as
follows:

1. Determine the sum Fn
i of all external and internal

forces (see section 4.4) acting on particle i.
2. Advance particle positions and velocities to get xn+1

i
and vn+1

i .

3. Simulate cloth model using multi-resolution shape
matching (see sections 4.1 – 4.3).

4. Perform proximity detection for xn
i and apply repul-

sion impulses with friction [17].

5. Perform continuous collision detection and resolve all
collisions [17].

6. Damp velocities of the particles (see section 4.4).

The time integration of the particle positions and velocities
in step 2 can be performed with any integration method
of your choice. In this work we use the symplectic Euler
method:

vn+1
i = vn

i + ∆t
Fn

i

mi

xn+1
i = xn

i + ∆tvn+1
i . (2)

4. Cloth simulation

In this section we will introduce a region-based shape
matching method to simulate complex cloth models effi-
ciently. The advantage of the shape matching approach is
that it is unconditionally stable and very fast. We use 2D
and 1D regions for the simulation. With the 2D regions
we can model shearing and stretching stiffness. The 1D
regions are used to increase the stretching stiffness of the
cloth model even more at low computational effort.

In order to prevent out-of-plane forces, shape match-
ing must be performed in the two-dimensional space of the
surface of the cloth model. The cloth model is represented
as triangle mesh for the simulation. For 2D shape match-
ing we define a region for the three vertices of each triangle
while the 1D method defines a region for each edge. With
these regions we avoid out-of-plane forces. However, since
the stiffness strongly depends on the size of the regions
when using shape matching, the stretching and shearing
stiffness of the simulated cloth model will be low for com-
plex models. Instead of using larger regions, we introduce a
multi-resolution approach in section 4.3 to solve this prob-
lem.

4.1. 2D Shape Matching

We need the initial configuration of a region to per-
form shape matching. This configuration is defined by the
initial positions x0

i of the region particles. The 3D shape
matching approach minimizes the term∑

i

m̃i

(
R

(
x0

i − t0
)

+ t − xi

)2
(3)

in order to find a rotation matrix R and translation vectors
t and t0 which match the current and the initial configura-
tion [1]. The resulting transformation is used to determine
goal positions for all particles. The particles are pulled
towards this goal configuration to simulate elasticity. The
optimal translation vectors are given by the centers of mass
of both configurations

t0 =

∑
i m̃ix0

i∑
i m̃i

, t =

∑
i m̃ixi∑

i m̃i
. (4)

3

0x̄1 x̄2

x̄3

ḡ1
ḡ2

ḡ3

āx

āy

0

x̄0
1 x̄0

2

x̄0
3

ā0
x

ā0
y

Figure 2: 2D shape matching. The undeformed initial configuration
(left) is matched to the deformed configuration (middle) by first pro-
jecting both configurations in 2D and then computing the optimal
rigid body transformation to get goal positions (right).

The rotational part of the affine transformation

Apq =
∑

i

m̃i (xi − t)
(
x0

i − t0
)T

(5)

is the optimal rotation matrix R. 3D shape matching ap-
proaches use a 3D polar decomposition to extract the ro-
tational part [1, 19, 21]. However, this is problematic for
our triangle regions since det Apq = 0 when all particles of
a region are coplanar [21].

Triangle goal positions For 2D shape matching we can
compute the translation vectors in the same way as de-
scribed above. But to determine the rotation matrix, we
first project the vertices into the two-dimensional space.
Now we perform a 2D polar decomposition and determine
the 2D goal positions of the vertices (see figure 2). In
2D a polar decomposition for our triangle regions can be
performed without any problems. This is also much faster
than determining the rotations in 3D. After computing the
2D goal positions we get the required position changes.
Then we determine the corresponding 3D vectors and add
them to the current particle positions. In the following we
will mark all two-dimensional vectors and matrices with a
horizontal bar to enhance the readability.

The projection of the vertices x1, x2 and x3 of a triangle
with normal n = (x2−x1)× (x3−x1) is performed as follows.
First, we determine two orthogonal vectors in the plane of
the triangle

ax =
x2 − x1

‖x2 − x1‖
, ay =

n × ax

‖n × ax‖
(6)

in order to get the projection matrix

P =

(
aT

x
aT

y

)
∈ R2×3. (7)

Then, we project the vertices of the initial and the current
configuration by

q̄i = P0
(
x0

i − t0
)
, p̄i = P (xi − t) , (8)

where q̄i can be precomputed. The initial configuration
must not contain degenerated triangles to get valid pro-
jection matrices P0. In the case of a degenerated triangle
in the deformed configuration, we simply use the matrix

P of the last time step to perform the projection. Note
that the probability of a degenerated triangle is very low,
especially when simulating stiff models. In none of our ex-
periments, except for the test with a degenerated model,
a degenerated triangle was detected.

The center of mass of a 2D triangle now lies in the
origin of the 2D space. Therefore, we have to minimize

3∑
i=0

m̃i

(
Āq̄i − p̄i

)2
(9)

in order to find an optimal linear transformation Ā for
a region. The optimal transformation is determined as
follows (see [1]):

Ā =

 3∑
i=1

m̃ip̄iq̄
T
i


 3∑

i=1

m̃iq̄iq̄
T
i


−1

= ĀpqĀ−1
qq . (10)

The matrix Ā−1
qq is symmetric and contains no rotation. We

use a 2D polar decomposition Āpq = R̄V̄ to extract the op-
timal rotation R̄ from matrix Āpq where V̄ is a symmetric
and positive definite matrix. The rotation R̄ is determined
by normalizing the column vectors of the following matrix
(see [26]):

Ū = Ā + sign(det(Ā))
(

Ā22 −Ā21
−Ā12 Ā11

)
. (11)

Update particle state Now we can compute the 2D po-
sition change which is used to simulate the elastic behavior
of the model

ḡi = R̄q̄i, ∆x̄i = α
1
|<i|

(
ḡi − x̄i

)
, (12)

where ḡi are the 2D goal positions of the triangle (see fig-
ure 2) and α ∈ [0, 1] is a stiffness coefficient. Since we
compute the position changes for all triangle regions and a
particle can be part of multiple regions, we divide by |<i| to
get the average position change. The 3D position changes
are computed by ∆xi = PT ∆x̄i. Finally, the dynamic state
of the particles is updated

xn+1
i := xn+1

i + ∆xi, vn+1
i :=

xn+1
i − xn

i

h
. (13)

Since all position changes are performed in the planes
of the triangles, they do not influence the bending of the
model.

4.2. 1D Shape Matching

For 1D shape matching we define one region per edge
in the cloth model consisting of the two corresponding ver-
tices. Since we have no rotation in 1D, we only need the
optimal translation t to perform shape matching which is
defined by the center of mass (see equation (4)) of an edge.
The goal positions of the vertices are

g1 = t − q0
1

x2 − x1

‖x2 − x1‖
, g2 = t + q0

2
x2 − x1

‖x2 − x1‖
, (14)

4

(a) Nested model

(b) Non-nested model

Figure 3: Two levels of a multi-resolution hierarchy. (a) Nested
model: The fine mesh (dashed) contains all vertices of the coarse
mesh (solid). (b) Non-nested model: The fine and the coarse mesh
have no common vertex.

where q0
1 = ‖x0

1−t0‖ and q0
2 = ‖x0

2−t0‖ are the distances from
the initial positions to the initial center of mass. These two
values can be determined in a precomputation step. With
the goal positions we can now compute the position change
of a particle

∆xi = β
1

|<̌i|

(
gi − xi

)
, (15)

where β ∈ [0, 1] is a stiffness coefficient and |<̌i| is the
number of 1D regions which contain the vertex i. In the
end we update the dynamic state with equation (13).

Note that 1D shape matching is similar to the position-
based handling of distance constraints as proposed in [23].
However, using the shape matching formulation makes the
whole simulation process consistent.

4.3. Multi-Resolution Shape Matching

There are several works which use multigrid methods to
solve linear systems, see e.g. [27]. But here we do not have
to solve a linear system. Our goal is to increase the stretch-
ing and shearing stiffness of our cloth model. Therefore, we
use a multi-resolution model which is based on a hierarchy
of nested or non-nested meshes (see figure 3). Since in our
model the meshes with different resolutions are coupled
with each other, the influence of a shape matching region
increases and the model becomes stiffer. Another advan-
tage of using a multi-resolution model is that forces can be
propagated faster through the mesh. This is an important
feature especially when simulating very fine meshes with
large time step sizes. The coupling is performed by two in-
tergrid transfer operators. The prolongation operator Il+1

l
transfers values from a coarse level l to the next finer level

l + 1 and the restriction operator Il
l+1 transfers values from

l + 1 to the next coarser level l. For our experiments we
applied a half-edge collapse operator [28] to generate the
multi-resolution hierarchies. Typically we used between
three and five hierarchy levels in our simulations.

In the following we first introduce multi-resolution
shape matching. Then, we define the required intergrid
transfer operators and show how fine wrinkles can be con-
served.

Multi-resolution shape matching In a simulation step
with multi-resolution shape matching we first perform the
time integration for all vertices of the finest mesh. In the
case of a nested model (see figure 3(a)) the positions of all
particles are updated. Since vertices of a fine mesh are not
part of the next coarser level for non-nested models (see
figure 3(b)), we must update the vertices of all coarse levels
in an additional step before we can continue. In this step
we start with the finest mesh and interpolate the positions
of the next coarser mesh using our restriction operator:

xl−1 := Il−1
l xl.

After all positions are up-to-date, we perform multi-
resolution shape matching for our model using the follow-
ing V-cycle algorithm:

1 : for l = lmax to 1
2 : Store current positions: x̂l ← xl

3 : Perform shape matching
4 : xl−1 := xl−1 + Il−1

l (xl − x̂l)
5 : for l = 0 to lmax

6 : Store current positions: x̂l ← xl

7 : Perform shape matching
8 : If l , lmax

9 : xl+1 := xl+1 + Il+1
l (xl − x̂l)

The algorithm begins with a restriction phase (lines 1-4)
which starts with the finest level lmax. On each level we first
store the current positions and then perform a 1D and a
2D shape matching step. The resulting position differences
xl − x̂l are projected to the next coarser level using our
restriction operator Il−1

l (line 4). In the prolongation phase
(line 5-9) we go back from the coarsest mesh to the finest
one performing shape matching on each level. The position
differences after a shape matching step are interpolated
and added to the next finer level using our prolongation
operator (line 9). During the prolongation it is important
to propagate only the position differences from one level
to another and not the actual positions, otherwise details
get lost on finer levels.

Intergrid transfer operators The prolongation opera-
tor is a sparse block matrix Il+1

l ∈ R3n f×3nc where nc is the
number of particles on the coarse level l and n f is the num-
ber of particles on the fine level l + 1.Georgii and Wester-
mann [29] demonstrated that barycentric coordinates can
be used to define a prolongation operator for unstructured
and unrelated tetrahedral meshes. In order to propagate

5

(a) Multi-resolution model (b) Deformed model

Figure 4: (a) shows a multi-resolution model with three meshes. (b)
The coarse meshes are compressed when bending the model. There-
fore, shape matching on the coarse levels will influence the bending
of the model.

information from level l to level l + 1, we also use a linear
interpolation based on barycentric coordinates. For each
fine vertex i of level l + 1 we first search the triangle on
level l with the smallest distance. Then we project the
fine vertex onto the plane of the triangle and compute its
barycentric coordinates wi j. Since

∑
j wi j = 1 we can use

these values directly as weights for our prolongation oper-
ator.

The restriction operator Il
l+1 ∈ R3nc×3n f is defined by

transposing the prolongation operator and normalizing the
row vectors of the resulting matrix. We need the nor-
malization since we must guarantee that the summed up
weight over all coarse particles is one.

Computational complexity When building the multi-
resolution hierarchy for a mesh with n triangles, we reduce
the number of triangles on each level by a constant factor
0 < r < 1. Hence, the total number of triangles in a hierar-
chy with L levels can be described by the geometric series∑L

i=0 nri. Since the absolute value of r is less than one, this
series converges as L goes to infinity:

∞∑
i=0

nri =
n

1 − r
⇔ |r| < 1.

The computational complexity of shape matching is linear
in the number of elements. Therefore, multi-resolution
shape matching has a time complexity of O(n).

Conserving fine wrinkles When using the multi-
resolution approach as described above, the bending
of the model can be influenced. Figure 4 shows that the
coarse levels of a multi-resolution model are compressed
if we have a fine wrinkle. Shape matching on the coarse
levels as described above would try to eliminate this com-
pression and so the fine details would get lost. In order
to solve this problem we need a special handling of this
compression case. Therefore, we introduce an adaption
of the 1D and 2D shape matching methods presented in
sections 4.2 and 4.1. This adaption is used on all levels of
the hierarchy except the finest one.

Our method for conserving fine wrinkles is based on
the same idea as the strain limiting approach of Wang et
al. [16]. Both methods compute the principal strains and
modify the deformation matrix. Wang et al. perform this
modification for each triangle in a Gauss-Seidel iteration to

limit the strain of their model globally. In contrast to them
we only perform a special handling of the compression case
on the coarse levels of our hierarchy in order to conserve
fine wrinkles.

In order to handle a compressed coarse region without
loosing the fine wrinkles, we have to take the scale of the
region into account when computing the transformation
for shape matching. A 1D shape matching region is com-
pressed if the current length of the corresponding edge is
smaller than its initial length. If this condition is fulfilled
for a region on a coarse level, we simply skip 1D shape
matching for this region. In this way fine wrinkles are not
eliminated by a position change. Note, that Müller [24]
proposed a similar approach for distance constraints in a
hierarchical model.

In the case of 2D shape matching the handling of com-
pressed regions is more difficult. In each shape matching
step we determine the optimal rigid body transformation
which consists of a translation vector and a rotation ma-
trix. The optimal rotation matrix R̄ is the rotational part
of Āpq (see equation (10)) which we compute by a polar
decomposition. However, since we are now also interested
in the scale of a region, we have to take a look at the

optimal linear transformation Ā = ĀpqĀ−1
qq and not just

the optimal rotation. Note, that the matrix Ā−1
qq can be

precomputed for each region. The rotational part of the
transformation Ā is then determined by a polar decom-

position Ā = R̄AV̄. The matrix V̄ = R̄T
AĀ is symmetric

and positive definite and contains the shear and scale of
the optimal transformation. The scale matrix S̄ can be
determined by an eigendecomposition

V̄ = W̄S̄W̄T
, (16)

where W̄ is an orthogonal matrix which contains the eigen-
vectors of V̄ and S̄ is a diagonal matrix with the eigenvalues
on the diagonal.

Now we know the scale of the region. If an eigenvalue is
smaller than one, the region is compressed in the direction
of the corresponding eigenvector. In this case we adapt
the scale matrix in the following way:

S̄′i j :=


S̄i j if i = j ∧ S̄i j ≤ 1
1 if i = j ∧ S̄i j > 1
0 otherwise.

(17)

If the region is stretched, we set the scale to one but in
the case of a compression we do not change it. This means
that goal positions will be compressed as well and we will
not get a position change which eliminates fine details. An
adapted transformation matrix is determined by

Ā′ = R̄AW̄S̄′W̄T
. (18)

We use the transformation Ā′ instead of the rotation ma-
trix in equation (12) in order to compute the goal positions
for the region. For a region which is compressed in both

6

directions we do not have to evaluate equation (18) since
Ā′ is equal to Ā in this case. If we have no compression
at all, we directly use the rotation matrix R̄A for shape
matching. Note, that this matrix is the rotational part
of the optimal linear transformation which can be slightly
different from the optimal rotation matrix. However, since
both matrices are almost equal, we prefer to use matrix R̄A

instead of computing another polar decomposition for Āpq

to get the optimal rotation.

4.4. Additional Forces

Damping After each shape matching step we damp the
velocities of the particles on the finest level of the multi-
resolution hierarchy. Damping is performed per triangle
to ensure that no out-of-plane forces are introduced. For
each triangle we first compute its center of mass and its
global linear velocity

xcm =

∑
i mixi∑

i mi
, vcm =

∑
i mivi∑

i mi
. (19)

Then, the velocity change for each particle is determined
by

∆vi = −kd

(
rT

i (vi − vcm)
)

ri, (20)

where kd is the damping coefficient and ri = xi − xcm.

Bending The stretching and shearing stiffness must be
much higher than the bending resistance of a realistic
cloth model. Therefore, we must only handle small bend-
ing forces which we can add to the model and integrate
with our explicit integration scheme (see section 3) without
getting stability problems. We implemented the efficient
quadratic bending model of Bergou et al. [30] which was
developed for cloth models with high stretching stiffness
and low bending resistance. However, we note that this
term in the time integration does not guarantee uncondi-
tional stability anymore. This issue could be solved using
a position-based bending model [23]. But since we never
experienced stability problems, we preferred the quadratic
bending model of Bergou et al. which yielded more com-
pelling results.

5. Parallelization

The presented shape matching methods, the time inte-
gration as well as the computation of bending and damp-
ing forces are performed in parallel. We used OpenMP
and CUDA [31] to implement the presented methods for
multi-core CPUs and GPUs, respectively. The paralleliza-
tion using these APIs are now described in more detail.

OpenMP In OpenMP a simple parallelization is employed
which can be further optimized. The parallelization of the
time integration with equation 2 is trivial. The restriction
and prolongation operators (see section 4.3) can be repre-
sented as a sparse matrix. A simple parallel sparse matrix
vector multiplication can be used to update the position

change on different levels of the discretization. Damping
and 2D shape matching work on a per triangle basis while
1D shape matching is computed per edge. The simulation
of a bending constraint requires the four vertices of two
adjacent triangles. Hence, we have groups of two, three
and four vertices in our simulation. The corresponding
particles need to be updated in a simulation step which
generally leads to race conditions. Therefore, we deter-
mine independent sets for each vertex group type in a pre-
computation step in order to allow a parallel simulation.
That means that each vertex in a set belongs to exactly
one vertex group. Now, for each set the position, velocity
and acceleration updates can be computed in parallel.

GPU parallelization As GPUs have a much higher de-
gree of parallelization, a different strategy for some of the
operations is employed. To achieve high performance it
is furthermore very important to avoid memory transfers
between CPU and GPU memory. We therefore perform
all computations on the GPU.

The time integration is performed by evaluating equa-
tion (2). We use one thread per coordinate for the up-
date. The restriction and prolongation operators (see sec-
tion 4.3) as well as the matrix for the bending forces are
constant and can be represented as sparse matrices. A sim-
ple parallel sparse matrix vector multiplication (SpMV)
can be used to update the position change on different lev-
els of the discretization or computing the bending forces,
respectively. Both operations require a multiplication of
one scalar value per entry of the sparse matrix with all
three components of a vector. Therefore, we use the BIN
sparse matrix data structure of Weber et al. [32] with a
slight modification that adapts the SpMV operation. In
order to efficiently use memory bandwidth, we only load
one scalar entry per thread and multiply it with all three
associated vector components. Other sparse matrix data
structures (see e.g. the work of Bell et al. [33]) can be used
to perform the SpMV operations as well. But without a
modification the matrix entries must be tripled to match
the dimension of the vectors.

The position updates for 1D and 2D shape matching
are generally subject to race conditions since updates for
edges and triangles with common vertices depend on each
other. The OpenMP parallelization strategy for the posi-
tion updates is not suited for a massive parallel architec-
ture. Each independent set would require a separate kernel
call for updating vertices. The overhead for launching a
single kernel on a GPU is not negligible so the number of
launches should be minimized [32]. The number of threads
that can be used to process the vertices in parallel corre-
sponds to the number of elements in the sets. E.g., for
1D shape matching on a regular triangle mesh (where all
interior vertices are adjacent to six edges) six independent
sets are needed and only a sixth of all operations can be
processed in parallel. This gets even worse for non-regular
meshes or when applying 2D shape matching. We there-
fore propose a strategy that reduces the number kernel

7

Figure 5: Simulation of a quadratic piece of cloth falling over a
dragon. The finest level mesh consists of 124017 triangles. The
simulation with five hierarchy levels requires 11.47 ms per step on
average to compute the deformation on the GPU.

calls and additionally avoids a low utilization of the GPU.
In contrast to the OpenMP version, we compute the goal
positions per element (edge or triangle) in a first step and
store the results locally per triangle and edge without up-
dating the final vertex positions. In a second step shape
matching is then completed by collecting and summing up
the contributions of all elements adjacent to a vertex. A
similar subdivision in a per element and a per vertex pass
was also used by Allard et al. [34] to implement an implicit
FEM solver on the GPU. The edges and triangles that are
adjacent to a vertex are determined in a pre-processing
step and stored in lists. There is one list per vertex that is
processed by one thread to update the global state of the
particles.

6. Results

The simulations presented in this section were per-
formed on two Intel X5650 processors with 2.66 GHz and
a GeForce GTX 470. For all simulations we used the stiff-
ness coefficients α = 1 and β = 1 since we want to sim-
ulate stiff materials. We generated the multi-resolution
hierarchies for the models by using a half-edge collapse
operator [28] to decimate the corresponding meshes. Ap-
proximately 50 % of the triangles were removed per level.
We treated collisions and contact with friction by using
the robust collision handling method of Bridson et al. [17].
Since collision handling is not the focus of our paper, the
measured computation times in this section do not include
collision detection and collision response.

Performance We first simulated a quadratic piece of
cloth with different mesh resolutions in order to show the
scalability of our method. Meshes between 10000 and
100000 triangles were generated for the simulation. We
used a nested model and computed five hierarchy levels for
each of these meshes. Figure 6 shows the average compu-
tation times required for one simulation step. Obviously,
shape matching, time integration as well as the computa-
tion of bending and damping forces are performed in linear
time. The computational costs of all steps are shown in
table 2.

To show the power of our GPU implementation we gen-
erated another cloth model with 206664 triangles and five

 0

 5

 10

 15

 20

 25

 30

 35

 40

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

av
g.

 c
om

pu
ta

tio
n

tim
e

(m
s)

number of triangles

2D
2D+1D
2D+1D (GPU)

Figure 6: Average computation times of a simulation step with 2D
shape matching and the combination of 1D and 2D shape matching
for different model sizes.

hierarchy levels. For this model only 25 % of the triangles
were removed per level which results in a more complex
model with 630480 triangles on all five levels. The timings
for this model as well as for the models of figures 1 and 5
are listed in table 1. The results show that the speed-up
factor of our parallel implementations depends on the size
of the model. For the largest model with more than 200
thousand triangles we measured a speed-up factor of 7.1
on 12 cores in comparison to a single core. The factor of
the GPU implementation was 33.2 and the simulation of
the deformation required only 22.58 ms.

Most previous works use spring-mass systems or a
continuous model in combination with the finite element
method to simulate cloth. Therefore, in our last perfor-
mance experiment we compare our multi-resolution shape
matching approach with a spring-mass simulation and a
finite element method. All simulations were performed
in parallel on the CPU and use the same bending model
to get a fair comparison. For the comparison we use the
cloth model in figure 1. We adjusted the stiffness param-
eters of the spring-mass and the finite element method to
get a comparable average strain in all three simulations.
The spring-mass method uses a simple cloth model with a
particle at each vertex and a spring on each edge in combi-
nation with an implicit Euler integrator. Note that shear-
ing resistance is not directly simulated by this method. To
solve the system of linear equations in the integration step,
we use an highly optimized, parallel preconditioned con-
jugate gradient method. Even though this is a simple and
fast simulation method, multi-resolution shape matching
was about 9 times faster than the spring-mass simulation.
The second method, we used for our comparison, is the
fast corotational finite element method for arbitrary trian-
gle meshes introduced by Etzmuss et al. [10]. Compared
to this method multi-resolution shape matching was more
than 15 times faster. In conclusion, our method provides

8

Model triangles (lmax) triangles (total) single core multi-core speed-up GPU speed-up

Dancing Woody 32467 62888 61.81ms 11.63ms 5.3 3.89ms 15.9
Dragon 124017 240275 267.33ms 46.15ms 5.8 11.47ms 23.3

Large cloth 206664 630480 749.83ms 105.99ms 7.1 22.58ms 33.2

Table 1: Timings of three different models with five hierarchy levels on a single core, on multiple cores and on a GPU. On the multi-core
processor and the GPU the time integration, the computation of the bending and damping forces as well as both shape matching methods were
performed in parallel. The table contains the measured timings and the speed-up of our multi-core and GPU implementations in comparison
to the single core implementation.

Model integr. bend. damp. SM 2D SM 1D

Dragon 1.4% 13.3% 7.2% 53.5% 24.6%
Woody 1.4% 13.5% 5.8% 52.9% 26.4%
Large cl. 0.5% 9.0% 4.1% 56.6% 29.8%

Table 2: Computational costs of the different steps in percent. The
two shape matching steps require about 80 percent of the total com-
putation time.

a significant speed-up compared to traditional methods at
the cost of accuracy.

Stiffness In order to show how the strain of a model de-
pends on the number of hierarchy levels, we simulated a
quadratic cloth model with 20648 triangles using different
numbers of nested hierarchy levels. The model had a size
of 5 m×5 m and was fixed at two corners. It was stretched
under its own weight due to gravity. We measured the
average local strain of the model and the maximum global
strain. The results for a time step size of 5 ms are shown
in figure 7. The average strain is reduced by a factor of ap-
proximately 1.7 when using our combination of 1D and 2D
shape matching instead of 2D shape matching only. Since
1D shape matching is very simple and about two times
faster than the 2D method (see table 2), 1D shape match-
ing is an important extension for our 2D shape matching.
Using the combined methods we measured an average local
strain of less than 5 % with only three hierarchy levels. For
a global maximum strain of 5 % we needed seven levels.

The computation time which is required for a simu-
lation step does not depend on the time step size but the
stiffness of the model does. Therefore, we carried out a sec-
ond experiment with the same cloth model but this time
we used a fixed number of five levels and changed the time
step size. In table 3 we can see that we have an average
strain of less than 10 % for the combination of 1D and 2D
shape matching with a time step size of 10 ms. Using a size
of 2.5 ms the average strain was less than 1 % in both cases.
The global maximum strain for our combined method was
8 % for a time step size of 5 ms and less than 3 % for a step
size of 2.5 ms. The table shows that the strain depends
almost quadratically on the time step size.

Stability In order to test the stability of our method, we
moved the vertices of a cloth model with 20000 triangles
and five non-nested hierarchy levels to random positions
before starting the simulation (see figure 8). After a few
simulation steps the multi-resolution shape matching ap-
proach was able to recover the model from the invalid state.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4 5 6 7 8 9 10

st
ra

in
 (p

er
ce

nt
)

number of levels

avg. strain: 2D
avg. strain: 2D+1D
max. strain: 2D
max. strain: 2D+1D

Figure 7: Average local strain and maximum global strain of a model
with 20648 triangles and a different number of hierarchy levels using
a time step size of 5 ms.

strain 20ms 10ms 5ms 2.5ms 1.25ms

avg.: 2D 56.41 13.55 3.39 0.85 0.21
avg.: 2D+1D 34.44 8.29 2.06 0.52 0.13

max.: 2D 142.84 39.59 11.37 3.29 1.12
max.: 2D+1D 96.85 27.64 8.03 2.28 0.74

Table 3: Average local strain and maximum global strain (percent)
of a cloth model with 20648 triangles and five hierarchy levels for
different time step sizes h.

We ran another test where we collapsed all vertices into a
single point. All triangles in this test were degenerated in
the initial configuration. Hence, their projection matrices
(see equation (7)) were not uniquely defined. Therefore,
we simply projected the triangles in the xz-plane in the
first simulation step and then continued as described be-
fore. Afterwards our approach was even able to handle
this extremely degenerated configuration.

Conservation of fine wrinkles The last simulations
demonstrate the benefit of our method to conserve fine
wrinkles which was introduced in section 4.3. Figure 9
shows a piece of cloth with 20000 triangles and four nested
hierarchy levels falling over a sphere. Thanks to our wrin-
kle conservation approach we can see significantly more
fine details in the right image than in the left one.

Another experiment was made simulating a cloth
model with 30000 triangles and four non-nested hierarchy
levels without gravity (see figure 10). The y-coordinate

9

Figure 8: Stability test. The vertices of a cloth model are moved to
random positions before the simulation starts.

Figure 9: Cloth with 20000 triangles and four hierarchy levels falling
over a sphere. The coarse levels of the multi-resolution model prevent
the appearance of fine wrinkles (left). Our method to conserve fine
wrinkles solves this problem (right).

of the center particle was animated during the simula-
tion using a sine curve. Hence, it moves up and down
and causes a wave on the cloth. The simulation was per-
formed once with our method to conserve fine wrinkles
(see figure 10(b)) and once without it (see figure 10(c)).
The result of a simulation using the corotational finite el-
ement method introduced by Etzmuss et al. [10] serves as
reference (see figure 10(a)). Here we adjusted the stiff-
ness parameters to get a comparable average strain. Since
shape matching is geometrically motivated, a direct accu-
racy comparison to a finite element simulation makes no
sense. However, if we compare the results visually, we see
that our shape matching method provides physically plau-
sible results. Moreover, we can also see that thanks to our
wrinkle conservation method the fine details in figure 10(b)
are similar to the ones in 10(a). Without applying this
method fine wrinkles get lost as we see in figure 10(c).

Discussion Multi-resolution shape matching has several
advantages. It is simple to implement, is uncondition-
ally stable and has no numerical damping. The multi-
resolution model allows for a high stretching and shear-
ing resistance which is required for the simulation of re-
alistic fabrics. Since a model is simulated using multiple

meshes with different resolutions, forces are propagated
faster through the mesh which is another advantage of
the multi-resolution approach. Furthermore, the proposed
method is very fast and simulations are performed in linear
time. The results show that the deformations of a cloth
model with more than 200 thousand triangles and five hi-
erarchy levels can be simulated at interactive frame rates
on a GPU.

We also want to discuss the drawbacks of our methods.
Since multi-resolution shape matching is a geometric ap-
proach, only physically plausible results can be obtained.
Similar to all other shape matching approaches, the stiff-
ness of the model does not only depend on the stiffness
coefficient but also on the time step size as well as the re-
gion sizes or, in our case, the number of hierarchy levels.
Furthermore, the physical behavior depends on the mesh
of the model. Therefore, adaptive time stepping and level-
of-detail methods cannot be used without influencing the
behavior of the model.

7. Conclusion

We presented a novel simple, efficient and uncondition-
ally stable cloth simulation method based on shape match-
ing. In order to enlarge the influence of the shape matching
regions we developed a multi-resolution approach. This
allows for simulating stiff materials and therefore we get
more realistic results. We introduced a simple paralleliza-
tion of our method for multi-core CPUs by using indepen-
dent sets of vertex groups and an efficient GPU implemen-
tation.

At the moment the bottleneck of the simulation is the
collision detection and resolution. Therefore, we plan to
implement a GPU-based collision detection in order to
transfer the whole simulation pipeline to the GPU. On the
other hand, we want to perform the collision handling on
a coarser level of the multi-resolution hierarchy since we
do not always need the high resolution of the finest mesh
for a plausible collision handling. If the collision handling
is performed on a coarse level, we must prevent the intro-
duction of new interpenetrations during the prolongation
phase. This should be achieved by adjusting the weights
of the resolved particles during shape matching and pro-
longation.

References

[1] Müller M, Heidelberger B, Teschner M, Gross M. Meshless
deformations based on shape matching. ACM Trans Graph
2005;24(3):471–8.

[2] Magnenat-Thalmann N, Volino P. From early draping to haute
couture models: 20 years of research. The Visual Computer
2005;21:506–19.

[3] Nealen A, Müller M, Keiser R, Boxerman E, Carlson M. Physi-
cally based deformable models in computer graphics. Computer
Graphics Forum 2006;25(4):809–36.

[4] Breen DE, House DH, Wozny MJ. Predicting the drape of woven
cloth using interacting particles. In: Proc. of SIGGRAPH 1994.
New York, NY, USA: ACM; 1994, p. 365–72.

10

(a) FEM simulation (b) Conserving fine wrinkles (c) Without conserving fine wrinkles

Figure 10: Top view of a cloth model with 30000 triangles and four hierarchy levels. We animated the y-coordinate of the center particle
using a sine curve in order to cause a wave motion. The results show that our wrinkle conservation method preserves fine details (b) which
are similar to the one of a finite element simulation (a) while these details get lost without using our method (c).

[5] Provot X. Deformation constraints in a mass-spring model to
describe rigid cloth behavior. In: In Graphics Interface. Cana-
dian Human-Computer Communications Society; 1995, p. 147–
54.

[6] Hauth M, Etzmuß O, Straßer W. Analysis of numerical methods
for the simulation of deformable models. The Visual Computer
2003;19(7-8):581–600.

[7] Baraff D, Witkin A. Large steps in cloth simulation. In: Proc. of
SIGGRAPH 1998. New York, NY, USA: ACM; 1998, p. 43–54.

[8] Choi KJ, Ko HS. Stable but responsive cloth. ACM Trans
Graph 2002;21(3):604–11.

[9] Bridson R, Marino S, Fedkiw R. Simulation of cloth-
ing with folds and wrinkles. In: Proc. of ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation.
Eurographics Association; 2003, p. 28–36.

[10] Etzmuss O, Keckeisen M, Strasser W. A fast finite element
solution for cloth modelling. In: Proceedings of the 11th Pacific
Conference on Computer Graphics and Applications. PG ’03;
Washington, DC, USA: IEEE Computer Society. ISBN 0-7695-
2028-6; 2003, p. 244.

[11] Volino P, Magnenat-Thalmann N, Faure F. A simple approach
to nonlinear tensile stiffness for accurate cloth simulation. ACM
Trans Graph 2009;28(4):105:1–105:16.

[12] Goldenthal R, Harmon D, Fattal R, Bercovier M, Grinspun E.
Efficient simulation of inextensible cloth. ACM Trans Graph
2007;26(3).

[13] Bender J, Bayer D. Parallel simulation of inextensible cloth. In:
Proc. of Virtual Reality Interactions and Physical Simulations.
2008, p. 47–56.

[14] English E, Bridson R. Animating developable surfaces using
nonconforming elements. ACM Trans Graph 2008;27(3).

[15] Thomaszewski B, Pabst S, Strasser W. Continuum-based Strain
Limiting. Computer Graphics Forum 2009;28(2):569–76.

[16] Wang H, O’Brien J, Ramamoorthi R. Multi-resolution isotropic
strain limiting. ACM Trans Graph 2010;29(6):156:1–156:10.

[17] Bridson R, Fedkiw R, Anderson J. Robust treatment of col-
lisions, contact and friction for cloth animation. ACM Trans
Graph 2002;21:594–603.

[18] Bender J, Müller M, Otaduy MA, Teschner M. Position-based
methods for the simulation of solid objects in computer graph-
ics. In: EUROGRAPHICS 2013 State of the Art Reports. Eu-
rographics Association; 2013, p. 1–22.

[19] Rivers AR, James DL. FastLSM: Fast lattice shape matching for
robust real-time deformation. ACM Trans Graph 2007;26(3).

[20] Steinemann D, Otaduy MA, Gross M. Fast adaptive
shape matching deformations. In: Proc. of ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation.
Eurographics Association; 2008, p. 87–94.

[21] Diziol R, Bender J, Bayer D. Robust real-time deformation

of incompressible surface meshes. In: Proc. of ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation.
New York, NY, USA: ACM; 2011, p. 237–46.

[22] Müller M, Chentanez N. Solid simulation with oriented parti-
cles. ACM Trans Graph 2011;30(4):92:1–92:10.

[23] Müller M, Heidelberger B, Hennix M, Ratcliff J. Position based
dynamics. In: Proc. of Virtual Reality Interactions and Physical
Simulations. 2006, p. 71–80.

[24] Müller M. Hierarchical Position Based Dynamics. In: Proc.
of Virtual Reality Interactions and Physical Simulations. Euro-
graphics Association; 2008, p. 1–10.

[25] Stumpp T, Spillmann J, Becker M, Teschner M. A Geometric
Deformation Model for Stable Cloth Simulation. In: Proc. of
Virtual Reality Interactions and Physical Simulations. 2008, p.
39–46.

[26] Shoemake K, Duff T. Matrix animation and polar decomposi-
tion. In: Proc. of Graphics interface. Morgan Kaufmann Pub-
lishers Inc.; 1992, p. 258–64.

[27] Dick C, Georgii J, Westermann R. A hexahedral multigrid ap-
proach for simulating cuts in deformable objects. IEEE TVCG
2011;17(11):1663–75.

[28] Kobbelt L, Campagna S, Seidel HP. A general framework for
mesh decimation. In: Graphics Interface. 1998, p. 43–50.

[29] Georgii J, Westermann R. A multigrid framework for real-
time simulation of deformable bodies. Computer & Graphics
2006;30:408–15.

[30] Bergou M, Wardetzky M, Harmon D, Zorin D, Grinspun E. A
quadratic bending model for inextensible surfaces. In: Proc. of
the fourth Eurographics symposium on Geometry processing.
SGP ’06; Eurographics Association; 2006, p. 227–30.

[31] NVIDIA . NVIDIA CUDA Compute Unified Device Ar-
chitecture - Programming Guide; 2012. Version 4.1,
http://nvidia.com/cuda.

[32] Weber D, Bender J, Schnoes M, Stork A, Fellner D. Effi-
cient GPU data structures and methods to solve sparse linear
systems in dynamics applications. Computer Graphics Forum
2013;32(1):16–26.

[33] Bell N, Garland M. Efficient sparse matrix-vector multiplication
on CUDA. NVIDIA Technical Report NVR-2008-004; NVIDIA
Corporation; 2008.

[34] Allard J, Courtecuisse H, Faure F. Implicit FEM and fluid
coupling on GPU for interactive multiphysics simulation. In:
SIGGRAPH Talks. ACM; 2011, p. 52–.

11

