
Adaptive cloth simulation using corotational finite elements

Jan Bender and Crispin Deul

Graduate School CE, TU Darmstadt, Germany

Abstract
In this article we introduce an efficient adaptive cloth simulation method which is based on a reversible

√
3-

refinement of corotational finite elements. Our novel approach can handle arbitrary triangle meshes and is not
restricted to regular grid meshes which are required by other adaptive methods. Most previous works in the area
of adaptive cloth simulation use discrete cloth models like mass-spring systems in combination with a specific
subdivision scheme. However, if discrete models are used, the simulation does not converge to the correct solution
as the mesh is refined. Therefore, we introduce a cloth model which is based on continuum mechanics since
continuous models do not have this problem. We use a linear elasticity model in combination with a corotational
formulation to achieve a high performance. Furthermore, we present an efficient method to update the sparse
matrix structure after a refinement or coarsening step.
The advantage of the

√
3-subdivision scheme is that it generates high quality meshes while the number of triangles

increases only by a factor of 3 in each refinement step. However, the original scheme was not intended for the use
in an interactive simulation and only defines a mesh refinement. In this article we introduce a combination of
the original refinement scheme with a novel coarsening method to realize an adaptive cloth simulation with high
quality meshes. The proposed approach allows an efficient mesh adaption and therefore does not cause much
overhead. We demonstrate the significant performance gain which can be achieved with our adaptive simulation
method in several experiments including a complex garment simulation.

1. Introduction

Interactive cloth simulation has a long history in computer
graphics. In this area the resolution of the simulation mesh
plays an important role. On the one hand the resolution must
be high enough to get realistic wrinkles during the sim-
ulation, on the other hand simulations with high detailed
meshes cost much computation time and often do not run
at interactive frame rates. In this article we present a cloth
simulation method which changes the resolution of the cloth
model adaptively. In regions of the model with fine wrinkles
small triangles are used for the simulation while a low res-
olution is used in areas without fine details. The advantage
of such an adaptive model is that the performance can be
increased significantly without loosing much details.

The idea of using an adaptive mesh as cloth model is not
new. There exist different works which focus on this topic.
Most of the previous approaches use adaptive mass-spring
systems for the simulation. In general such systems are not
convergent, i.e. the simulation does not converge to the cor-
rect solution as the mesh is refined [NMK∗06]. To solve this
problem we introduce an adaptive cloth model based on con-

tinuum mechanics. We use a linear finite element method
(FEM) in combination with a corotational formulation to
perform the simulation efficiently. This method works on
triangular elements which are defined by the adaptive tri-
angle mesh of our cloth model. The resolution of this mesh
is adapted during the simulation by using a

√
3-subdivision

scheme [Kob00]. This scheme defines how a triangle mesh
can be refined adaptively while maintaining a high mesh
quality. In this article we present an extension which allows
us to coarsen the mesh in areas where a fine resolution is not
required anymore.

In contrast to other adaptive simulation methods, our ap-
proach can handle arbitrary triangle meshes and is not re-
stricted to meshes based on regular grids. Our refinement
criterion is based on the mean curvature. Therefore, we get
a high resolution for fine wrinkles and a low resolution in
flat regions. The proposed method can speed up the simula-
tion significantly at the cost of accuracy. The performance
gain and therefore also the accuracy loss can be controlled
indirectly by the user-defined parameters of the refinement
criterion. The mesh adaption with our method can be per-



J. Bender & C. Deul / Adaptive cloth simulation using corotational finite elements

formed very efficiently. Hence, the computational overhead
caused by the adaption is low.

This article is an extended version of our earlier pa-
per [BD12]. In comparison to our earlier paper we added
the description of a hybrid method to determine the area in
the triangle model which is represented by a single particle.
These particle areas are required for a consistent mass dis-
tribution and to compute the mean curvature of the model.
The mean curvature is needed by the refinement criterion in
our adaptive remeshing process. We also added more details
about the refinement process as well as the computation of
the bending matrix and the damping matrix. Furthermore,
we developed a fast matrix assembly strategy. Since we use
an adaptive cloth model, the matrix structure changes after
each refinement and coarsening step. The presented matrix
assembly allows us to update the structure efficiently. As a
final extension we present new experiments to demonstrate
the contribution of our simulation method in a complex gar-
ment simulation.

2. Related Work

In this section we want to give an overview over impor-
tant works in the area of cloth simulation and adaptive de-
formable models.

Research in cloth simulation has been done for more
than 20 years in the field of computer graphics (for sur-
veys see [MTV05, CK05]). Often the assumption is made
that cloth is an elastic material in order to perform an ef-
ficient simulation using spring forces. The problem is that
many real textiles cannot be stretched significantly. Differ-
ent techniques have been presented to solve this problem.
Provot [Pro95] used a mass-spring system for cloth simu-
lation in combination with an explicit time integration. In-
stead of using stiff springs which can cause instabilities,
Provot proposed to displace particle positions after each
simulation step as an alternative way for strain reduction.
Baraff and Witkin [BW98] used an implicit Euler integra-
tion in order to perform a stable simulation for stiff sys-
tems. This approach supports the simulation of arbitrary tri-
angle meshes whereas other approaches require regular grid
structures, e.g. [Pro95, CK02]. A semi-implicit method was
used by Choi and Ko [CK02] for a stable simulation with
stiff springs. They also solved the problem with instabilities
of the post-buckling response which are not caused by stiff
equations. In order to limit the strain, Bridson et al. [BFA02]
applied corrective impulses to the velocities of the particles.
Goldenthal et al. [GHF∗07] presented an approach based on
Lagrangian mechanics in combination with a fast projection
method in order to simulate inextensible cloth. English and
Bridson [EB08] performed cloth simulations using triangle
meshes with a hard constraint on each edge. In order to solve
the consequential locking problem, they used a nonconform-
ing mesh for the simulation which has more degrees of free-
dom than the original one. Bender et al. [BDB11] combined

this technique with an impulse-based approach [BB08] to
simulate models with hard constraints more efficiently. A
continuum-based strain limiting method was introduced by
Thomaszewski et al. [TPS09].

In the last years different authors proposed to use contin-
uous models to simulate cloth. In contrast to discrete models
like mass-spring systems, a model based on continuum me-
chanics has the advantage that it is independent of the mesh
resolution. Etzmuss et al. [EGS03] used a finite difference
discretization of the model in order to solve the differen-
tial equations. Due to this discretization only quadrilateral
meshes can be handled. In a second work they presented
an efficient approach based on the finite element method
(FEM) with a corotational formulation which can also han-
dle arbitrary triangle meshes [EKS03]. Thomaszewski et
al. [TWS06] also use a corotational formulation for their fi-
nite element simulation. In their work they show how mem-
brane and bending energies can be modeled consistently for
thin, flexible objects. Volino et al. [VMTF09] present a cloth
simulation system based on continuum mechanics which is
able to simulate nonlinear anisotropic materials.

There exist different approaches to improve the perfor-
mance of cloth simulations by using an adaptive refinement
of the simulation model. Hutchinson et al. [HPH96] pre-
sented an adaptive mass-spring model for cloth simulation.
This model has a regular grid structure which is refined
when the angle between two neighboring springs exceeds
a certain tolerance value. A similar approach which also
uses regular quad meshes in combination with a mass-spring
model was introduced in [VB05]. Li and Volkov [LV05]
presented an adaptive version of Baraff’s cloth simulation
method [BW98] which is able to handle arbitrary triangle
meshes. They use a modified

√
3-refinement rule without

explicit edge flip which forces a subdivision of adjacent tri-
angles. Hence, the number of triangles increases faster com-
pared to our method. Lee et al. [LYO∗10] use a mass-spring
system in combination with a Loop subdivision scheme for
refining a triangle model. The subdivision steps are precom-
puted in order to get a multi-resolution hierarchy. This is
used to adaptively reduce the dimension of the linear sys-
tem which must be solved for an implicit integration step.
In contrast to these previous works that use mass-spring sys-
tems which are not convergent, our model is based on con-
tinuum mechanics. Brochu et al. [BEB12] use the continu-
ous cloth model proposed by Etzmuss et al. [EGS03] and
perform simple edge splitting, flipping and collapsing in or-
der to demonstrate that their continuous collision detection is
able to handle adaptive meshes. Grinspun et al. [GKS02] use
a continuous model for the adaptive simulation of thin shells
and volumetric deformable models. But instead of refining
the elements, they introduce a refinement of the basis func-
tions to reduce the computation time of a simulation step.
Further adaptive methods for volumetric deformable models
are presented in [DDBC99, DDCB01].



J. Bender & C. Deul / Adaptive cloth simulation using corotational finite elements

3. Overview

This section gives a short overview over the time integra-
tion of the adaptive cloth simulation method. In the follow-
ing sections each step will be explained in detail.

For the simulation we use a triangular mesh of particles as
cloth model. Each particle has a mass m, a position x and a
velocity v. A single simulation step is performed as follows:

1. Determine all external forces which are acting on the
model.

2. Perform a simulation step with the continuous model to
get new positions xn+1 (see Section 4).

3. Determine average velocities vn+1/2 = (xn+1−xn)/∆t.
4. Detect proximities for xn and resolve them with friction

by modifying the average velocities vn+1/2 with impulses
(see Section 6).

5. Perform a continuous collision detection step for the lin-
ear trajectory from xn to xn +∆tvn+1/2 and adapt the av-
erage velocities vn+1/2 by applying impulses to resolve
collisions with friction (see Section 6).

6. Compute final positions and velocities (see Section 6).
7. Adapt the resolution of the mesh (see Section 5).

4. Cloth Simulation

In this section we first introduce our cloth simulation model.
Then we introduce the corotational formulation for lin-
ear elasticity in order to simulate stretching and shearing.
Furthermore, we show how the simulation of bending and
damping is realized. In the end of this section we briefly in-
troduce an implicit time integration method which is used to
simulate stiff fabrics without stability problems.

4.1. Cloth Model

Our cloth model is based on continuum mechanics and we
use an arbitrary triangle mesh to define elements for solving
the equation of motion with the finite element method.

The mass distribution of our cloth model is defined by a
diagonal mass matrix M. In this way the masses of the model
are concentrated at the vertices of the mesh. We assume that
the simulated material has a homogeneous mass distribution
and therefore a constant density. Furthermore, we assume
that the mass of a dynamic particle is proportional to the
area of the triangles adjacent to its corresponding vertex in
the triangle mesh. The area of this vertex can be defined by
the Voronoi area which is bounded by the midpoints of the
incident edges and the circumcenters of the adjacent trian-
gles (see Figure 1(a)). This works well for triangles which
are not obtuse. For a non-obtuse triangle t with the vertices
xi, x j and xk the Voronoi area of a vertex is determined by

AVoronoi (t,xi) =
1
8

(
‖xk−xi‖2 cotϕ j +‖x j−xi‖2 cotϕk

)
,

(1)
where ϕi denotes the angle in the triangle at the vertex xi.

(a)

xi

xj

αij

βij

(b)

Figure 1: (a) The Voronoi area of a vertex in a triangle
mesh. This area is bounded by the midpoints of the incident
edges and the circumcenters of the adjacent triangles. Fig-
ure (b) shows the one-ring of the vertex xi and the opposite
angles αi j and βi j of an edge.

If all triangles adjacent to a vertex xi are non-obtuse, the
Voronoi area of this vertex is

AVoronoi (xi) =
1
8 ∑

j∈R1(i)

(
cotαi j + cotβi j

)
‖xi−x j‖2, (2)

where the set R1(i) defines the one-ring of vertex xi. αi j and
βi j are the opposite angles of the edge between xi and x j
(see Figure 1(b)).

Obtuse triangles need a special treatment. The area com-
puted for the acute angled vertices in such a triangle is neg-
ative if the total area of all vertices should equal the area of
the triangle. This problem can be solved by the hybrid ap-
proach of Meyer et al. [MDSB03] which is implemented in
Algorithm 1.

Algorithm 1
1: Ahybrid(x) = 0
2: for all triangles t in the one-ring of x do
3: if If t is not obtuse then
4: Ahybrid(x) += AVoronoi(t,x)
5: else
6: Compute area At of triangle t
7: if If angle at x in t is obtuse then
8: Ahybrid(x) += 1

2 At
9: else

10: Ahybrid(x) += 1
4 At

11: end if
12: end if
13: end for

The final mass of a particle m is determined by the prod-
uct of its corresponding area Ahybrid(x) with a user-defined
factor ρ in order to account for the density of the simulated
object

m = Ahybrid(x) ·ρ. (3)



J. Bender & C. Deul / Adaptive cloth simulation using corotational finite elements

In each simulation step with our adaptive model the num-
ber of particles changes. Therefore, we have to adapt the
masses of the particles in order to guarantee the mass conser-
vation of the model. This mass adaption has to be performed
after each refinement and coarsening step but only for the
particles where the adjacent triangles changed.

4.2. Simulation

In this work we use a finite element discretization of our con-
tinuous model in order to perform a simulation step. Using
the Lagrange form we get the following ordinary differential
equations which describe the dynamics of our model:

Mẍ+Dẋ+K(x−x0) = fext, (4)

where M is the mass matrix with the masses of the particles
on the diagonal, D is a damping matrix and K is the stiffness
matrix of the cloth model. The vectors x, ẋ and ẍ contain the
positions, velocities and accelerations at the vertices of the
simulation mesh while x0 defines the rest state of the model.
Hence, we have 3n differential equations for a mesh with n
vertices.

4.2.1. Linear Elasticity

The simulation of the stretching and shearing behavior of our
cloth model can be performed in the two-dimensional space
of the triangle mesh. Therefore, we define the deformation
of our model by a two-dimensional vector field u(m) which
is used to compute the deformed point location x(m) = m+
u(m) of an undeformed point m ∈ R2. This vector field is
only defined in areas where material exists.

To perform a finite element simulation the continuous dis-
placement function u(m) is evaluated only at the vertices of
our triangular simulation mesh. The displacement in the in-
terior of each triangular element is interpolated linearly by
three shape functions Ni(m):

u(m) =
3

∑
i=1

Ni(m) · ûi. (5)

The vectors ûi ∈R2 contain the displacements at the vertices
of the element. In A we describe how the shape functions and
the corresponding derivatives are determined.

For our simulation we use Cauchy’s linear strain tensor

ε=
1
2

(
∂u
∂m

+
∂u
∂m

T
)
, (6)

which is in our case a symmetric 2× 2 tensor. Therefore, it
can also be written as vector with three entries: εx

εy
γxy

=
3

∑
i=1

Biûi with Bi =


∂Ni
∂x 0
0 ∂Ni

∂y
1
2

∂Ni
∂y

1
2

∂Ni
∂x

 . (7)

Following Hooke’s law, we can describe the stress within
an element by the tensor

σ = Cε= CBeû, (8)

where Be = (B1,B2,B3) is a 3 × 6 matrix and û =(
ûT

1 , û
T
2 , û

T
3

)T
is a six-dimensional vector. C is a tensor

which describes the elasticity of the material. Woven textiles
have a weft and a warp direction. Therefore, we model cloth
as orthotropic material with two orthogonal symmetry axes.
The elasticity tensor is defined by two Young moduli Ex and
Ey for the weft and the warp direction, by a shear modulus
Es and the Poisson’s ratios νxy and νyx:

C =


Ex

1−νxyνyx

Exνyx
1−νxyνyx

0
Eyνxy

1−νxyνyx

Ey
1−νxyνyx

0
0 0 Es

 . (9)

Poisson’s ratio νxy corresponds to a contradiction in direc-
tion y when the material is extended in direction x.

Now we can compute the forces which are acting on the
three vertices of a triangular element:

fe = AeBT
e CBeû = Keû, (10)

where Ae is the initial area of the corresponding triangle,
Ke ∈ R6×6 is the stiffness matrix of the element and the
vector fe ∈ R6 contains the forces for the three vertices in
material coordinates.

4.2.2. Corotational Formulation

A stable simulation with a linear elasticity model can be
performed efficiently with an implicit integration scheme.
However, such a model is not suitable for large rotational
deformations since nonlinear effects can cause undesired
deformations [MG04]. To solve this problem we use a
corotational formulation similar to the one of Etzmuss et
al. [EKS03].

In a corotational formulation the elastic forces are com-
puted in a local, unrotated coordinate frame (see Figure 2).
Therefore, we must extract the rotational part of the defor-
mation. In order to get the rotation matrix of a triangular
element, we could determine the three-dimensional trans-
formation x = Ax0 of an undeformed point x0 to its cor-
responding deformed position x and then extract the rota-
tional part of A. However, we are only interested in the rota-
tional transformation in the plane of the triangle. Therefore,
we first project the undeformed and deformed vertices in the
two-dimensional space of the corresponding plane (see Fig-
ure 2(a)). For a triangular element with the vertex indices
a,b,c and the normal n = (xb− xa)× (xc− xa) we deter-
mine the plane vectors (see Figure 2(b))

px =
xb−xa

‖xb−xa‖
, py =

n×px

‖n×px‖
(11)



J. Bender & C. Deul / Adaptive cloth simulation using corotational finite elements

0

xa
0 xb

0

xc
0

x

y

(a) rest state x0 in 2D (b) deformed state x in 3D

RT
Px

x0

0 x

y

(c) displ. in 2D: RT
P x−x0 (d) fe = RPKe

(
RT

P x−x0
)

Figure 2: (a) The undeformed vertices x0 of each element
are projected in the two-dimensional space of their corre-
sponding plane in a preprocessing step. To determine the
forces acting on the vertices x of a triangular element, we
first multiply them with RT

P (see Equation (15)). This projects
the deformed vertices in the plane spanned by the vectors
px and py (b) and rotates them back to an unrotated frame.
(c) The difference between the resulting positions RT

P x and
x0 gives us the displacements in 2D. The forces are deter-
mined by multiplying the stiffness matrix Ke with the dis-
placements. (d) Finally, we rotate the forces back to the de-
formed frame and transform them to the three-dimensional
space using the matrix RP.

to define the projection matrix

P =

(
pT

x
pT

y

)
∈ R2×3. (12)

The projection matrix P0 for the undeformed triangle is de-
fined analogously. Two-dimensional coordinates can now be
computed by x = Px. By defining the matrices

S =
(

xb
0−xa

0,x
c
0−xa

0

)
(13)

T =
(

xb−xa,xc−xa
)
, (14)

where S,T ∈ R2×2, we determine the matrix TS−1which
contains the transformation of an undeformed point x0
to its corresponding deformed position x but without the
translational part. Hence, the required rotation matrix R ∈
R2×2 can be extracted by a simple 2D polar decomposi-
tion [SD92].

x0

x1

x2 x3e0

e1 e2

e3 e4

Figure 3: Labeling of the vertices and edges which are re-
quired when determining the bending matrix Q(e0) of an in-
terior edge e0.

Instead of computing the forces for an element directly by
Equation (10), in the corotational formulation we first rotate
a vertex back to a local coordinate frame (see Figure 2(c)).
Then the linear forces are computed and the results are trans-
formed to the world coordinate frame (see Figure 2(d)). This
transformation can be combined with the projection matrix
P in order to project the 3D coordinates of a vertex in the 2D
space of the corresponding triangle. The transposed projec-
tion matrix PT is used to transform the 2D forces of Equa-
tion (10) to 3D. The matrix

RP,e =

PT R 0 0
0 PT R 0
0 0 PT R

 ∈ R9×6 (15)

combines the projection and rotation for all three vertices of
a triangular element.

The corotated stiffness matrices are defined as follows:

KR
e = RP,eKeRT

P,e, K̃R
e = RP,eKe, (16)

where KR
e ∈R9×9 and K̃R

e ∈R9×6. Using this definition the
forces for the three vertices are determined by

fe = KR
e x+ f0,e with f0,e =−K̃R

e x0, (17)

where the vector x0 = (xa
0,x

b
0,x

c
0)

T ∈ R6 contains the 2D
positions of the undeformed triangle. Note that in contrast
to Equation (10) the resulting forces are three-dimensional
since we integrated the projection in the corotational formu-
lation.

4.2.3. Bending

The realistic behavior of cloth is substantially influenced by
the development of folds and wrinkles. Their occurrence is
highly dependent on the bending properties of the particular
fabric. In order to reproduce this behavior in the case of inex-
tensible surfaces, we employ the isometric bending model of
Bergou et al. [BWH∗06]. The limitation to isometric defor-
mations has the advantage that the bending energy becomes
a quadratic function in positions. Therefore, the Hessian Q
is just a constant matrix.

For each interior edge ei the constant Hessian Q(ei) ∈
R4×4 is computed from the triangles t0 and t1 incident to



J. Bender & C. Deul / Adaptive cloth simulation using corotational finite elements

ei and their vertices xi. According to the notation given by
Figure 3, Q(e0) is obtained as

Q(e0) =
3

A0 +A1
kT

0 k0, (18)

where Ai is the area of the i-th triangle and k0 is the row
vector

k0 = (c03 + c04, c01 + c02, −c01− c03, −c02− c04), (19)

where c jk = cot∠e j,ek.

Since the Hessian is assembled by considering the contri-
butions of each interior edge, the matrix has to be updated
after each subdivision or coarsening step. This update is per-
formed locally to save computation time. Only the contribu-
tions of interior edges with changed adjacent triangles are
adapted.

4.2.4. Viscosity

In our work we use Rayleigh damping to simulate viscosity.
Rayleigh damping consists of two parts: mass and stiffness
damping. The damping matrix for an element with the mass
matrix Me and the stiffness matrix Ke is determined by

De = αMe +βKe, (20)

where α and β are the damping coefficients for mass and
stiffness damping, respectively.

4.2.5. Time Integration

For time integration the linear implicit Euler method is used
together with a modified preconditioned conjugate gradi-
ent method for solving the resulting system of linear equa-
tions [BW98]. This provides a stable time integration of the
stiff equations even for large time steps. To perform the time
integration the velocity change is determined by solving the
following linear system:(

M+hD+∆t2K
)

∆v=−∆t (Kx+ f0− fext +∆tKv+Dv) ,
(21)

where ∆t is the time step size and the vectors fext, x and v
contain the external forces, positions and velocities for each
vertex. Matrix K is a sparse block matrix which is obtained
by assembling the corotated element stiffness matrices KR

e
(see Equation (16)) and adding the Hessian Q of the bending
model (see Equation (18)). Analogously the block vector f0
is an assembly of the vectors f0,e. After solving the linear
system for ∆v we get the position change by ∆x = ∆t(v+
∆v).

4.2.6. Efficient Matrix Assembly

In general the matrix of the model is sparse. Therefore, we
use a compressed sparse row (CSR) format to store the ma-
trix. This format uses two arrays to describe the structure
of the matrix: one array to store the column index of each
element and one array to store the index offset of the first

element in each row. These arrays have to be updated after
each refinement or coarsening step.

The update of the matrix structure works as follows. First,
we determine for each vertex the number of direct depen-
dencies in the cloth model. Without bending, the number of
dependencies of a vertex is equal to the number of outgoing
edges. If we also consider our bending model, we have to
add the points defined by the stencil used for computing the
bending forces (see Figure 3). Now we can construct the off-
set array easily. We set the first entry to 0 and the following
entries are determined by a parallel prefix sum over the de-
pendency counts of the vertices. The last value of the prefix
sum gives us the number of non-zero entries in the matrix.
The array for the column indices is updated in a parallel loop
over all vertices. Each vertex represents a row in the matrix.
We have to determine the corresponding column indices for
each row. These indices are given by the dependencies of the
row vertex. Finally, the indices for each row are sorted.

In order to assemble the matrix of our linear system, we
first enter the masses and the mass damping terms of the par-
ticles in parallel. Then the corotated element stiffness matri-
ces (see Equation (16)) are determined for all faces in par-
allel. In the same process the stiffness damping terms are
added. The terms of the bending matrix Q for all edges are
also computed in parallel. Finally, all stiffness and bending
terms are added to the linear system matrix.

5. Adaptive refinement and coarsening

The adaptive refinement of our cloth model is based on the√
3-subdivision scheme of Kobbelt [Kob00]. In order to al-

low for a coarsening of the mesh as well, we introduce an
extension of the original scheme.

5.1. Refinement

The
√

3-refinement strategy performs a 1-to-3 split for a tri-
angle by inserting a vertex at its center (see Figures 4(a)-
(c)). Each edge in the original mesh shared by two refined
triangles is then flipped to connect the newly inserted ver-
tices, yielding vertices with re-balanced valences (see Fig-
ure 4(d)). If the described

√
3-subdivision scheme is applied

two times, we get a tri-adic split where each triangle of the
original mesh is subdivided in nine new triangles.

An edge on the boundary has just one adjacent trian-
gle. Therefore, the edge flip operation is not possible for
edges representing the mesh boundary. A different refine-
ment strategy is required in this case. The goal is to get a tri-
adic split after two subdivision steps not only in the interior
of the mesh but also on the boundary. To reach this goal we
use two different successive subdivision steps at the bound-
ary. In the first step we perform the same subdivision as for
an interior triangle but without the edge flip at the boundary
edges (see Figure 5(a)). In the second step the boundary edge



J. Bender & C. Deul / Adaptive cloth simulation using corotational finite elements

0

0

0

0

(a) Original mesh (b) New vertices

11

1 1

11

1 1

1

1

1 1

(c) Triangulation

1

1

1

1

11

2

2

2

2

2 2

(d) Edge flip

Figure 4:
√

3-subdivision of a triangle mesh which is shown
in (a). The numbers inside the triangles represent the gener-
ation indices of the triangles. (b) New vertices are inserted
at the centers of the triangles. (c) By connecting the new
vertices with the original mesh, we get new triangles. (d) Fi-
nally, an edge flip is performed for each edge where both
adjacent triangles are refined.

is split into three equal sections by inserting two vertices and
connecting them to the third vertex of the triangle (see Fig-
ures 5(b)-(c)). In the last step an edge flip is performed (see
Figures 5(d)).

This refinement strategy can be implemented in a sim-
ple recursive procedure, requiring just a generation index
for each face [Kob00]. All triangles of the base mesh have
a generation of zero (see Figure 4(a)). Inserting a vertex
into a coarse triangle with even generation sets the gen-
eration of the three new triangles to the next odd integer
(see Figure 4(c)). Flipping the edge between two triangles
with the same odd generation increases the generation by
one (see Figure 4(d)). Note that we restrict the difference
in generation between adjacent inner triangles to one. The
generation index has to be set differently when refining a
boundary triangle with odd generation. Let g be the gener-
ation of the triangle to be refined. Then the generation of
the new triangle sharing two of the inserted points must be
set to g+ 3. The generation of the other two created trian-
gles must be set to g + 2. This is shown in Figure 5. The
six inner triangles have generation index ginner = 2 and the
six boundary triangles are of generation gboundary = 1 after
the first refinement step (see Figure 5(a)). Now we refine the
lower left boundary triangle marked in gray in Figure 5(a).
The generation of the created triangles from left to right is

1

2

(a) First subdivision step (b) Second step: new vertices

3 4 3

3

3
3

(c) Second step: triangulation

4
4

4

4

4
4

4

4

4

(d) Second step: edge flip

Figure 5: The subdivision on the boundary requires two dif-
ferent successive steps. Only the gray triangles contain their
generation index for the sake of clarity. (a) In the first step
a new vertex is inserted in the center of each boundary tri-
angle but no edge flip is performed. (b) In the second step
the boundary edges are subdivided into three segments of
equal length. The new boundary vertices are marked with
red color. (c) Connecting the new vertices gives us a new
triangulation. (d) Finally, an edge flip is performed for all
vertices of generation 3.

gle f t = 3, gmiddle = 4, gright = 3 (see Figure 5(c)). The mid-
dle triangle with generation 4 has already reached its final
state while the generation of the left and the right triangle is
set to 3. This is necessary since we want to perform edge
flips for the left and the right triangle. The left one flips
the common mate edge with the adjacent boundary trian-
gle of generation 3 and the right one the common edge with
the adjacent inner triangle of generation 3 (see Figure 5(c)).
Finally, all triangles have the generation index 4 (see Fig-
ure 5(d)).

Since the difference in generation index of neighboring
triangles is restricted, the refinement of one triangle can en-
force successive vertex insertions and edge flips at neighbor
triangles. This keeps the valence of the vertices balanced and
avoids narrow triangles. Every triangle with an odd genera-
tion has to keep track of its mate triangle which is the partner
for the next edge flip. This flip is not always feasible during
adaptive refinement since the neighboring triangle might be
of a lower generation. In the case the refinement criterion en-
forces the refinement of a triangle with odd generation, first
the mate triangle has to be refined and the common edge



J. Bender & C. Deul / Adaptive cloth simulation using corotational finite elements

23
3

3

1

2

2

0

1

1

1 1

(a) Original mesh

0

1

1

1 1

1

1

1

2

2

(b) Mate coarsening and edge
flip

0

1

1

1 1

1

1

1 1
1

(c) Neighbor coarsening

0

1

1

1 1

0

1

1

(d) 3-to-1 join

Figure 6: Coarsening of the marked triangle in (a). Note
that the mate edge of this triangle is marked with green
color. The numbers represent the generation indices of the
triangles. (b) First the mate triangle is coarsened and then
an edge flip is performed. (c) The non-mate neighbors gen-
eration is reduced by an edge flip to the generation of the
marked triangle. (d) Finally a 3-to-1 join is performed.

has to be flipped to fulfill the restriction on the difference in
generation of neighboring triangles.

Kobbelt [Kob00] proposes to apply a smoothing operator
after each refinement step which changes the vertex posi-
tions. In our work we do not use vertex smoothing rules dur-
ing the simulation since a change of vertex positions causes a
change of the potential energy of the system which is not de-
sired. This corresponds to a smoothing rule with the smooth-
ing parameter αn = 0 (see [Kob00]).

5.2. Coarsening

Special care has to be taken when coarsening the triangles.
Before coarsening a triangle with even generation which re-
sults in an edge flip followed by a 3-to-1 join, we have to
make sure the mate triangle is of the same generation by
coarsening the mate if its generation differs (see Figure 6(a)).
Performing a 3-to-1 join requires all three participating tri-
angles to be of the same generation. After choosing a partic-
ular triangle for coarsening we can simply identify the two
neighbors as the triangles opposite of the non-mate edges
(see Figure 6(b)). The mate edge information is crucial both
for flipping edges back and for performing a 3-to-1 join.

When only refining the mesh we can save the mate edge

information in a face to edge table. Each time we perform
a 1-to-3 split we set the edges of the coarse triangle as the
face edges of the new triangles in the face to edge table to
mark these edges as mate edges. But when performing a 3-
to-1 join of an interior triangle it is unknown which of the
three edges of the original triangle has been the mate edge.
Consequently, in order to uniquely undo a 1-to-3 split, one
of the three triangles resulting from such a split needs to be
marked as the corresponding triangle incident to the mate
edge. We store a bit for every odd generation of a triangle to
mark the triangle as providing the mate edge during the 3-
to-1 join. To save memory we store this bit together with the
generation counter in a 32-bit integer. Using the lower 5 bits
for the generation counter and the upper 27 bits for the mate
edge enables us to generate 55 generations of triangles out
of a base triangle by refining the same triangle successively.

5.3. Refinement Criterion

Our refinement criterion is based on the mean curva-
ture [MDSB03] at the mesh vertices. The mean curvature is
determined by

c(xi) =
1

2Ahybrid
∑

j∈R1(i)

(
cotαi j + cotβi j

)(
xi−x j

)
, (22)

where αi j and βi j are the opposite angles of the edge xix j
and the set R1(i) defines the one-ring of xi (cf. Section 4).
Note that the mean curvature for the vertices can be com-
puted efficiently in parallel.

We take the maximum of the curvature at the three ver-
tices of a triangle to decide whether to refine the triangle.
Using the maximum allows rapid adaption if the curvature
of the mesh increases locally. To steer the local refinement
depth based on the mean curvature we use successively
increasing limits for every refinement generation. Further-
more, we limit the maximum refinement depth by an upper
bound gmax for the refinement generation. In our current im-
plementation we scale the refinement limits linearly based
on the difference between the limit for the maximum gener-
ation lgmax and the limit for the base generation lbase which
are predefined, and the fraction between actual generation g
and gmax. The refinement limit at generation g is

lg =
g

gmax
(lgmax − lbase)+ lbase. (23)

We use a second set of limits to decide whether to coarsen
a triangle. For every refinement generation the coarsening
limit is computed as a fraction of the refinement limit of
the same generation. Since coarsening a triangle might also
coarsen neighboring triangles (see Figure 6) it is insufficient
to purely consider the curvature at the triangles vertices. In
the case of a 3-to-1 join we compare the maximum curva-
ture of the one-ring neighborhood of the center point that is
removed during the join (see Figure 6(b)). While coarsening



J. Bender & C. Deul / Adaptive cloth simulation using corotational finite elements

a triangle with even generation we build the one-ring neigh-
borhood of the point that is removed by the 3-to-1 join after
the edge flip of the triangle (see Figure 6(a); the one-ring is
marked in red).

6. Collision handling

The collision handling in our simulation is based on the idea
of Bridson et al. [BFA02]. First we perform a cloth sim-
ulation step with our continuous model (see Section 4) to
advance the vertex positions from xn to xn+1. Then we de-
termine the average velocities in the vertices of the mesh
by evaluating vn+1/2 = (xn+1− xn)/∆t. After detecting all
proximities for xn the average velocities are modified by ap-
plying repulsion impulses and friction. These repulsion im-
pulses significantly reduce the number of collisions in the
following continuous collision detection step which checks
the linear trajectories from xn with the modified velocities
vn+1/2. The resulting collisions are also resolved with fric-
tion by applying impulses. The continuous collision detec-
tion and the resolution have to be repeated until all inter-
penetrations are resolved in order to get a valid state of the
system. To reduce the computational effort we only perform
a few iterations and then use rigid impact zones, as proposed
by Provot [Pro97], to resolve all interpenetrations at once.
In the end a new penetration-free state is obtained by up-
dating the positions using the modified velocities: xn+1 =
xn +∆tvn+1/2. The final velocity is determined by solving a
linear system as described in [BFA02].

Bridson et al. use a bounding volume hierarchy (BVH) to
increase the performance of the proximity and collision de-
tection. The BVH is constructed in a precomputation step
and updated in each simulation step. Since our cloth model
has an adaptive resolution, a BVH would require modifica-
tions of the hierarchy in each step. Therefore, we prefer to
use an acceleration method based on spatial hashing which
was introduced by Teschner et al. [THM∗03].

Teschner et al. propose to use a global regular spatial grid
as acceleration structure and introduce a hash function to
compress this grid in a hash table. Their algorithm classi-
fies the vertices of all objects with respect to the grid cells
in a first pass. In the second pass the tetrahedrons of their
volume objects are also classified. If a tetrahedron intersects
a cell with vertices inside, a potential collision is reported.

In our work we use a modified variant of this method. In
contrast to Teschner et al. in our approach each object has
an own local spatial grid with a corresponding hash table.
The size of each grid is limited by a swept bounding vol-
ume which corresponds to the object. In our work we use
axis aligned bounding boxes (AABB) as swept bounding
volumes which contain both the positions at the beginning
and at the end of the current simulation step. The use of one
grid per model has different advantages. The grid cell size
influences the number of reported primitive collisions sig-
nificantly. If we use large cells many primitives are mapped

to the same hash value. In the case of small cells a triangle
can cover many cells. In our work each model has an own
cell size which yields better results for scenarios with mul-
tiple models with different resolutions. Another advantage
is that the update of the grids which has to be done in each
simulation step can be performed in parallel. Furthermore,
we can reduce the time required for the update. A grid has
only to be updated if we want to detect self collisions for the
corresponding object or if its AABB intersects the AABB
of another object. In the second case only one of both grids
needs an update. Grids of static objects do not change, so
they have not to be updated during the simulation.

The collision test starts with a bounding volume test for
the simulated objects. For each collision pair which is re-
ported by the AABB test we have to update one of the corre-
sponding spatial grids. Each grid has a timestamp to prevent
redundant updates. The following steps are performed to up-
date a spatial grid. First the swept bounding volumes for all
triangles are determined. Then we compute the indices of
all cells which are intersected by the bounding volumes. If a
cell is intersected, we compute a hash value for this cell and
insert the corresponding triangle in the hash table. After the
update a spatial grid test is performed for the primitives of
the other object. This means that we determine the intersect-
ing cells for the primitive AABBs of the other object and
report the resulting collisions. The spatial grid test can be
performed in parallel for all triangles since the hash table is
not modified during the test.

If the spatial hashing algorithm reports a collision, we
have to perform point-triangle and edge-edge tests for the
corresponding triangles. Since we want to prevent redundant
tests, we assign each vertex and edge to exactly one triangle.
Only if this triangle is in the same grid cell as another trian-
gle, the corresponding point-triangle and edge-edge tests are
performed.

At the moment our collision detection is performed on the
CPU. However, Pabst et al. [PKS10] demonstrated that spa-
tial hashing can be performed efficiently on a GPU. There-
fore, one topic for future work will be to develop an efficient
GPU implementation of the algorithm which is introduced
above.

7. Results

In this section we present results with our adaptive cloth
simulation method. All simulations in this section were per-
formed on a notebook with a Intel i7-2860QM processor
with four cores. In our implementation the adaption of ver-
tex masses, the stiffness and the bending matrix as well as
the computation of the mean curvature are performed in par-
allel. In all simulations we used a maximum of six subdi-
vision generations. The mesh adaption is only performed in
each fifth simulation step in order to reduce the additional
computational costs.



J. Bender & C. Deul / Adaptive cloth simulation using corotational finite elements

(a) Curtain model (b) Curvature and triangulation

Figure 7: Adaptive model of a curtain. (a) shows the sur-
face of the opening curtain during the simulation. (b) The
colors of the model represent the current mean curvature.
The figure also shows the resulting triangulation.

In our first simulation we used the model of a curtain
which is opened and closed (see Figure 7(a)). The model
has the following parameters: Ex = Ey = Es = 1000N/m,
νxy = νyx = 0.33 and ρ = 0.1kg/m2. The simulation ran
20 s and the time step size was ∆t = 5 ms. This model was
simulated once with our adaptive mesh and once with the
full resolution. A comparison is shown in the accompanying
video. The visual results of both simulations are very similar.
However, our adaptive model required only 5158 triangles at
an average while the full resolution model had 22140 trian-
gles. The average computation time of a simulation step with
the full resolution model was 115.9 ms whereas the adap-
tive model required only 22.0 ms which yields a speedup
factor of 5.3. Less than 5 percent of the computation time
was required for the mesh adaption. The mean curvature of
the model and the resulting triangle mesh is shown in Fig-
ure 7(b). Figure 8 illustrates the number of triangles of the
adaptive mesh during the simulation. After 11 seconds the
number of triangles reached its maximum. At this time the
curtain was completely open and there were many wrinkles
in the mesh. Then the curtain closed again and the number
of triangles decreased thanks to our coarsening extension.

Another example is shown in Figure 9. In this simulation
a piece of cloth which is fixed at two vertices falls over a
sphere causing several contacts with friction. This model
was simulated using the same parameters as for the first
model. The adaptive approach was able to reduce the num-
ber of triangles from 22140 to 8962 at average during the
simulation. This results in a speedup factor of 2.4. For this
model only 6 percent of the computation time was needed
by the mesh adaption method.

In order to demonstrate that our method can also han-
dle complex garment simulations, we simulated a dress on
a female avatar in our last experiment (see Figure 10(a)).
In contrast to the previous experiments we used the value

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 0  2  4  6  8  10  12  14  16  18  20

nu
m

be
r o

f t
ria

ng
le

s

simulation time

Figure 8: The diagram shows how the number of trian-
gles of the curtain model changes during the simulation.
The number increases as the curtain starts to open after 5
seconds due to the resulting wrinkles. After 11 seconds the
curtain closes again and mesh is coarsened until we reach
the initial triangulation.

Figure 9: Piece of cloth falling over a sphere. This example
shows the adaptive remeshing of the model during a contact
situation.

5000N/m for the Young moduli and the shear modulus
which results in a very stiff model. The full resolution model
of the dress has 66636 triangles. In this experiment we used
low refinement limits for our adaptive model since we did
not want to loose much quality due to the triangle reduction.
The adaptive model had 37392 triangles at average during
the simulation. This means that the full resolution had 1.8
times more triangles than the adaptive model. The overhead



J. Bender & C. Deul / Adaptive cloth simulation using corotational finite elements

of the mesh adaption was very low. Only 1.7 percent of the
computation time in a simulation step was required for the
adaption. The speedup factor of the cloth simulation with-
out collision handling was 1.8 which exactly corresponds to
the mesh reduction. However, for the collision handling we
measured a speedup factor of 8.7 which is explained in the
following. As described in Section 6 the continuous colli-
sion detection and the resolution have to be repeated until all
interpenetrations are resolved. We used a maximum of five
iterations before we resolved the remaining collisions by us-
ing rigid impact zones. In the simulation with the full resolu-
tion model we required more iterations of collision handling
and the rigid impact zone method had to be applied more of-
ten. This results in the large speedup factor we measured in
our experiment. The overall speedup factor of a simulation
step with the dress model was 3.13 at average. Since many
simulation systems use a collision handling approach which
is similar to the one of Bridson et al. [BFA02], our adap-
tive refinement scheme is not only interesting for simulating
cloth with a finite element method, but also for reducing the
computation time of the collision handling which is still the
bottle neck of most simulators.

Discussion

Our proposed adaptive finite element method reduces the
computational effort significantly by reducing the number of
elements during the simulation. We use the mean curvature
to define the subdivision criterion. The speedup and the re-
sulting loss of accuracy strongly depends on the refinement
and coarsening limits that are chosen by the user. The accu-
racy also depends on the maximum number of subdivision
generations. In our simulations we used six generations at
maximum but this number can also be increased if more ac-
curacy is required.

However, our method also has a drawback. If we use a
small tolerance value for the proximity detection a coarsen-
ing step or an edge flip may result in an interpenetration.
We can simply solve this problem by either increasing the
tolerance value or preventing a remeshing of all triangles
that are in contact. However, in future we want to provide
a better solution for this problem by using a continuous col-
lision detection based on "pseudo-trajectories" as proposed
by [BB09].

8. Conclusion

In this article we introduced a novel adaptive cloth simu-
lation method. The simulation mesh is refined by a

√
3-

subdivision scheme. We extended the original scheme in or-
der to be able to coarsen the mesh in areas where less detail is
required. Our simulation model is based on continuum me-
chanics and we use a corotational linear FEM with triangu-
lar elements to solve the equations of motion. In contrast to
a mass-spring system such a model has the advantage that

the simulation converges to the correct solution when the
mesh is refined. We perform the time integration with the
implicit Euler method to get a stable simulation. Hence, we
have to solve an linear system in each step. The problem with
an adaptive model is that the matrix structure changes after
each refinement or coarsening step. Therefore, we developed
an efficient method to update the sparse matrix structure on
the fly. In conclusion, using our adaptive model results in a
significant speedup of the simulation. Furthermore, the adap-
tion causes only a small overhead in computation time. We
demonstrated this in different experiments including a com-
plex garment simulation.

References
[BB08] BENDER J., BAYER D.: Parallel simulation of inexten-

sible cloth. In Virtual Reality Interactions and Physical Simu-
lations (VRIPhys) (Grenoble (France), Nov. 2008), Eurographics
Association, pp. 47–56. 2

[BB09] BROCHU T., BRIDSON R.: Robust topological operations
for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4 (June
2009), 2472–2493. 11

[BD12] BENDER J., DEUL C.: Efficient cloth simulation us-
ing an adaptive finite element method. In Virtual Reality In-
teractions and Physical Simulations (VRIPhys) (Darmstadt (Ger-
many), Dec. 2012), Eurographics Association, pp. 21–30. 2

[BDB11] BENDER J., DIZIOL R., BAYER D.: Simulating in-
extensible cloth using locking-free triangle meshes. In Virtual
Reality Interactions and Physical Simulations (VRIPhys) (Lyon
(France), Dec. 2011), Eurographics Association, pp. 11–17. 2

[BEB12] BROCHU T., EDWARDS E., BRIDSON R.: Efficient ge-
ometrically exact continuous collision detection. ACM Trans.
Graph. 31, 4 (July 2012). 2

[BFA02] BRIDSON R., FEDKIW R., ANDERSON J.: Robust treat-
ment of collisions, contact and friction for cloth animation. In
SIGGRAPH ’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 2002), ACM, pp. 594–603. 2, 9, 11

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simula-
tion. In SIGGRAPH ’98: Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 1998), ACM, pp. 43–54. 2, 6

[BWH∗06] BERGOU M., WARDETZKY M., HARMON D.,
ZORIN D., GRINSPUN E.: A quadratic bending model for in-
extensible surfaces. In Proceedings of the fourth Eurograph-
ics symposium on Geometry processing (Aire-la-Ville, Switzer-
land, Switzerland, 2006), SGP ’06, Eurographics Association,
pp. 227–230. 5

[CK02] CHOI K.-J., KO H.-S.: Stable but responsive cloth. ACM
Transactions on Graphics 21, 3 (2002), 604–611. 2

[CK05] CHOI K.-J., KO H.-S.: Research problems in clothing
simulation. Computer Aided Design 37, 6 (2005), 585–592. 2

[DDBC99] DEBUNNE G., DESBRUN M., BARR A. H., CANI
M.-P.: Interactive multiresolution animation of deformable mod-
els. In Eurographics Workshop on Computer Animation and Sim-
ulation (EGCAS) (Sep 1999). 2

[DDCB01] DEBUNNE G., DESBRUN M., CANI M.-P., BARR
A. H.: Dynamic real-time deformations using space & time
adaptive sampling. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques (New York,
NY, USA, 2001), SIGGRAPH ’01, ACM, pp. 31–36. 2



J. Bender & C. Deul / Adaptive cloth simulation using corotational finite elements

(a) Female avatar with dress (b) Curvature and triangulation

Figure 10: Simulation of garment on an avatar model. (a) shows the adaptive model with folds and wrinkles during the
simulation. (b) The color encoded mean curvature is shown on the surface of the model as well as the resulting adaptive
triangulation.

[EB08] ENGLISH E., BRIDSON R.: Animating developable sur-
faces using nonconforming elements. ACM Trans. Graph. 27
(August 2008). 2

[EGS03] ETZMUSS O., GROSS J., STRASSER W.: Deriving a
particle system from continuum mechanics for the animation of
deformable objects. IEEE Transactions on Visualization and
Computer Graphics 9, 4 (Oct. 2003), 538–550. 2

[EKS03] ETZMUSS O., KECKEISEN M., STRASSER W.: A fast
finite element solution for cloth modelling. In Proceedings of the
11th Pacific Conference on Computer Graphics and Applications
(Washington, DC, USA, 2003), PG ’03, IEEE Computer Society,
pp. 244–. 2, 4

[GHF∗07] GOLDENTHAL R., HARMON D., FATTAL R.,
BERCOVIER M., GRINSPUN E.: Efficient simulation of inex-
tensible cloth. ACM Transactions on Graphics 26, 3 (2007). 2

[GKS02] GRINSPUN E., KRYSL P., SCHRÖDER P.: Charms:
a simple framework for adaptive simulation. In SIGGRAPH
’02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques (New York, NY, USA, 2002),
ACM, pp. 281–290. 2

[HPH96] HUTCHINSON D., PRESTON M., HEWITT T.: Adap-
tive refinement for mass/spring simulations. In Proceedings of
the Eurographics workshop on Computer animation and simula-
tion ’96 (New York, NY, USA, 1996), Springer-Verlag New York,
Inc., pp. 31–45. 2

[Kob00] KOBBELT L.: v3-subdivision. In SIGGRAPH ’00: Pro-
ceedings of the 27th annual conference on Computer graphics
and interactive techniques (New York, New York, USA, 2000),
ACM Press, pp. 103–112. 1, 6, 7, 8

[LV05] LI L., VOLKOV V.: Cloth animation with adaptively re-
fined meshes. In ACSC ’05: Proceedings of the Twenty-eighth
Australasian conference on Computer Science (Darlinghurst,
Australia, Australia, 2005), Australian Computer Society, Inc.,
pp. 107–113. 2

[LYO∗10] LEE Y., YOON S.-E., OH S., KIM D., CHOI S.:

Multi-resolution cloth simulation. Computer Graphics Forum
(Pacific Graphics) 29, 7 (2010). 2

[MDSB03] MEYER M., DESBRUN M., SCHRÖDER P., BARR
A. H.: Discrete differential-geometry operators for triangulated
2-manifolds. In Visualization and Mathematics III, Hege H.-C.,
Polthier K., (Eds.). Springer-Verlag, Heidelberg, 2003, pp. 35–
57. 3, 8

[MG04] MÜLLER M., GROSS M.: Interactive virtual materi-
als. In Proceedings of Graphics Interface 2004 (School of
Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 2004), GI ’04, Canadian Human-Computer Communi-
cations Society, pp. 239–246. 4

[MTV05] MAGNENAT-THALMANN N., VOLINO P.: From early
draping to haute couture models: 20 years of research. The Visual
Computer 21 (2005), 506–519. 2

[NMK∗06] NEALEN A., MUELLER M., KEISER R., BOXER-
MAN E., CARLSON M.: Physically based deformable models in
computer graphics. Computer Graphics Forum 25, 4 (December
2006), 809–836. 1

[PKS10] PABST S., KOCH A., STRASSER W.: Fast and Scalable
CPU/GPU Collision Detection for Rigid and Deformable Sur-
faces. Computer Graphics Forum 29, 5 (2010), 1605–1612. 9

[Pro95] PROVOT X.: Deformation constraints in a mass-spring
model to describe rigid cloth behavior. In In Graphics Interface
(1995), Davis W. A., Prusinkiewicz P., (Eds.), Canadian Human-
Computer Communications Society, pp. 147–154. 2

[Pro97] PROVOT X.: Collision and self-collision handling in cloth
model dedicated to design garment. Graphics Interface (1997),
177–189. 9

[SD92] SHOEMAKE K., DUFF T.: Matrix animation and polar
decomposition. In Proceedings of the conference on Graphics in-
terface ’92 (San Francisco, CA, USA, 1992), Morgan Kaufmann
Publishers Inc., pp. 258–264. 5

[THM∗03] TESCHNER M., HEIDELBERGER B., MÜLLER M.,



J. Bender & C. Deul / Adaptive cloth simulation using corotational finite elements

POMERANTES D., GROSS M. H.: Optimized spatial hashing for
collision detection of deformable objects. In Proceedings of the
Vision, Modeling, and Visualization Conference (VMV) (2003),
Ertl T., (Ed.), Aka GmbH, pp. 47–54. 9

[TPS09] THOMASZEWSKI B., PABST S., STRASSER W.:
Continuum-based strain limiting. Comput. Graph. Forum 28, 2
(2009), 569–576. 2

[TWS06] THOMASZEWSKI B., WACKER M., STRASSER W.: A
consistent bending model for cloth simulation with corotational
subdivision finite elements. In Proceedings of the 2006 ACM
SIGGRAPH/Eurographics symposium on Computer animation
(Aire-la-Ville, Switzerland, Switzerland, 2006), SCA ’06, Euro-
graphics Association, pp. 107–116. 2

[VB05] VILLARD J., BOROUCHAKI H.: Adaptive meshing for
cloth animation. Engineering with Computers 20, 4 (2005), 333–
341. 2

[VMTF09] VOLINO P., MAGNENAT-THALMANN N., FAURE F.:
A simple approach to nonlinear tensile stiffness for accurate
cloth simulation. ACM Trans. Graph. 28, 4 (Sept. 2009), 105:1–
105:16. 2

Appendix A: Shape functions

In this work we use barycentric coordinates to define the lin-
ear shape functions for our triangles. The barycentric coor-
dinates of a point m = (x,y)T in a two-dimensional triangle
are defined by three linear polynomials. The first one has the
following form

N1(m) =
1

2Ae
det

1 1 1
x x2 x3
y y2 y3

 (24)

=
(x2y3− y2x3)+ x(y2− y3)+ y(x3− x2)

2Ae
, (25)

where Ae is the area of the triangle. The other two are de-
termined analogously. These polynomials are used as linear
shape functions. Therefore, the derivatives of these functions
are computed by

∂Ne

∂m
=

1
2Ae

y2− y3 x3− x2
y3− y1 x1− x3
y1− y2 x2− x1

 , (26)

where Ne = (N1,N2,N3)
T .


