
Screen-Space Ambient Occlusion Using A-buffer Techniques

Fabian Bauer
TU Darmstadt

Darmstadt, Germany

Martin Knuth
Fraunhofer IGD

Darmstadt, Germany

Arjan Kuijper
Fraunhofer IGD

Darmstadt, Germany

Jan Bender
TU Darmstadt

Darmstadt, Germany

Abstract—Computing ambient occlusion in screen-space
(SSAO) is a common technique in real-time rendering appli-
cations which use rasterization to process 3D triangle data.
However, one of the most critical problems emerging in screen-
space is the lack of information regarding occluded geometry
which does not pass the depth test and is therefore not resident
in the G-buffer. These occluded fragments may have an impact
on the proximity-based shadowing outcome of the ambient
occlusion pass. This not only decreases image quality but
also prevents the application of SSAO on multiple layers of
transparent surfaces where the shadow contribution depends
on opacity.

We propose a novel approach to the SSAO concept by
taking advantage of per-pixel fragment lists to store multiple
geometric layers of the scene in the G-buffer, thus allowing
order independent transparency (OIT) in combination with
high quality, opacity-based ambient occlusion (OITAO). This A-
buffer concept is also used to enhance overall ambient occlusion
quality by providing stable results for low-frequency details
in dynamic scenes. Furthermore, a flexible compression-based
optimization strategy is introduced to improve performance
while maintaining high quality results.

Keywords-rasterization; screen-space ambient occlusion; or-
der independent transparency; real-time rendering

I. INTRODUCTION

Traditional rasterization renderers make use of a depth
buffer to discard occluded fragments when rendering into
the main framebuffer. This means that screen-space effects
can only be applied to the first visible layer of geometry
limiting the application of deferred algorithms. However,
the A-buffer introduced by Carpenter [1] allows to store
and access each rasterized fragment in GPU memory. This
enables to solve the order independent transparency (OIT)
problem on a per-fragment level on the GPU.

Ambient occlusion (AO) in screen-space can also benefit
from multiple fragment layers: Most of the time the ambient
occlusion term is computed in screen-space and merely
applied to the whole scene assuming opaque geometry
only, disregarding the special considerations imposed by
translucent materials. AMD’s FirePro SDK [2] implements
this approach. However, AO is only computed for the
first layer leading to visible artifacts as shown in figure
3. Ambient occlusion for opaque geometry also benefits
from a depth-complete scene representation compensating

Figure 1. Multilayer ambient occlusion enabling transparent geometry
based on material opacity

Figure 2. Errors resulting from single layer SSAO: Occluded fragments
(left), triangles outside camera frustum (middle) and grazing angles (right)

occlusion-based artifacts common in screen-space as illus-
trated in figure 2.

In this paper we present a novel approach which includes
multiple geometry layers to produce a coherent and more
plausible ambient occlusion result including transparent and
semi-transparent surfaces demonstrated in figure 1. Further-
more, different implementations of the A-buffer strategy are
tested to give a detailed overview of the image quality and
performance outcome.

II. RELATED WORK

Order independent transparency for rasterization renderers
is a classical problem in computer graphics. Modifying the
blending function allows a fast handling of transparency [3]
but introduces scene limitations. Therefore, numerous so-
lutions have been developed to enable color correct alpha
blending for arbitrary geometry on fragment level. Myers et
al. [4] provide a fast but constricted OIT solution: A limited
set of layers is stored within subpixels of multisample
textures using stencil routing. A more flexible approach was
presented by Bavoil et al. [5] called depth peeling. They

c© 2013 IEEE Published by the IEEE Computer Society

Figure 3. Wrongly accumulated colors for a transparent object (right)
where the car interior is not shadowed, compared to full opacity (left)
when handling a single layer of depth only.

use a multipass rendering approach discarding the layers of
previous passes via depth comparisons. The final image is
created by blending the single layers together leading to
quality OIT. Its drawbacks are the high (texture) memory
consumption and the costly multipass rendering. Several
optimizations exist which target these problems by reducing
the number of passes required [6], by adding sorting to the
method [7] or by constricting the computation to important
parts of the scene [8]. AMD presented a novel method [9] of
solving OIT by maintaining a Per-Pixel Linked List (PPLL)
in texture memory using append/consume buffers. This way
every rendered fragment is stored at a new memory location
creating unsorted lists holding all information necessary
for OIT in a single pass. As an extension to this method
Intel demonstrated an approximation of OIT called Adaptive
Transparency [10]. Not requiring fragment sorting, the ap-
proach achieves higher performance at the expense of image
quality by using a transmittance function.

Screen-Space Ambient Occlusion covers methods and
algorithms to solve the occlusion integral [11] in screen-
space using texture sampling. First discussed by Crytek [12],
it was used within their video game Crysis. Basically, AO is
computed from the depth information contained inside the
rendered frame, treating the screen information as a height-
field.

Numerous derivatives, extensions and attributions have
been made to improve on quality, performance and us-
ability. Shanmugam and Arikan [13] extend the technique
to incorporate distant occluders. Horizon-Based Ambient
Occlusion (HBAO) by Bavoil et al. [14] improves the
shadow quality by ray marching in image-space. Screen-
Space Directional Occlusion (SSDO) [15] assumes a general
shadowing direction also allowing for color bleeding and a
single light bounce. To cover larger sampling kernels while
still maintaining high performance, Huang et al. [16] pre-
sented a multiresolution algorithm (MSSAO) at the expense
of texture memory. The screen depth of the current view
can hide cavities important for AO. In [17] Vardis et al.
tackle this problem by using the shadow buffer information
of the present lights in a scene in conjunction with fusing
the SSAO computations to a single image.

Another approach taking into account the whole scene
is using a voxel representation to perform occlusion com-
putations. Thiedemann et al. [18] use this capability to
perform fast global illumination computations. A drawback
is the high amount of memory necessary to store the voxel
representation and the additional time needed for geometry
voxelization. Another volumetric approach was presented by
McGuire [19]: Influence of self occlusion is represented
by polygonal volumes derived from the scene geometry.
The technique gives good results but is scene complexity
and fill-rate dependent. For volume rendering low-frequency
lighting of volumetric data can be achieved by using a
pre-computed radiance transfer (PRT) which has to be re-
computed many times for dynamic scenes. A fast way of
doing this re-computation utilizing the GPU is presented by
Tobias Ritschel [20]. Fully shadowed regions can be avoided
by relying on local ambient occlusion approximations as
shown by Hernell et al. [21]. In an approach by Ropinski et
al. [22] indirect illumination is achieved by capturing every
possible light interaction of the volume structures in the
scene in a preprocessing step.

Regarding multilayer ambient occlusion Bavoil et al. [23]
presented an approach enabling HBAO calculations on
opaque geometry checking multiple depth layers. The basic
idea is to apply depth peeling to the scene until a sufficient
amount of layers are available in texture memory. This
multilayer concept alongside multiple camera angles was
also used for SSDO to cover hidden regions. However,
our approach allows to populate the A-buffer in a single
geometry pass with sparse data structures improving on both
performance as well as memory requirements. Going one
step further we extend this principle to allow transparent
surfaces to cast and receive AO shadows based on their
respective material opacity.

III. CONCEPT

Ambient occlusion for opaque geometry only considers
the first geometry layer. However, when resolving OIT with
AO, the shadowing factor must be computed for each layer
before transparency blending operations are applied. That
means that AO results must be available in the resolving
pass where fragments are retrieved, sorted and then blended.
Blending operations can not be dissolved and must be
executed with sorted fragments since AO may darken the
fragment color resulting in a different final blend color.
Consequently AO is inseparably mixed into the color of
transparent geometry preventing further processing like bi-
lateral filtering. Moreover, since OIT has to be resolved in
fullscreen resolution, the AO factors for such surfaces have
to be determined with these dimensions as well, which might
not always be acceptable regarding performance and the
concept of the SSAO algorithm. Sacrificing color correctness
for the sake of flexibility is possible by separating the AO
calculation from the OIT resolving stage. The AO results are

Figure 4. An example of the integrated and separated AO layer merging
process. Using striped shading on the Stanford Happy Buddha mesh (right)
reveals nearly no differences in the result.

computed and then blended into a 2D texture using material
opacity similarly to transparency color blending. An example
for the separated as well as the color-correct integrated layer
merging scheme is given in figure 4. As can be seen, the
color difference between both approaches is very low and
can be neglected.

Another aspect of AO with respect to OIT is the integra-
tion of the alpha-based opacity value into the AO formula.
Geometry with high transparency should not shadow nearby
geometry with the same intensity as fully opaque objects.
This allows semi-transparent meshes to contribute to the AO
term of the scene depending on material attributes.

Correctly merging OIT and AO offers multiple ways how
transparent geometry can be interpreted. Each triangle the
mesh is composed of can be considered as frontfacing or
backfacing depending on the order of vertices in the buffer.
Backfaces of opaque objects are never visible allowing the
use of backface culling techniques to improve performance.
Hence, the used triangles describe a solid volume of the
object. A thin and possibly transparent hull can only be
described by adding polygons for the interior geometry
without relying on backface data. On the other hand, for high
performance applications like video games it is common to
interpret the triangle data as a very thin layer describing a
hull of the object. These different interpretations of trian-
gle geometry for transparent surfaces require a distinction
regarding transparent color accumulation as well as AO
gathering.

For solid volumes the AO formula can be applied intro-
ducing the sampled alpha values as a weight:

AO(p) =
αp
π

∫
ω∈Ω

αωV (p, ω)|ω · n|dω, (1)

where p is the current position with the corresponding
normal n and Ω is the sampling hemisphere. The visibility
function V returns a value between 0 and 1 and describes
the occlusion of p in direction ω. αp and αω are the
opacity values for p and for the sampled point in direction
ω respectively. If geometry is interpreted as a thin object,

Figure 5. Opacity-based AO sampling for a point p and its normal n with
camera-dependent weighting of exterior (green) and interior (red) AO

additional factors have to be considered. AO is usually
computed by sampling into a hemisphere oriented around
the normal n in the current point p. In this case transparent
triangles actually consist of two sides making up the hull.
This means the AO integral has to be resolved two times:
Once for the usually applied hemisphere around the normal
n in p and once more for the hemisphere oriented around
−n as shown in figure 5.

As a matter of fact sampling now occurs in a complete
sphere taking interior occlusion AOi and exterior occlusion
AOe of points into account. These two occlusion factors
have to be applied to the same point according to the alpha
value of the surface:

AO(p) = αpAOe(p) + (1− αp)AOi(p). (2)

Another factor is the camera position: The weighting of
AOi and AOe depends on the angle between the camera
view vector and the normal. If the camera views a backface,
the weights for AOi and AOe must be switched to allow
correct blending of both AO values for the current image.
Introduced with a special weighting function this assures
correct color mixing for both AO terms depending on the
translucency of the layer:

W (p) =

{
αp if p is on frontface
1− αp if p is on backface

(3)

AO(p) = W (p)AOe(p) + (1−W (p))AOi(p), (4)

where αp describes the opacity value of the fragment color
in p.

A. Ambient Occlusion Formula

Usually a fragment entry stores color with alpha used as
opacity and depth. Since AO has to be computed for every
visible fragment on the screen every entry in the list has to
store the normal of the face as well. Applied on deferred
texture buffers, SSAO algorithms usually check the pixel
neighborhood of each screen coordinate to sample fragment
data. To additionally account for transparent surfaces every
sample position is checked for an entry in the OIT fragment
buffer. If the screen coordinate is covered by transparent
fragments, they are fetched from the buffer and decomposed
into the necessary spatial components. Each of these layers

may contribute to the AO term of this sample but to
maintain a uniform distribution of sampling directions only
the maximum shadow value gathered from these fragments
is used. This process of computing AO for a given position
is described in algorithm 1.

Algorithm 1 Multilayer ambient occlusion computation for
a given view-space position p using fragment lists

1: procedure COMPUTESSAO(p)
2: aofinal ← 0
3: c← 0
4: for all ω in Ω do
5: s← GetScreenCoordinate(p + ω/p.z)
6: fraglist← ABuffer.fetch(s)
7: ao← 0
8: for all f in fraglist do
9: ao← max(ao,GetAO(p, f))

10: aofinal ← aofinal + ao
11: c← c+ 1

12: return aofinal/c

As is common with SSAO techniques the normalized
sampling direction ω is scaled according to the current view-
space depth p.z of the current position p. The function
GetAO calculates the AO term for the given position p
with respect to the sampled layer fragment f . Its mode
of operation therefore depends on the AO algorithm of
choice. If the screen coordinate of position p is covered by
transparent fragments, special care has to be taken: Similarly
to resolving OIT the fragment list of the current position p is
retrieved and sorted by depth. Then the respective occlusion
results are calculated and blended according to the alpha
value of the fragment. Finally, the blended result is stored
in a 2D render target to allow further processing.

To increase AO quality for opaque geometry as well the
fragment list concept can be applied in a similar fashion: In
this case it is usually enough to store solely the linear depth
value of the fragment in the A-buffer. The shadowing factor
is only computed for the first layer of depth, while occlusion
sampling is performed for every layer by traversing the
fragment lists of each sample position (see algorithm 1).

B. List Compression

Fetching and processing multiple texels for each sample is
time consuming. In order to speed up the ambient occlusion
sampling stage, an optimization strategy similar to Intel’s
Adaptive Transparency technique [10] is applied. The basic
idea is to compress the OIT fragment list by discarding
fragments which are unlikely to contribute to the ambient
shadowing term of the scene.

The compression is performed in the OIT resolving stage
where the fragment list is retrieved, sorted and blended. Each
fetched list element is inserted into a fixed size array a where

each entry a[i] at index i consists of the depth a[i]z and
opacity a[i]α of the fragment. The length m of the array
defines the maximum allowed number of nodes and therefore
the quality of the compression. The array is initialized with
depth values of 1. Inserting a fragment f is done by looking
up the index i of a where a[i]z < fz < a[i+1]z . This assures
a sorted order of the nodes. In addition to each OIT list entry,
fragments of opaque geometry have to be considered as well
and are inserted into the array with an opacity of 1.

As soon as the insertion function is called more than m
times, the list is compressed by eliminating the node at index
i which is retrieved in the following way:

i = min
j

(a[j]α(1.0− a[j]z)), (5)

where 0 ≤ j < m. For one part this criterion makes
sure that fragments with high opacity are favored while
for the other part fragments with low depth are preferred
opposed to those resident in greater distance. The search
for this index can optionally be executed only for the latter
half of the array to preserve fragment data closer to the
camera. With this criteria fragments which are close to
camera and/or have high opacity values are favored while
highly transparent and/or distant fragments are dropped. The
resulting array therefore only contains the most relevant
occlusion information which can be stored in a 2D buffer.
For example a texture of the format RGB32UI can store up
to four nodes.

Using the same criteria as above, normals can be com-
pressed and stored in a 2D texture as well. In conjunction
with the depth and opacity texture this information can be
used to reconstruct the most important list elements where
AO sampling has to be conducted in the SSAO pass. Texel
fetches demanded by the sampling process are done relying
on the compressed depth and opacity information where each
of the m list elements is checked for occlusion shadowing. In
summary, the original fragment list buffers are only needed
to blend the transparent color and are never queried for
ambient occlusion calculations. By reducing texture buffer
access to a single texel fetch per sample instead of repeated
queries induced by a fragment list traversal, the memory
access coherency and cache utilization for the ambient
occlusion pass is significantly improved.

IV. IMPLEMENTATION

The approaches described above were implemented in
OpenGL using three different fragment list memory ar-
chitectures to test performance and memory requirements.
Traversing the elements of a texture buffer can be expen-
sive. Modern GPUs improve performance by using texture
caches. These caches only work for neighboring texels in
directions implied by the buffer data type in one, two or
three dimensions. Thus, neighbor access is much faster then
random access. It is therefore wise to implement efficient
memory layouts regarding this fact.

List elements in the buffer typically consist of three
essential pieces of information encoded into three 32-bit
unsigned integers:
• The four-component color of the fragment where the

alpha channel describes the opacity of this layer.
• A single floating point depth value used as a sorting

criterion when resolving the fragment list.
• The fragment normal in view-space for the AO compu-

tation. For thin geometry the normal is negated according
to the camera position, following figure 5.

Since sorting and blending is needed in the OIT and the AO
pass, it can be more efficient to store the sorted fragment
lists again after transparency is resolved. Then the AO pass
is able to blend the shadow results of fetched list entries
without further arrangements.

A. Per-Pixel Linked List

The PPLL implementation is based on the work of Yang
et al. [9] where a single geometry pass stores rasterized
fragments in texture memory. In the following fullscreen
pass the fragment pool is queried for each list entry of
the current pixel position to enable sorting and blending
operations. This imposed memory architecture implies heavy
cache thrashing since list elements are scattered throughout
texture memory.

B. Linear List

This approach is based on the OpenGL Insights chapter
by Knowles et al. [24] and stores elements of the same list
at nearby memory slots to improve texel cache usage. For
OIT the authors did not observe a performance increase with
linear list buffer management compared to the basic linked
list approach. However, since OITAO relies on even more
buffer fetches, the benefit of texture caching is more promis-
ing. The downsides of this implementation are the expensive
prefix sum computation and the fact that transparent objects
have to be rendered twice to count and store the fragments.

C. Texture3D

The third implementation of OITAO relies on a three-
dimensional texture representing the fragment lists for each
pixel. A single geometry pass stores the fragments at the
texture position corresponding to the pixel position, while
a subsequent fullscreen pass is used to sort and blend the
lists. Texel caching for fragments now applies to all three
dimensions at the cost of maximized memory requirements.

V. RESULTS

To test the image quality and performance for opacity-
based AO two different SSAO algorithms were implemented
and extended: A simple single pass approach utilizing a
Poisson disk sample pattern to check pixel neighborhoods
and a multiresolution approach based on the implementation
by Hoang et al. [16].

Figure 6. Image quality comparison between different compression criteria
and the brute force method.

OIT and AO calculations rely on a heavy amount of
texture and image operations. The difference between image
and sampler data access is the method used to retrieve
the texels on the GPU. Accessing sampler types is done
using the so called FastPath, while image types are queried
using the CompletePath adopting AMD’s APP SDK termi-
nology [25]. Enabling the use of load and store operations
as well as atomic methods, the CompletePath is not able
to take advantage of the texel cache as is the case with
basic sampler reading calls. Since the presented approaches
heavily rely on OpenGL’s image type functionality, this loss
in performance has to be considered.

The following results are obtained on an AMD Radeon
7850 GPU at default clock speeds and 1GB video memory.
Ambient occlusion is always computed for the full viewport
resolution of 1280× 720 with 16 depth layers.

A. Opacity-Based Ambient Occlusion

For OITAO the test scene consists of the Stanford Dragon
mesh with 100,000 triangles exhausting multiple depth lay-
ers and a dense triangle structure. Since the color distance to
the integrated approach is negligibly low, the following tests
only consider OITAO approaches implementing separated
blending to allow flexible AO computations.

Applying compression to each fragment list while resolv-
ing transparency reduces quality by taking only the most
important fragments into account. For medium workload
scenes four nodes are usually enough to reproduce the brute-
force result on a semi-transparent mesh as demonstrated in
figure 8. This is due to the fact that highly transparent layers
are dropped while nearly opaque layers obscure visibility of
remaining layers.

However, on heavy workload many layers with potentially
high shadowing factors are discarded resulting in a more
visible difference as shown in figure 7. Additionally dynamic
scenes may suffer from popping artifacts: Moving geometry
or changing material opacity may require important layers
which were present before to be discarded from the list.
Therefore, the precision of the AO calculations is reduced
resulting in visible inconsistencies. In such cases more
coherent results are achieved by preserving the first nodes
in the compressed list. The compression criterion presented

Figure 7. Results of brute force (left) and compression-based (right)
OITAO on heavy workload. Most pixels are covered by transparent ge-
ometry (up to 32 layers) requiring 1084.72 ms and 107.42 ms per frame
respectively.

Figure 8. Image distance comparison (right) of brute force (left) and
approximated (middle) OITAO on semi-transparent geometry

in section III-B is then only applied to fragments in the
back of the array where AO inaccuracies are obscured by
the alpha blending operations executed in the front. Figure 6
illustrates the quality improvements of applying list element
preservation (column C) compared to naive compression
schemes and the brute force method (column E). As this
comparison shows, preserving the first half of the list can
improve quality in areas covered by highly transparent sur-
faces close to the camera. Disregarding opacity and simply
keeping the closest m layers of the list results in missing
shadowing information for geometry in the back (column A).
Applying the opacity- and depth-based compression criteria
(column B) to the whole array results in missing occlusion
information for the dragon mesh which therefore neither
casts nor receives shadows.

Alternatively and at the expense of performance the
uncompressed fragment list can be used to calculate and
blend AO while sampling still relies on the compressed
list (column D). For complex scenes this further improves
quality and produces an AO map close to the brute force
result while the AO passes require about 30% more time.

Generally, the performance of an SSAO algorithm heavily
relies on the number of passes, the amount of samples taken
and the corresponding sample kernel distance in image-
space. The single pass Poisson OITAO approach uses 16 uni-
formly distributed sample directions with a depth-depending
length. Performance of the PPLL, Texture3D, Linear List
(LL) and compression-based implementations are compared
to the Dual Depth Peeling (DDP) approach of Bavoil et
al. [23] in table I.

As predicted the Texture3D approach is able to make best

Stage DDP PPLL LL Tex3D Compr.
Clear 0.87 0.20 0.01 0.20
Count 1.06
Prefix Sum 3.58
Draw 3.65 1.68 0.71 0.60 1.67
Resolve OIT 0.46 0.81 0.51 0.50 2.14
AO 11.47 12.17 9.81 9.75 6.70
Total 16.45 14.86 15.67 10.86 10.71

Table I
POISSON DISK OITAO SINGLE FRAME PERFORMANCE IN MS

use of the texture cache. The downside is a considerably
high memory consumption compared to the sparse list
approaches: For example an eight layer 3D texture always
requires 84.37 MB of video memory compared to the 4.63
MB dynamically allocated by the sparse list approaches for
the test setup. However, the expensive fragment counting
and prefix sum computations needed to maintain the Linear
List structure lead to a significant performance slowdown,
which is not amortized by the improved list traversal.

Since the test scene is sufficiently covered with 8 layers
the DDP approach achieved competitive results. On the other
hand, timing results of the Draw stage increase with more
complex scenes which demand a lot of re-rendering, whereas
the other approaches rely on a single geometry pass only.

Compressing the PPLL into a 2D texture decreases
performance in the compression stage but improves AO
performance since the fragment pool does not have to be
queried anymore. This changes for scenes with heavy OIT
workload as shown in figure 7, where the Compressed ap-
proach outperforms the brute force solutions by a minimum
factor of 10, taking four nodes into consideration. To store
the compressed list additional memory requirements of 24
bytes per-pixel are needed for four nodes and 16 bit depth
precision.

As the results in table II show, multiresolution AO is the
most taxing OITAO approach since the expensive fragment
list traversal is required multiple times. The costly Linear
List pre-computations are now fully amortized due to the
multiple passes required to generate the AO term.

B. Opaque Ambient Occlusion

To test multilayer AO on opaque geometry the following
tests are conducted on the Sibenik Cathedral mesh by Marko
Dabrovic. A comparison between single layer HBAO and its
A-buffer counterpart as well as the ray tracing result using
Blender is given in figure 9. The direct quality improvements
resulting from the additional shadows are demonstrated on
the right side of the figure, where AO is computed for the
first layer of depth only with respect to occluded geometry
resident in the 16 layer A-buffer. This improvement is es-
pecially apparent for AO algorithms catching low-frequency
occlusion detail.

Stage DDP PPLL LL Tex3D Compr.
Clear 0.88 0.18 0.01 0.19
Count 1.21
Prefix Sum 3.63
Draw 3.64 1.82 0.70 0.60 1.99
Resolve OIT 0.51 0.91 0.58 0.58 2.22
Downsample 0.41 0.41 0.43 0.40 0.53
AO Pass 1 2.95 2.90 2.50 2.96 0.91
AO Pass 2 7.33 7.11 5.76 6.86 2.54
AO Pass 3 18.61 21.31 15.33 18.66 8.17
AO Pass 4 7.90 8.95 7.86 7.13 5.82
Total 42.23 43.59 38.00 37.20 22.37

Table II
MULTIRESOLUTION OITAO SINGLE FRAME PERFORMANCE IN MS

Figure 9. From left to right: Comparison between traditional HBAO,
multilayer HBAO and Blender AO. Right side shows multilayer ambient
occlusion improving on traditional results with additional shadowing (red).

Performance benchmarks are executed in a compute
shader implementation of HBAO [26]. List compression is
applied in the same compute pass where nodes are stored
in shared memory instead of texture memory. The top four
layers of the rendered scene are favored in the compression
criterion. Since linear depth is the only necessary informa-
tion for AO sampling, the fragment pool entries are more
sparing compared to an OIT A-buffer.

For the HBAO approach 8 samples in X and Y direction
are fetched from shared memory to determine geometric
proximity. Benchmark results for Depth Peeling (8 layers),
brute force PPLL traversal, list compression and default
HBAO implementation which operates on the first layer of
depth only, are shown in table III. Even though rendering
a single frame with multilayer AO takes about ten times as
long as the default approach, the improved coherency and
temporal stability increase image quality significantly adding
depth to dynamic scenes with more plausible shadows.

VI. DISCUSSION

A problem of Nvidia’s depth peeling based approach [23]
is the expensive re-rendering of geometry for every single
layer which is not needed for the algorithm provided above.
With the proposed approach computation is not only faster
but also memory efficient, easily supporting multiple layers
due to the fragment list structure which can be used to
dynamically adjust texture buffer sizes on-the-fly. Therefore,
the approach improves on Nvidia’s multilayer algorithm in

Stage Depth Peeling Brute force Compr. Default
Clear 0.53 0.18 0.18
Draw 4.14 1.61 1.60 0.26
AO 13.98 14.41 10.14 1.11
Total 18.65 16.20 11.92 1.37

Table III
HBAO SINGLE FRAME PERFORMANCE IN MS

Figure 10. Multiresolution OITAO applied to a semi-transparent mesh

every way and can be considered a viable alternative for
improving AO quality in screen-space.

Storing the fragment entries in a 3D texture proved to
be the fastest brute force method taking advantage of texel
caches at the expense of texture memory. However, for heavy
workload the list compression scheme performs best while
still maintaining a plausible AO effect.

Regarding transparency the presented approaches are able
to produce high quality results generating and applying
AO for every geometry layer stored in the fragment list
structure. This of course depends on the SSAO algorithm
and the number of texel fetches needed as well as the
maximum number of geometry layers stored in memory.
For instance MSSAO requires multiple AO passes which
need a large amount of texel fetches due to the repeated
fragment list traversal. Relying on list compression the tested
approaches are able to improve in performance at an expense
in image quality depending on the complexity of transparent
geometry.

SSAO for opaque geometry also benefits from the addi-
tional depth layers. Compared to depth peeling a downside
is the order of fragments in the list pool: List entries are
randomly inserted into their respective lists, which theoret-
ically requires a complete traversal to account for the most
important layers. Therefore, the maximum amount of layers
plays an important role and must be chosen with respect to
the scene geometry.

VII. CONCLUSION AND FUTURE WORK

We presented a novel, multilayer SSAO approach to
effectively compute AO on transparent surfaces while im-
proving temporal stability and image quality for opaque
geometry. To reduce computational complexity with a minor
sacrifice in image quality a flexible list compression scheme
is introduced. Different methods were discussed to allow

the computation of AO terms using fragment list entries
as shadow receivers and emitters opposed to traditional
2D deferred buffers. Additionally opaque geometry receives
occlusion from transparent objects taking the corresponding
opacity into account. In contrast to the implementation of
the AMD FirePro SDK (see figure 3), the car interior is
now shadowed using every geometric layer of the scene
enabling plausible AO as shown in figure 10. By applying
the A-buffer fragment list principle to opaque geometry, the
occlusion-induced problem of screen-space based algorithms
emerging from a single 2D depth buffer was solved as well.
This proved to be a worthwhile addition to SSAO com-
putations, which can easily be applied to most approaches
solving the AO integral in screen-space.

A possible extension of the list compression scheme could
be provided by integrating additional information like the
number, depth and opacity of fragments dropped by the
criterion in the AO sampling process to make stochastic
assumptions about proximity based shadowing. The AMD
OpenGL extension AMD sparse texture providing partially
resident texture allocation could be used to implement mem-
ory efficient fragment list structures. This would improve
the Texture3D approach by combining good quality and
performance with reduced memory requirements.

ACKNOWLEDGMENT

The work of Jan Bender was supported by the Excellence
Initiative of the German Federal and State Governments and
the Graduate School CE at TU Darmstadt. The research lead-
ing to these results has received funding from the European
Commission’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no 285026.

REFERENCES

[1] L. Carpenter, “The A-buffer, an antialiased hidden surface
method,” SIGGRAPH Comput. Graph., vol. 18, no. 3, pp.
103–108, Jan. 1984.

[2] O. Zegdoun, “Amd firepro technology sdk,” http://developer.
amd.com/tools-and-sdks/graphics-development/firepro-sdk/,
July 2013.

[3] H. Meshkin, “Sort-independent alpha blending,” in GDC
Session. Perpetual Entertainment, 2007.

[4] K. Myers and L. Bavoil, “Stencil routed A-Buffer,” in ACM
SIGGRAPH 2007 sketches, 2007.

[5] C. Everitt, “Interactive order-independent transparency,”
2001.

[6] L. Bavoil and K. Myers, “Order independent transparency
with dual depth peeling,” Nvidia, Tech. Rep., 2008.

[7] F. Liu, M.-C. Huang, X.-H. Liu, and E.-H. Wu, “Efficient
depth peeling via bucket sort,” in Proc. High Performance
Graphics. ACM, 2009, pp. 51–57.

[8] M. Maule, J. Comba, R. Torchelsen, and R. Bastos, “Hybrid
transparency,” in Proc. I3D. ACM, 2013, pp. 103–118.

[9] J. C. Yang, J. Hensley, H. Grün, and N. Thibieroz, “Real-
time concurrent linked list construction on the GPU,” in Proc.
Eurographics conference on Rendering, 2010, pp. 1297–1304.

[10] M. Salvi, J. Montgomery, and A. Lefohn, “Adaptive trans-
parency,” in Proc. High Performance Graphics. ACM, 2011,
pp. 119–126.

[11] G. S. Zhukov, A. Iones, “An ambient light illumination
model,” in Proc. Rendering Techniques, 1998.

[12] M. Mittring, “Finding next gen: Cryengine 2,” in ACM
SIGGRAPH 2007 courses. ACM, 2007, pp. 97–121.

[13] P. Shanmugam and O. Arikan, “Hardware accelerated ambient
occlusion techniques on GPUs,” in Proc. Interactive 3D
graphics and games. ACM, 2007, pp. 73–80.

[14] L. Bavoil, M. Sainz, and R. Dimitrov, “Image-space horizon-
based ambient occlusion,” in SIGGRAPH talks, 2008.

[15] T. Ritschel, T. Grosch, and H.-P. Seidel, “Approximating
Dynamic Global Illumination in Screen Space,” in Proc.
Interactive 3D Graphics and Games, 2009.

[16] T.-D. Hoang and K.-L. Low, “Multi-resolution screen-space
ambient occlusion,” in Proc. VRST, 2010, pp. 101–102.

[17] K. Vardis, G. Papaioannou, and A. Gaitatzes, “Multi-view
ambient occlusion with importance sampling,” in Proc. Inter-
active 3D Graphics and Games. ACM, 2013, pp. 111–118.

[18] S. Thiedemann, N. Henrich, T. Grosch, and S. Müller, “Voxel-
based global illumination,” in Proc. Interactive 3D Graphics
and Games. ACM, 2011, pp. 103–110.

[19] M. McGuire, “Ambient occlusion volumes,” in Proc. High
Performance Graphics, 2010, pp. 47–56.

[20] T. Ritschel, “Fast gpu-based visibility computation for nat-
ural illumination of volume data sets,” Eurographics (Short
Papers), pp. 57–60, 2007.

[21] F. Hernell, P. Ljung, and A. Ynnerman, “Local ambient
occlusion in direct volume rendering,” IEEE TVCG, vol. 16,
no. 4, pp. 548–559, 2010.

[22] T. Ropinski, J. Meyer-Spradow, S. Diepenbrock,
J. Mensmann, and K. Hinrichs, “Interactive volume
rendering with dynamic ambient occlusion and color
bleeding,” in Computer Graphics Forum, vol. 27, no. 2,
2008, pp. 567–576.

[23] L. Bavoil and M. Sainz, “Multi-layer dual-resolution screen-
space ambient occlusion,” in SIGGRAPH talks, 2009.

[24] P. Knowles, G. Leach, and F. Zambetta, “Efficient layered
fragment buffer techniques,” in OpenGL Insights. CRC
Press, 2012, pp. 279–292.

[25] AMD Accelerated Parallel Processing Programming Guide,
AMD, December 2012.

[26] L. Bavoil, “Horizon-based ambient occlusion using compute
shaders,” Nvidia DirectX 11 SDK, 2011.

