
Simulating inextensible cloth using locking-free
triangle meshes

Jan Bender1, Raphael Diziol2, Daniel Bayer2

1Graduate School CE, TU Darmstadt, Germany
2Karlsruhe Institute of Technology, Germany

Abstract
This paper presents an efficient method for the dynamic simulation of inextensible cloth. The triangle
mesh for our cloth model is simulated using an impulse-based approach which is able to solve hard
constraints. Using hard distance constraints on the edges of the triangle mesh removes too many degrees
of freedom, resulting in a rigid motion. This is known as the locking problem which is typically solved
by using rectangular meshes in existing impulse-based simulations. We solve this problem by using a
nonconforming representation for the simulation model which unfortunately results in a discontinuous
mesh. Therefore, we couple the original conforming mesh with the nonconforming elements and use it
for collision handling and visualization.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-
Dimensional Graphics and Realism—Animation

1. Introduction

The simulation of inextensible surfaces is an impor-
tant research topic in computer graphics. For example,
cloth is often treated as an elastic material due to per-
formance reasons. Elastic materials can be efficiently
simulated using mass-spring systems. However, many
textiles do not stretch significantly under their own
weight. Therefore, an inextensible cloth is required for
a realistic simulation.

In this paper we present an impulse-based approach
for the simulation of inextensible cloth. Impulse-based
simulation has already been used for such models.
In [BB08] the models consist of particles linked by
hard distance constraints in a regular rectangular
structure. Triangle meshes are not supported yet by
impulse-based methods due to locking problems. We
solve this problem by using a nonconforming mesh
based on the idea of English and Bridson [EB08].
Therefore, the simulation method presented in this pa-
per can also handle triangle mesh models.

2. Related work

The dynamic simulation of cloth has a long history
in computer graphics (see [MtV05] for a survey over
20 years of cloth simulation). In [TPBF87] the first
general physical model to simulate elastic non-rigid
curves, surfaces, and solids was presented. In this pa-
per a semi-implicit integration scheme is used in or-
der to perform a stable simulation with stiff materi-
als. In the following years many publications focused
on pure explicit integration methods as for exam-
ple [BHW94] where cloth is treated as elastic ma-
terial. The use of explicit methods was mainly jus-
tified by the lower computational costs compared to
(semi-)implicit methods. The simulation of inextensi-
ble cloth using spring models leads to stiff differential
equations [HES03]. Solving the differential equation
with an explicit integration method leads to instabil-
ities in the simulation and requires small time steps.
Baraff and Witkin [BW98] solved this problem by us-
ing an implicit integration scheme which is able to han-
dle large time steps. Instead of purely relying on stiff
springs, Provot [Pro95] proposed to correct the parti-
cle positions directly if their extensions exceed more
than 10%, eliminating the need for an implicit inte-

J.Bender at al. / Simulating inextensible cloth using locking-free triangle meshes

gration scheme. Since such corrections may introduce
self-penetrations, Bridson et al. [BFA02] used impulses
in order to limit the strain and the strain rate.

Instead of computing spring forces to satisfy the
constraints approximately other simulation methods
try to compute an accurate solution. Goldenthal et
al. [GHF∗07] used constrained Lagrangian mechan-
ics and presented a novel fast projection method
for the simulation of inextensible cloth. Bender and
Bayer [BB08] proposed a parallel simulation method
based on an impulse-based approach [Ben07] which
enables strain limitation. A continuum-based strain
limiting approach was presented by Thomaszewski et
al. [TPS09]. In [MC10] only a coarse mesh is simu-
lated to reduce stretchiness and a higher resolution
mesh is attached in order to get highly detailed wrin-
kles. In order to solve positions constraints, Müller et
al. [MHHR06] used direct position corrections com-
puted with a Gauss-Seidel type iteration method. The
disadvantage of this approach is that velocity based
constraints cannot be handled.

No matter which of the above described simulation
methods is used, locking can occur in case of inex-
tensible cloth [LTJ07]. The main target of this work is
to solve this problem for the impulse-based simulation.
The locking problem is not only important when simu-
lating cloth but also for elastically deformable objects.
For example, when simulating a deformable model us-
ing a linear finite element method with tetrahedral
elements, the model generally locks in case of a high
Poisson’s ratio. Irving et al. [ISF07] showed how to still
conserve the volume with a locking-free formulation by
generating a divergence-free velocity field based on the
one-ring of tetrahedrons. Instead of using tetrahedral
elements, Kaufmann et al. [KMBG09] showed that the
problem does not occur when using a Galerkin FEM
method which is based on nonconforming or discon-
tinuous shape functions. Following English and Brid-
son [EB08], we also use nonconforming elements to
resolve locking in case of inextensible cloth.

3. Simulation method

3.1. Time integration

The cloth model used for the simulation is a mesh
of particles. Each particle has a mass m, a position x
and a velocity v. In our simulation we integrate the
velocities and positions in the following way:

v(t +h) = v(t)+ 1
m

Fh

x(t +h) = x(t)+v(t)h+ 1
2m

Fh2 (1)

where F are forces acting on the particles and h is the
time step size. Any other integration method can be

used but the same method must also be used for the
preview in section 3.2.

3.2. Constraints

For the simulation of inextensible cloth we use dis-
tance constraints in order to keep the distance between
two particles constant. Such a constraint consists of
two parts. The first part constrains the motion of the
linked vertices by the following implicit function:

Cpos(xi,x j) = |xi−x j|−d0
i j = 0

where d0
i j > 0 is the initial distance between particle i

and j. The second part is the time derivative of Cpos

and requires that the relative velocity of the particles
in direction of the constraint is zero. Therefore, we
define the function:

Cvel(xi,x j,vi,v j) = (v j−vi) ·
x j−xi

|x j−xi|
= 0.

In the following we will call the first part position con-
straint and the second part velocity constraint.

We use an impulse-based approach for the simula-
tion of the constraints. The simulation is performed
by the following steps:

1. Solve all position constraints by computing im-
pulses using a preview of the particle positions.

2. Perform an integration step as described in sec-
tion 3.1.

3. Determine impulses to solve the velocity con-
straints.

A constraint is satisfied by computing a pair of im-
pulses p and −p for the corresponding particles. The
velocity of a particle can be directly changed by an
impulse but its position only changes during the inte-
gration step. Therefore, a preview is used to solve the
position constraints.

In this work the preview of a particle position is
done by evaluating equation 1. Since we only change
the velocities of the particles by impulses, this preview
can also be done by any other integration method (e.g.
by the Euler method) as long as the same method is
used for the preview and the integration step.

After computing the preview positions xi(t + h) for
all particles, the constraint functions are evaluated in
order to get the expected position errors Cpos(xi(t +
h),x j(t +h)). If we assume that the relative motion of
two linked particles is linear, the magnitude of the
velocity change that eliminates the corresponding po-
sition error during an integration step is

∆vpos =
Cpos(xi(t +h),x j(t +h))

h
. (2)

In general the relative motion is not linear but in prac-
tice it is almost linear during the small time steps used

J.Bender at al. / Simulating inextensible cloth using locking-free triangle meshes

for the simulation. Therefore, equation 2 is at least a
good approximation of the required velocity change.

Since an impulse changes the velocity of a particle
directly, the velocity change required for satisfying a
velocity constraint is simply

∆vvel =Cvel(xi(t),x j(t),vi(t),v j(t)).

Now that we know the required velocity changes,
we compute corresponding impulses for the particles.
The relative velocities of two dynamic particles i and
j change by

1
mi

p− 1
m j

(−p) =
(

1
mi

+
1

m j

)
p = ∆v

when a pair of impulses p and −p is applied to the
particles. To differentiate between static and dynamic
particles we define

ki =

{
1
mi

if particle i is dynamic

0 otherwise.

The correction impulse p for a distance constraint is
then determined by:

p =
1

ki + k j
∆vpos ·

∂Cpos

∂xi

p =
1

ki + k j
∆vvel ·

∂Cvel

∂vi
.

The direction of the impulse is the gradient of the con-
straint C at time t which results from D’Alembert’s
principle. Notice the difference to position-based dy-
namics [MHHR06] where the direction is the gradient
at time t +h. The impulse can be computed if the two
conditions ki +k j 6= 0 and |x j−xi| 6= 0 are fulfilled. The
first condition is generally satisfied because a distance
constraint between two static particles makes no sense.
Since the position constraint is fulfilled after each sim-
ulation step, |x j−xi|= 0 is only possible if d0

i j = 0 which
is excluded by the definition of the position constraint.
Also note that the second condition is not necessarily
satisfied for position-based dynamics.

The impulses of two distance constraints depend on
each other if they have a common particle. There-
fore, we determine all impulses at once by solving a
system of linear equations which takes the dependen-
cies into account. The matrix of this system reflects
the mesh structure of the simulation model. We have
a diagonal element for each distance constraint and
an off-diagonal element for each pair of constraints
with a common particle. Hence, the resulting matrix
is sparse. For the sign of an off-diagonal element it is
important if the common particle is the first or sec-
ond one of the corresponding constraints. Therefore,
we differentiate between the following cases for two

constraints i and j:

Ki, j =

ki1 if i1 = j1∧ i2 6= j2
ki2 if i2 = j2∧ i1 6= j1
−ki1 if i1 = j2∧ i2 6= j1
−ki2 if i2 = j1∧ i1 6= j2
ki1 + ki2 if i = j
0 otherwise

where i1 and i2 are the indices of the first and second
particle of constraint i.

In order to compute an impulse for a constraint i
regarding all dependencies, we must project the im-
pulses of the dependent constraints into the space of
constraint i. This is done by using the projection ma-
trix

Pi =

(
xi2 −xi1
|xi2 −xi1 |

)T

∈ R1×3.

In the following we define the system of linear equa-
tions for the impulse magnitudes:

Ap̃ = ∆v.

The dimension of this system equals the number of
distance constraints in the model. An element Ai, j of
the matrix is the value Ki, j combined with the corre-
sponding projection matrices:

Ai, j = Ki, jPiPT
j .

Therefore, the matrix A is symmetric. For the diagonal
elements no projection is required since Pi PT

i = 1. The
vectors ∆v and p̃ contain all required velocity changes
and the magnitudes of their corresponding impulses:

∆v = (∆v1, . . . ,∆vn)
T

p̃ = (p̃1, . . . , p̃n)
T .

Finally, we multiply the projection matrices with the
impulse magnitudes in order to get three-dimensional
impulses:

pi = p̃i PT
i .

The impulses solve the position constraints for ∆vpos
on the right hand side of the system and the velocity
constraints for ∆vvel.

In contrast to ∆vvel the vector ∆vpos was only a
good approximation. Therefore, we solve the system
multiple times in the case of position constraints un-
til a certain accuracy is reached. In practice, we need
one or two iterations for accurate results. The veloc-
ity constraints are satisfied immediately after apply-
ing the impulses while the position constraints are ful-
filled after the next integration step because the de-
sired position changes are caused indirectly by manip-
ulating the velocities. The most time consuming part

J.Bender at al. / Simulating inextensible cloth using locking-free triangle meshes

of solving the system is the factorization of the ma-
trix. The matrix for position and velocity constraints
is the same and it is constant at time t. Hence, the ma-
trix generation and factorization must be performed
only once per time step. The factorization can then
be used for solving position and velocity constraints at
time t. Therefore, the simulation does not slow down
much even if several iterations are necessary in order
to correct the positions. In this work we used PAR-
DISO [SG02,SG04] for solving which is optimized for
sparse systems.

3.3. Simulation model

The distance constraints described in the last section
are hard constraints. If we use a triangle mesh for the
simulation and define such a constraint for each edge,
the triangles remain rigid and just a trivial bending is
possible. Wrinkles in the triangle mesh are only pos-
sible along edges which build a straight line through
the whole mesh. Therefore, we have a locking problem
with this kind of model. To solve this problem we use
nonconforming elements as proposed in [EB08].

Instead of positioning the particles of the simula-
tion model at the vertices of the mesh, we put them
on the midpoints of the edges (see figure 1). In this
way the number of variables is increased since two ad-
jacent triangles have now only one common particle
instead of two. These particles are then linked by dis-
tance constraints. The resulting model consisting of
nonconforming elements has more degrees of freedom
which solves the locking problem.

Figure 1: The particles of the nonconforming mesh
(red) are located at the midpoints of the original edges
(black). Distance constraints are defined between these
particles.

The masses of the particles depend on the triangu-
lation of the simulated mesh. If we assume that the

area density ρ of the model is constant, the mass of a
particle can be determined by:

m = ρ ·a

where a is the area represented by the particle. The
total mass of the original mesh and the new midpoint
mesh must be equal. Therefore, the particles of the
new mesh must have a mass which corresponds to their
area in the original mesh. Each particle lies on an edge
of the original mesh. An edge is part of one (on the
boundary) or two triangles. The area represented by a
particle is therefore determined by summing up the ar-
eas of these adjacent triangles and dividing the result
by three since we have three particles per triangle.

The model described so far has too many degrees
of freedom at the boundary. Boundary triangles of the
nonconforming mesh have only one or two common
particles with interior triangles. Therefore, they can
rotate freely around these common particles without
regarding the orientations of adjacent triangles. This
problem is solved by introducing additionally distance
constraints.

(a) boundary edge with

adjacent triangle

(b) next neighboring tri-

angle

(c) candidate particles
for boundary constraint

(d) boundary constraint

Figure 2: Definition of a boundary constraint

In order to define the boundary constraints, we first
determine all boundary edges of the original mesh.
These edges have only one adjacent triangle (see fig-
ure 2(a)). This boundary triangle has at most two
neighboring triangles which are determined in the next
step (see figure 2(b)). A neighboring triangle has two
edges which are not common with the boundary trian-
gle. The particles at the midpoints of these edges can
be used for the definition of a boundary constraint (see
figure 2(c)). Finally, we just use the particle with the
smallest distance to the particle on the boundary edge

J.Bender at al. / Simulating inextensible cloth using locking-free triangle meshes

(see figure 2(d)). The result for the mesh of figure 1 is
shown in figure 3.

Figure 3: Additional boundary constraints for a non-
conforming mesh

The problem of using a nonconforming mesh for
simulation is that we get discontinuities in our simula-
tion model apart from the midpoint particles. There-
fore, the collision detection and the visualization of
the model is not performed directly. Instead we cou-
ple the original mesh with the nonconforming elements
and adapt the vertex positions.

The vertex positions of the conforming mesh are
determined by interpolating the vertex positions of
the original mesh. For a triangle of the nonconform-
ing mesh, we can compute the vertex positions of its
corresponding original triangle by

xc1 = xnc2 +xnc3 −xnc1

xc2 = xnc3 +xnc1 −xnc2

xc3 = xnc1 +xnc2 −xnc3

where xnci is the midpoint of the edge opposite to the
conforming point i. The final positions xc of the con-
forming vertices are determined by averaging their cor-
responding values xc. We use an averaging matrix B
to describe the transfer of positions and velocities be-
tween the nonconforming and the conforming mesh:

xc = Bxnc

vc = Bvnc

The ghost conforming mesh is used for visualization
and collision handling. We use the collision handling
described in [BWK03] in order to obtain a state with-
out intersections for the conforming mesh. The result-
ing mesh is used for rendering. After collision handling
we must transfer the position change ∆xc of the con-
forming mesh to the nonconforming vertices. The final

positions xncf are determined using a Lagrange multi-
plier form as described in [EB08]:

xncf = xnc+BT
λ.

The vector λ is determined by solving the symmetric,
positive definite linear system

BBT
λ = ∆xc.

This guarantees that the interpolation of the final po-
sitions cause exactly the desired position change in the
conforming mesh:

Bxncf = xc+∆xc.

Since the matrix BBT is constant, its factorization can
be precomputed. Therefore, the computation of the
vector λ does not require much computation time dur-
ing the simulation. Finally, we update the velocities of
the nonconforming mesh by

vncf = vnc+
xncf −xnc

h
.

Positions and velocities of the nonconforming mesh
must only be updated if the collision handling causes
a change of the conforming mesh.

Since we use a nonconforming mesh for the simula-
tion, we also have to compute the bending forces for
this mesh. Therefore, an adapted version of the bend-
ing model described by Wardetzky et al. [WBH∗07]
can be used as proposed in [EB08].

4. Results

In this section we present results of the presented
method. All simulations were performed on a PC with
two Intel X5650 processors with 2.66 GHz. The sys-
tems of linear equations are solved using PARDISO.
We performed the impulse-based simulation with a
maximum tolerance of 10−6 m for the position con-
straints.

Figure 4 shows the model of a table cloth. The orig-
inal mesh consists of 4722 triangles and 7143 edges.
The nonconforming mesh has 7143 particles, 14166
distance constraints and 240 boundary constraints.

In the second simulation (see figure 5) we dropped
a 100× 100 mesh on a sphere. The model consists of
10000 particles and 59396 distance constraints. En-
glish and Bridson ran a similar simulation at 9.52 sec-
onds/step on an Athlon 64 3500+.

The timings for a simulation step with a step size
of 1 ms are shown in table 1. The main part of the
total computation time is required for the factorization
of the matrix. The computation time for solving the
position constraints is a bit higher than the one for
the velocity constraints. The reason for this is that

J.Bender at al. / Simulating inextensible cloth using locking-free triangle meshes

Scene # constraints factorization position constraints velocity constraints total

Table cloth 14406 73.6 ms 7.2 ms 6.6 ms 109.5 ms
Sphere 59396 335.6 ms 31.1 ms 26.1 ms 572.4 ms

Table 1: Simulation timings for table cloth and sphere scene. The table shows the time required for the creation
and factorization of the matrix, the solution of all position and velocity constraints and the total computation time
including collision handling.

Figure 4: Table cloth simulated with a nonconform-
ing mesh

Figure 5: 100×100 mesh dropped on a rigid sphere

the solver required between one and two iterations for
an accurate solution of the position constraints while
the velocity constraints can be solved exactly without
an iteration process.

5. Conclusion

We presented an impulse-based simulation method
for inextensible surface models. In contrast to mass-
spring models, hard distance constraints are used to
prevent the surfaces from stretching. Former impulse-
based methods were limited to regular rectangular

mesh models, since the distance constraints cause lock-
ing problems when using a conforming triangle mesh
for the simulation. We overcome this limitation by us-
ing a nonconforming mesh defined in the midpoints
of the original mesh. Since this introduces discontinu-
ities, the original conforming mesh is coupled in order
to perform collision handling and visualization.

References

[BB08] Bender J., Bayer D.: Parallel simulation of in-
extensible cloth. In Virtual Reality Interactions and
Physical Simulations (VRIPhys) (Grenoble (France),
Nov. 2008), pp. 47–56. 1, 2

[Ben07] Bender J.: Impulse-based dynamic simulation
in linear time. Computer Animation and Virtual Worlds
18, 4-5 (2007), 225–233. 2

[BFA02] Bridson R., Fedkiw R., Anderson J.: Robust
treatment of collisions, contact and friction for cloth an-
imation. ACM Trans. Graph. 21 (2002), 594–603. 2

[BHW94] Breen D. E., House D. H., Wozny M. J.:
Predicting the drape of woven cloth using interacting
particles. In Proceedings of Computer graphics and in-
teractive techniques (New York, NY, USA, 1994), SIG-
GRAPH ’94, ACM, pp. 365–372. 1

[BW98] Baraff D., Witkin A.: Large steps in cloth
simulation. In Proceedings of Computer graphics and
interactive techniques (New York, NY, USA, 1998), SIG-
GRAPH ’98, ACM, pp. 43–54. 1

[BWK03] Baraff D., Witkin A., Kass M.: Untangling
cloth. ACM Transactions on Graphics 22, 3 (2003), 862–
870. 5

[EB08] English E., Bridson R.: Animating developable
surfaces using nonconforming elements. ACM Trans.
Graph. 27 (August 2008), 66:1–66:5. 1, 2, 4, 5

[GHF∗07] Goldenthal R., Harmon D., Fattal R.,
Bercovier M., Grinspun E.: Efficient simulation of
inextensible cloth. ACM Transactions on Graphics 26,
3 (2007), 49. 2

[HES03] Hauth M., Etzmuß O., Straßer W.: Analy-
sis of numerical methods for the simulation of deformable
models. The Visual Computer 19, 7-8 (2003), 581–600.
1

[ISF07] Irving G., Schroeder C., Fedkiw R.: Volume
conserving finite element simulations of deformable mod-
els. In ACM SIGGRAPH 2007 papers (New York, NY,
USA, 2007), SIGGRAPH ’07, ACM. 2

[KMBG09] Kaufmann P., Martin S., Botsch M.,
Gross M.: Flexible simulation of deformable models
using discontinuous Galerkin FEM. Graph. Models 71
(July 2009), 153–167. 2

J.Bender at al. / Simulating inextensible cloth using locking-free triangle meshes

[LTJ07] Liu Y.-J., Tang K., Joneja A.: Modeling dy-
namic developable meshes by the hamilton principle.
Comput. Aided Des. 39 (September 2007), 719–731. 2

[MC10] Müller M., Chentanez N.: Wrinkle
meshes. In Proceedings of the 2010 ACM SIG-
GRAPH/Eurographics Symposium on Computer
Animation (Aire-la-Ville, Switzerland, Switzerland,
2010), SCA ’10, Eurographics Association, pp. 85–92. 2

[MHHR06] Müller M., Heidelberger B., Hennix M.,
Ratcliff J.: Position based dynamics. In Workshop in
Virtual Reality Interactions and Physical Simulations
(VRIPHYS 2006) (Madrid, Nov. 2006). 2, 3

[MtV05] Magnenat-thalmann N., Volino P.: From
early draping to haute couture models: 20 years of re-
search. The Visual Computer 21 (2005), 506–519. 1

[Pro95] Provot X.: Deformation constraints in a mass-
spring model to describe rigid cloth behavior. In In
Graphics Interface (1995), Davis W. A., Prusinkiewicz
P., (Eds.), Canadian Human-Computer Communica-
tions Society, pp. 147–154. 1

[SG02] Schenk O., Gärtner K.: Two-level dynamic
scheduling in pardiso: improved scalability on shared
memory multiprocessing systems. Parallel Comput. 28,
2 (2002), 187–197. 4

[SG04] Schenk O., Gärtner K.: Solving unsymmetric
sparse systems of linear equations with pardiso. Future
Gener. Comput. Syst. 20, 3 (2004), 475–487. 4

[TPBF87] Terzopoulos D., Platt J., Barr A., Fleis-
cher K.: Elastically deformable models. In Proceedings
of Computer graphics and interactive techniques (New
York, NY, USA, 1987), SIGGRAPH ’87, ACM, pp. 205–
214. 1

[TPS09] Thomaszewski B., Pabst S., Straßer W.:
Continuum-based strain limiting. Comput. Graph. Fo-
rum 28, 2 (2009), 569–576. 2

[WBH∗07] Wardetzky M., Bergou M., Harmon D.,
Zorin D., Grinspun E.: Discrete quadratic curvature
energies. Comput. Aided Geom. Des. 24 (November
2007), 499–518. 5

