
Optimized Impulse-Based Dynamic Simulation

Daniel Bayer, Raphael Diziol and Jan Bender

Universität Karlsruhe (TH), Karlsruhe, Germany

Abstract
The impulse-based dynamic simulation is a recent method to compute physically based simulations. It supports
the simulation of rigid-bodies and particles connected by all kinds of implicit constraints. In recent years the
impulse-based dynamic simulation has been more and more used to simulate deformable bodies as well.
These simulations create new requirements for the runtime of the method because very large systems of connected
particles have to be simulated to get results of high quality. In this paper several runtime optimizations for the
impulse-based dynamic simulation are presented. They allow to compute the same simulations at a fraction of
time needed for the original method. Therefore, larger systems or simulations with increased accuracy can be
simulated in realtime.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Physically based modeling, Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

Today physically based simulations are a major part of many
applications. They are widely used in research facilities, for
example to test, develop or train robots. The use of virtual
simulations also helps to avoid many expensive real life ex-
periments. They even allow to get information about proce-
dures that cannot be observed at all, due to their dimension
or speed. In such simulations a high degree of accuracy is
needed. Nevertheless, a fast simulation would be appreci-
ated or at least a chance to preview the simulation results to
fix gross errors before starting a longtime simulation.

Furthermore, physically based simulations are widely
used in the entertainment industry to produce realistic ani-
mations for movies or computer games. In such simulations
the accuracy is of lower importance. Especially in computer
games and other real-time applications like virtual reality,
the speed of the simulation comes to the fore. But the simu-
lations have to be accurate enough to be stable and to deliver
reliable results.

These requirements show the need for a fast and an accu-
rate simulation method as well. The impulse-based dynamic
simulation, which is used in this paper, can meet this expec-
tations. One of its big advantages above other methods is its

scalability between accuracy and runtime. Nevertheless, the
original method offers many possibilities for optimizations.
In this paper we present some of these optimizations to make
the impulse-based dynamic simulation faster or more accu-
rate within the same runtime.

2. Related work

In [TPBF87] the first general physical model for dynamic
simulations of two- and three-dimensional deformable bod-
ies was presented. It is based on implicit time integration and
simulated by the use of a matrix solver. However, because of
the limitations of former computer hardware this approach
was only suitable for small models and needed much time to
compute.

Therefore, explicit methods became more popular in the
later days. Those methods where mainly based on meshes
of particles connected with springs and dampers. They al-
low very fast simulations because each connection is han-
dled without consideration of the others. But such simula-
tions have the drawback that the error cannot be limited or
predicted. This leads to very elastic simulations that are of-
ten recognized as physically implausible. To reduce the ex-
tensibility, large spring constants are needed, and therefore

D. Bayer, R. Diziol & J.Bender / Optimized Impulse-Based Dynamic Simulation

the step sizes have to be chosen very small to solve the up-
coming stiff differential equations [HES03].

Through the increased hardware performance and moti-
vated by the problems of the explicit methods, implicit meth-
ods regained attention. Such an implicit approach is pre-
sented in [BW98], which was analyzed by various groups
(e.g. [VT00]). With this work the elasticity could be reduced
and the gained stability allowed to take larger time steps.
However, additional stabilization techniques are needed to
counter numerical drift and therefore to limit the error. And,
furthermore, an overdetermined and in general non-linear
system of equations has to be solved. This still needs a lot
of computational time, especially if the simulations are com-
plex and the resulting matrices are large.

To encounter this performance problems so-called IMEX-
methods (mixed implicit and explicit) were proposed. They
are based on the idea to split the differential equations in stiff
and non-stiff parts and solve them separately. For example
[HCJ∗05] used implicit constraint enforcement only if the
strain exceeds 10%.

Other methods to simulate deformable bodies are geomet-
rically motivated, as for example [MHTG05]. This method is
used to simulate soft bodies and is based on shape-matching
between the original and the actual model. [SSBT08] pro-
posed another geometric method based on shape-matching
to simulate cloth. Such geometric methods are very stable
and efficient but in general not physically correct.

Also level of detail methods were used to further optimize
the runtime. These methods are mainly based on simplifica-
tion by the cost of quality. For example [KC02] uses a coarse
mesh for the global motion and a fine mesh for details. Such
multi-grid methods were further examined, as for example
in [OGRG07].

Another way to optimize the runtime is to use special
hardware to compute dynamic simulations, as the graph-
ics boards. Since general purpose computation on the GPU
(GPCGPU) gained relevance, many of the mentioned meth-
ods were transformed to the GPU. Such methods are for
example [Zel05] for explicit spring-damper simulations or
[BBD09] for the impulse-based dynamic simulation.

Besides the computation on the GPU a further optimiza-
tion of the impulse-based dynamic simulation is presented
in [BB08]. It is based on parallel solving of a linear systems
of equations.

3. Impulse-based dynamic simulation

The impulse-based dynamic simulation is a recent method to
simulate articulated multi body systems (cf. [BS06]). It han-
dles particles and rigid bodies and enforces constraints by
the successive appliance of impulses. It resolves constraints
implicitly and therefore can handle large step sizes. These
constraints can either be bilateral (holonomic) or unilateral

(non-holomic), for example, joints or contacts. This method
also handles systems with cycles and is not affected by nu-
merical drift (cf. [BS06]).

3.1. Particle simulation

A particle, or point mass, is a body without extend and there-
fore has, in contrast to rigid bodies, no rotation. Its physical
state can be expressed by its constant scalar mass m, its po-
sition p and its linear velocity v. To dynamically simulate a
particle, its position and velocity have to be integrated over
a time step of size h. Using external forces F that are con-
stant during [t0, t0 +h], the new position and velocity can be
directly computed by the following equations:

v(t0 +h) = v(t0)+
F
m

h (1)

p(t0 +h) = p(t0)+v(t0)h+
1
2

F
m

h2 (2)

where t0 is the actual time before the time step.

3.2. Constraint enforcement

The particles’ motion is constrained by the use of implicit
functions

c(p,v, t) = 0 or c(p,v, t)≥ 0 ,

where the vectors p and v contain all positions and velocities
of the particles. Any function of this kind can be used to
restrict the motion.

To enforce constraints that are dependent on the particles
positions, their state is evolved forward in time. This is done
by integrating the particles’ positions by the use of equa-
tion 2. With this predicted state the constraint error e is com-
puted by solving the constraint function at time t0 +h. If the
error is greater than a certain tolerance value εd , a correc-
tion impulse ip is applied. For two bodies i and j, which are
linked by a constraint c, this impulse is given by:

ip = (
1
mi

+
1

m j
)−1 ∂c

∂p
e 1

h
.

The impulse points in the direction ∇c as the principle of
virtual work states and is applied to both linked bodies in
opposite directions:

vi(t) := vi(t)+m−1
i · ip ,

v j(t) := v j(t)−m−1
j · ip .

Hence, ip does not change the system’s energy. This impulse
instantaneously changes the velocity of the linked bodies so
that the error is eliminated.

To handle multiple constraints, this method processes
them one after another. Unfortunately, the fulfillment of one
constraint may violate another one. Therefore, this process
is repeated iteratively until all errors are beneath ε. This pro-
cess converges to the physical correct solution (cf. [SBP05]).

D. Bayer, R. Diziol & J.Bender / Optimized Impulse-Based Dynamic Simulation

After all position dependent constraints are satisfied, it is
ensured that their error is below εd in the next time step.
Therefore, the new positions and velocities can be computed.

Afterwards the velocity dependent constraints are com-
puted in the same manner. Again, correction impulses are
computed iteratively. However, this time not to correct the
predicted positions but directly their velocities. Thus, the po-
sition prediction is omitted. An impulse which corrects a ve-
locity constraint is obtained by the following equation:

iv = (
1
mi

+
1

m j
)−1 ∂c

∂v
e ,

where e is the error of the velocity constraint. This impulse
is then, again, applied with opposite signs.

If only velocity independent constraints are simulated, the
second loop can be ignored. But since every position con-
straint also makes demands on the velocities (cf. 3.3), this
second loop can increase stability and lower the number of
needed iterations in the next time step, even in the absence
of velocity dependent constraints.

Figure 1 summarizes the whole process of the impulse-
based dynamic simulation as a scheme.

∀|ci| ≤ εd ∀ci Predict positions

|ci| ≤ εd

Compute
p(t+ h),v(t + h)

Compute and apply ip

∀|ci| ≤ εv ∀ci

|ci| ≤ εv

t = t+ h Compute and apply iv

no

no

yes

no

no

yes

yes

yes

1

Figure 1: Scheme of the impulse-based dynamic simulation.

3.3. Distance constraint

A distance constraint restricts the motion of two particles, so
that their initial distance is conserved during the simulation.
All other movement is not affected. Thus, exactly one degree
of freedom along the connecting line is removed. The con-
straint is therefore one-dimensional. Such a constraint can

be imagined as if the particles would be connected with a
bar. As implicit function it can be described as follows:

cdist(p1(t),p2(t)) = |p2(t)−p1(t)|−dist ,

where p1(t) and p2(t) are the positions of the connected par-
ticles, dist is their initial distance and t is the time. The con-
nected particles will always have the same distance, if this
function returns zero during the whole simulation.

For the following sections the normalized connecting vec-
tor (p2(t)−p1(t))
|p2(t)−p1(t)| is denoted as constraint direction n.

With this notation the derivatives of the constraint func-
tion are:

∂cdist
∂p

= n ,

∂cdist
∂v

= 0 ,

∂cdist
∂t

= n(v2(t)−v1(t)) .

The second derivative is zero because the constraint does not
directly depend on velocities. With the first derivative we can
compute the constraint’s correction impulse as:

ip = n
[
(

1
mi

+
1

m j
)−1cdist(p1(t +h),p2(t +h))

1
h

]
.

The third derivative defines a constraint for the velocities of
the connected particles:

n(v2(t)−v1(t)) = 0 ,

which ensures that their relative velocity along the con-
straints direction is zero. To achieve higher accuracies, this
constraint can be computed by the velocity constraint loop
described in 3.2, but this is not necessarily required to get
stable simulations.

To satisfy the velocity condition a correction impulse is
computed by:

iv = n
[
(

1
mi

+
1

m j
)−1n(v2(t)−v1(t))

]
.

3.4. Contact constraint

A contact constraint allows the affected bodies to move only
away from each other (cf. [Bar94]). Like the distance con-
straint only one degree of freedom, along the contact normal,
of the connected bodies is affected. Since only particles are
discussed in this paper, they are expanded to sample contacts
between them. We do this by introducing a radius r for each
particle. Then a contact constraint between to particles can
be formulated as:

ccontact(p1(t),p2(t)) = |p2(t)−p1(t)|− (r1 + r2) .

It is assured that the two connected particles will not pene-
trate, if this function is greater or equal to zero during the
whole simulation.

D. Bayer, R. Diziol & J.Bender / Optimized Impulse-Based Dynamic Simulation

The derivatives are the same as for the distance constraint.
As well an unilateral version of the distance constraint can
be used to create a constraint that behaves like a rope. To do
this, cdist is multiplied by −1 to obtain crope = −cdist ≥ 0.
Such a constraint would ensure that the distance between
two particles will not exceed dist, figuratively spoken as
if they were connected by a rope of length dist. The only
difference in handling such unilateral constraints using the
impulse-based dynamic simulation is, that the correction im-
pulses are only applied if the constraint error is below −ε.

4. Optimized impulse-based dynamic simulation

The following sections describe how the inner loop, meaning
one iteration, is optimized. Therefore, we recall that in each
iteration, for every constraint, the preview and if needed a
correction impulse is computed (cf. 3.2). Depending on the
number of connected bodies this can take a lot of computa-
tional time. Because this time is needed for each iteration,
optimizations of this computation promises a big speedup to
the overall process, which is proved in the results section 5.

In the following sections the optimizations are described
with the distance constraint as showcase. If not mentioned
otherwise all information can be transformed to the contact
constraint by setting dist to (r1 + r2).

4.1. Alternative constraint formulations

As seen in 3.3 the normalized constraint direction n is
needed to apply the correction impulses of a constraint. This
involves the computation of the length between the con-
nected particles which is also part of the computation of the
constraint error. It is quite obvious that this double computa-
tion is unnecessary. Mathematically spoken we can reformu-
late the constraint functions from 3.3 by reusing the vector
n:

cdist = n(p2(t)−p1(t))−dist and

ccontact = n(p2(t)−p1(t))− (r1 + r2) .

Using these reformulated functions result in the same sim-
ulation, but due to the avoidance of additional square root
computations the runtime is greatly enhanced.

4.2. Anticipation of constraint errors

The default procedure of the impulse-based dynamic simu-
lation is to process one constraint after the other. For each
constraint, for both of the connected particles, the preview
of their positions is computed. Based on this new positions
the constraint function is evaluated to get the constraint error
(cf. 3.2). Even if only a few vector operations are needed to
obtain the new constraint error this implies some unneces-
sary computations.

Therefore, we propose a new efficient method to compute
the correction impulses by anticipating the constraint errors

of the other connected constraints. To do this, the constraint
error of all constraints is computed prior to the first itera-
tion. This can be done efficiently during the computation of
the constraint direction for each constraint. At this point the
preview position of each particle in the absence of any con-
straint is computed. In doing so we avoid to compute the
same particle more than once by saving the time step of the
last update. Since the constraint direction has to be normal-
ized, the initial constraint error e can be directly computed
without any further operations:

n = (a−b)
l = |n|
e = l−dist

n =
1
l

n ,

with the previewed positions a = pa(t+h) and b = pb(t+h)
of the two connected particles a,b and their initial distance
dist. During the further processing we update this error in-
stead of computing it again in every step. Hence, we need
only to test if e > ε at the beginning of each joint correction.
If this is the case, a correction has to be done. But we do not
compute the correction impulse i explicitly, we rather save
the velocity change as scalar magnitude v′ based on the er-
ror. If the maximum impulse per correction is not limited,
this value can be computed by:

v′ = v′+(
1

ma
+

1
mb

)−1 · e
h

with the masses ma and mb of the connected particles. To
avoid unnecessary calculus, we do not divide by the time
step size h and save the position change directly: The error
itself simply can be set to zero, because this change of the
positions completely eliminates it.

p′ = p′+(
1

ma
+

1
mb

)−1 · e

e = 0

This is not the case, if the impulse is limited by imax = p′max/h

and the error is greater than ε/h. In this case the following
two equations yield the new error and position change mag-
nitude:

p′ = p′+(
1

ma
+

1
mb

)−1 · p′max

e = e− (
1

ma
+

1
mb

)−1 · p′max .

Furthermore, we anticipate the error of the additional con-
straints connected to one of the both connected bodies dur-
ing the correction of this constraint. This can be done very
efficiently in the following way.

Without loss of generality let a be one of the connected
bodies of constraint ci and Ca the set of all constraints con-
nected to a with common body a. Then for every c j ∈ Ca

D. Bayer, R. Diziol & J.Bender / Optimized Impulse-Based Dynamic Simulation

with c j 6= ci the error e j is computed by:

e j =−dist j +n j(a j−b j) .

Since only one constraint is allowed to connect the same
bodies and a j = ai, b j remains unchanged. But a j is modi-
fied through the correction of ci by:

a j = ai +niei ,

with 4.2 follows:

e′j = −dist j +n j((ai +niei)−b j)

= −dist j +n j(a j−b j)+n jni · ei

= e j +n jni · ei .

Since n jni is constant for at least one iteration this dot prod-
uct can be precomputed during the initial computation of the
constraint direction. Therefore, the new error of the addi-
tional constraints can be anticipated by a single multiplica-
tion.

At the end of all iterations the position change magnitude
can be used to obtain the new particles’ positions and veloci-
ties. For a particle i with the set of constraints Ci and external
forces F, this is done by the following equations:

p′ = ∀c j ∈ Ci :

{
n j · p′j ; i is 1st body of c j

−n j · p′j ; i is 2nd body of c j

pi(t +h) = pi(t)+p′

vi(t +h) = vi(t)+ 1/h ·p′+h ·F .

Velocity constraints can be handled in the same manner,
with the only exceptions that the constraint error e is not
divided by the step size h and the positions of the particles
are not altered.

The use of this anticipated error and optimized impulse
computation decreases the needed computational time as
section 5 shows. Especially, if the constraint directions do
not change between the iterations the runtime is greatly low-
ered. As section 5 shows simulations can be computed more
than two times faster than without this optimization.

If the constraint direction is changed between every itera-
tion (cf. 4.4), the constraint errors have only to be anticipated
for constraints that have not yet been computed in this iter-
ation, because the error in the next iteration will be reseted
according to the new constraint direction. Even if the con-
straint direction is changed in every iteration, the proposed
method decreases the runtime up to 43% in the measured
scenarios. Furthermore, it enables an efficient way to imple-
ment the optimization described in the next section allow-
ing further acceleration of the computation. This all comes
with no loss, which means the result of the simulation is not
changed.

4.3. Skipping satisfied constraints

The original simulation procedure visits every constraint in
every iteration to test if the constraint error is below a cer-
tain tolerance ε. But at an average only about 50% of the
constraints have to be corrected. This implies a lot of wasted
computational time, especially, if the optimization described
in chapter 4.2 is not used. Therefore, we present two ways
how this unnecessary computations can be avoided.

The basic idea is to keep track of which constraints are sat-
isfied and which have to be corrected. For that, every time the
velocity of one particle is changed, the attached constraints
are checked whether they have to be corrected or not. By the
use of the anticipation optimization described in section 4.2
this can be done very easily by a reminder in each constraint.
A simple boolean variable is used to save whether the con-
straint needs to be corrected or not. This variable is initially
set during the initial constraint error computation described
in 4.2. Afterwards the reminder is updated during the an-
ticipation computation of the attached constrain errors. This
comes with nearly no additional costs, because the new er-
rors are computed anyway. In an iteration, we then simply
skip every constraint which is marked as satisfied and cor-
rect the other ones without further comparisons.

If the optimization proposed in 4.2 is not used, the costs
of this procedure exceeds its benefit. But with the use of
the following optimized method skipping constraint correc-
tions still can be advantageous. The trick is to save the re-
minder not in every constraint, but in every body. Therefore,
we use one unsigned integer per particle. Every constraint is
represented by one bit of this variable. At first, every con-
straint is marked as unsatisfied by setting each reminder to
−1. Then, for every constraint the reminder is requested by
simple boolean operations. If the bit corresponding to this
constraint is set in one of the both connected bodies the con-
straint correction is executed. If the error of this constraint
is indeed above ε, the error is corrected and every other
constraint is marked unsatisfied. Otherwise we delete only
the corresponding bit, marking this constraint as satisfied.
The use of this method avoids iterating over all other con-
nected constraints by the smart use of bit operations. This
significantly reduces the overhead generated and makes this
method also feasible for smaller models. However, a slight
limitation of this method is that one particle can only have
up 64 constraints.

Nevertheless, by the use of the optimization described in
section 4.2 this overhead is not created at all, since the con-
straints are processed anyway to anticipate the errors.

The result section 5 shows the speedup of this two meth-
ods. It demonstrates that the skipping of satisfied constraints
enhances the runtime of the anticipated simulation. But since
the computation is already optimized the speedup is not so
big compared to the just anticipated simulation. On the con-
trary, the second proposed method brings a larger advance-
ment compared to the original simulation, because many ex-

D. Bayer, R. Diziol & J.Bender / Optimized Impulse-Based Dynamic Simulation

pensive computations can be ignored. But if the constraint
direction is changed in every iteration, the overhead for
marking the constraints as unsatisfied may exceed the profit
resulting in a larger overall runtime.

As the method described in 4.2, this optimization does not
change the simulations result.

4.4. Avoiding changes of the constraint direction

The main bottleneck in the constraint computation are the
changes of the constraint directions. They create effort be-
cause the constraint directions have to be normalized after
each change. Furthermore, they also lower the benefit of the
optimizations described in chapters 4.2 and 4.3. The direc-
tions have to be recomputed after each iteration to get abso-
lutely correct results, because the positions of the particles
are permanently changing.

If the constraint direction is not updated, it can only be
guaranteed that the constraint error projected onto the ini-
tial direction ninit is below ε. For the distance constraint this
means

ninit(p j(t +h)−pi(t +h))≤ εd

but not necessarily

|p j(t +h)−pi(t +h)| ≤ εd .

In theory the error normal to n can not be limited under this
circumstances. This error depends on the acting forces, the
step-size and the complexity of the scene. Nevertheless, in
praxis with limited forces and adequate step-sizes and scene
complexities, fast and at least visual plausible simulations
can be achieved anyway.

To get stable simulations under any circumstances we pro-
pose a method which still avoids the majority of constraint
direction changes. This is done by first driving the con-
straints errors below ε along the initial direction. After this
is done we update the constraint directions. Then we start
a new run and reduce the errors along the new directions.
This process is repeated till directly after a direction update
within the first iteration all errors are again below ε. With
this procedure we can ensure that for all constraints the error
|p j(t+h)−pi(t+h)| is below ε, because in the last iteration
n points along the direct connecting line.

This procedure allows to simulate models with very high
complexity under the influence of large forces, even by us-
ing high step-sizes. In general, more iterations are needed
for the same result, but since single iterations are computed
much faster the overall runtime is less, as the results sec-
tion 5 shows.

5. Results

In this section the results of the different optimization tech-
niques proposed in this paper are presented. To measure

these optimizations, a rectangular piece of cloth connected
by distance constraints was simulated.

The cloth was deflected, so that it was parallel to the floor
and then released. In the first and second simulation the par-
ticles in the left row were fixed, so that the cloth swings
around an axis. In the first case the cloth moved freely and
in the second it was colliding with a fixed sphere. The third
simulation consisted of a piece of cloth with fixed particles
on the top and on the bottom side with a very heavy sphere
dropped upon it.

In all simulations the cloth had a length and width of
1m, the time step size was 0.01s and the gravity set to
10m/s2. They were computed with a maximum extensibility
of 0.001%, 1% and 10% and a dimension of 20× 20 con-
nected particles. For the contact constraints εd = 0.1 and for
the velocity correction εv = 0.01 was chosen. In all measure-
ments 2s =̂ 200 time steps were computed.

Figure 5 illustrates the three different simulations.

Figure 2 shows the benefit of the optimizations described
in sections 4.2 and 4.3. For that, the runtime proportional to
the unoptimized simulation in percent is displayed. For the
unoptimized simulation as well as for the optimized ones
the alternative constraint formulation from section 4.1 was
used. As figure 2 shows, the average runtime proportional
to the original method with skipping of the satisfied con-
straints and without anticipation is 103%. Thus, it is about
3% slower than the original method. This is the case be-
cause the time to reset the remainder in every iteration ex-
ceeded the gain of skipping unnecessary computations of
the constraint function. Nevertheless, with activated velocity
correction the average runtime decreased about 5%. Above
all others, the third simulation with a strain of 10% bene-
fits from this optimization. It could be computed about 14%
faster.

With anticipation all simulations ran faster. The average
runtime was 72% without, and 66% with velocity correc-
tion of the original method’s runtime. Thus, at an average,
the simulations ran about 31% faster. The best value with a
speedup of 45% was reached by the third simulation with
an extensibility of 10% and velocity correction. The worst
improvement was measured in the second simulation with
velocity correction and 0.001% strain, which needed 76% of
the original runtime.

Further advancements were achieved with anticipation
and skipping. The average runtime was 66% without, and
59% with velocity correction of the original runtime. The
runtime improved at an average of about 38%. Again the
third simulation with 10% strain and velocity correction
could be improved most with 57%. The second simulation
with velocity correction and 0.001% strain produced the
worst improvement with 28%.

Figure 3 displays the same measurements with the excep-
tion that the constraint directions were only updated after

D. Bayer, R. Diziol & J.Bender / Optimized Impulse-Based Dynamic Simulation

Simulation 1 Simulation 2 Simulation 3

1

2

3

Pr
op

or
tio

na
lr

un
tim

e

0%

25%

50%

75%

100%

125%

Extensibility
0.001% 1% 10% 0.001% 1% 10% 0.001% 1% 10%

1

2

3

Pr
op

or
tio

na
lr

un
tim

e

0%

25%

50%

75%

100%

125%

Figure 2: Runtime acceleration of the optimizations in per-
cent, compared to the original simulation, with (bottom) and
without (top) velocity correction. The constraint directions
were changed in every iteration. The first dataset is opti-
mized with the constraint skipping described in section 4.3,
the second with the constraint anticipation described in sec-
tion 4.2 and the third with constraint anticipation and con-
straint skipping.

all constraints were completely satisfied along their last di-
rection (as described in section 4.4). Again the values are
proportional to the original version with changing of the di-
rections in each iteration. Additionally the unoptimized ver-
sion is shown with the directions changed according to sec-
tion 4.4. The figure shows that the avoidance of changes of
the constraint direction is not always faster. This is the case
because the number of overall iterations rise. But with un-

Simulation 1 Simulation 2 Simulation 3

1

2

3

4

Pr
op

or
tio

na
lr

un
tim

e

0%

25%

50%

75%

100%

125%

Extensibility
0.001% 1% 10% 0.001% 1% 10% 0.001% 1% 10%

1

2

3

4

Pr
op

or
tio

na
lr

un
tim

e

0%

25%

50%

75%

100%

125%

Figure 3: Runtime acceleration of the optimizations in per-
cent, compared to the original simulation, with (bottom)
and without (top) velocity correction. The constraint direc-
tions were changed according to section 4.4. All datasets use
the approach described in section 4.4. The first dataset is
the original computation, the second is optimized with the
constraint skipping described in section 4.3, the third with
the constraint anticipation described in section 4.2 and the
fourth with constraint anticipation and constraint skipping.

changed directions the constraint error does not have to be
recomputed, so that the optimizations have a greater effect.
In any case and for all optimizations the additional benefit
exceeded the loss generated by the larger number of itera-
tions. Hence, the overall runtime of every simulation could
be improved.

With skipping of the satisfied constraints and without an-

D. Bayer, R. Diziol & J.Bender / Optimized Impulse-Based Dynamic Simulation

ticipation the average runtime is about 59% without, and
62% with velocity correction. This is an improvement about
40%. The best value achieved the third simulation with 1%
strain and without velocity correction with a runtime im-
provement of 78%. However, the runtime of the third sim-
ulation with 0.001% strain could be hardly improved about
1%.

With anticipation the average runtime was 40% without,
and 40% with velocity correction compared to the original
runtime. Interestingly, the best value with an improvement
of 73%, achieved in the same simulation, is less than the
best value achieved by the method without anticipation. This
shows that the avoidance of unnecessary constraint correc-
tions gains importance as the number of iterations rise. Nev-
ertheless, the worst value with an improvement of 40% is
again much faster than the corresponding value without an-
ticipation.

The combination of all three techniques show the best
results. At an average, the runtime was 28% without, and
30% with velocity correction compared to the original run-
time. This is an average improvement of 71%, more than
three times faster as the unoptimized version. The best value
achieved simulation three with a maximum extensibility of
1%. This simulation took only 9% of the original runtime
and therefore could be simulated more than 11 times faster.

Table 5 summarizes the best, worst and average run-
time improvements of the different optimizations. Figure 4

Times faster
Optimization Best Worst Average
4.3 1.31 0.96 1.01
4.2 1.83 1.31 1.46
4.2 & 4.3 2.30 1.40 1.60
4.3 & 4.4 4.40 1.01 1.66
4.2 & 4.4 3.75 1.68 2.51
4.2 & 4.3 & 4.4 11.35 2.16 3.44

Table 1: Summary of the runtime improvements measured.
The shown values are proportional to the runtime of the un-
optimized simulation.

shows the absolute runtime of the first scenario with differ-
ent details. For that, grids with 5× 5 = 25, 10× 10 = 100,
20×20= 400, 30×30= 900 and 40×40= 1600 connected
particles were simulated. The figure shows that the proposed
optimizations are also applicable for systems with less com-
plexity. It also shows, that a piece of cloth with high com-
plexity of 40× 40 could be simulated in real time, however
only with a maximum extensibility of 10%. But even with
a extensibility of 1% a cloth containing 900 particles could
be simulated in realtime. It is also shown, that the accuracy
could be increased by the use of the same computational
time. For example, the optimized runtime needed to compute

a cloth with 1% nearly equaled the unoptimized computation
time needed for a cloth with maximum extensibiliy of 10%.

0.001%

1%

10%

0.001%

1%

10%

2s

O
ve

ra
ll

co
m

pu
ta

tio
n

tim
e

4s

3s

2s

1s

5x5 10x10 20x20 30x30 40x40

Figure 4: Absolute runtime of the first scenario with differ-
ent details and extensibility using the optimized and original
simulation. The first three data sets correspond to the origi-
nal method and the last three to the fully optimized method.

5.1. Conclusion

The proposed optimizations greatly enhance the runtime of
the impulse-based dynamic simulation as section 5 shows.
Since they do not affect the overall simulation, this advan-
tage comes without loss in quality. Thus, larger systems can
be simulated. On the other hand, the optimizations allow to
compute more iterations within the same time and, therefore,
given simulations can be computed with higher accuracies.

Especially, if the constraint directions are not updated
between the iterations the proposed optimizations in sec-
tions 4.2 and 4.3 show their best effect. With the method
described in section 4.4, stable simulations with predictable
error can be computed with large step sizes and under the
influence of large forces without changing the constraints
direction in every time step. Therefore, a larger number of it-
erations is needed, but with the optimizations in sections 4.2
and 4.3 the overall runtime is decreased by up to 92%. Even
if the directions are changed in every iteration the simulation
still benefits from this optimizations.

The proposed optimizations also have the potential to fur-
ther optimize the impulse-based dynamic simulation - espe-
cially in connection with the linear time dynamics proposed
in [BB08].

D. Bayer, R. Diziol & J.Bender / Optimized Impulse-Based Dynamic Simulation

References
[Bar94] BARAFF D.: Fast contact force computation for nonpen-

etrating rigid bodies. In SIGGRAPH ’94: Proceedings of the 21st
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 1994), ACM, pp. 23–34. 3

[BB08] BENDER J., BAYER D.: Parallel simulation of inexten-
sible cloth. In Virtual Reality Interactions and Physical Simula-
tions (VRIPhys) (Grenoble (France), Nov. 2008). 2, 8

[BBD09] BAYER D., BENDER J., DIZIOL R.: Impulse-based dy-
namic simulation on the gpu. In Computer Graphics, Visualiza-
tion, Computer Vision and Image Processing (CGVCVIP2009) -
IADIS Multi Conference on Computer Science and Information
Systems (Algarve, Portugal, Portugal, 2009). 2

[BS06] BENDER J., SCHMITT A.: Fast dynamic simulation of
multi-body systems using impulses. In Virtual Reality Interac-
tions and Physical Simulations (VRIPhys) (Madrid (Spain), Nov.
2006), pp. 81–90. 2

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simula-
tion. Computer Graphics 32, Annual Conference Series (1998),
43–54. 2

[HCJ∗05] HONG M., CHOI M.-H., JUNG S., WELCH S., TRAPP
J.: Effective constrained dynamic simulation using implicit con-
straint enforcement. In International Conference on Robotics and
Automation (Apr 2005). 2

[HES03] HAUTH M., ETZMUSS O., STRASSER W.: Analysis of
numerical methods for the simulation of deformable models. The
Visual Computer 19, 7-8 (2003), 581–600. 2

[KC02] KANG Y.-M., CHO H.-G.: Bilayered approximate in-
tegration for rapid and plausible animation of virtual cloth with
realistic wrinkles. In CA ’02: Proceedings of the Computer Ani-
mation (Washington, DC, USA, 2002), IEEE Computer Society,
p. 203. 2

[MHTG05] MÜLLER M., HEIDELBERGER B., TESCHNER M.,
GROSS M.: Meshless deformations based on shape matching. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers (New York, NY,
USA, 2005), ACM, pp. 471–478. 2

[OGRG07] OTADUY M. A., GERMANN D., REDON S., GROSS
M.: Adaptive deformations with fast tight bounds. In SCA
’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation (Aire-la-Ville, Switzerland,
Switzerland, 2007), Eurographics Association, pp. 181–190. 2

[SBP05] SCHMITT A., BENDER J., PRAUTZSCH H.: On the
Convergence and Correctness of Impulse-Based Dynamic Sim-
ulation. Internal Report 17, Institut für Betriebs- und Dialogsys-
teme, 2005. 2

[SSBT08] STUMPP T., SPILLMANN J., BECKER M., TESCHNER
M.: A geometric deformation model for stable cloth simulation.
In Virtual Reality Interactions and Physical Simulations (VRI-
Phys) (Grenoble (France), Nov. 2008). 2

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER
K.: Elastically deformable models. In SIGGRAPH ’87: Pro-
ceedings of the 14th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1987), ACM,
pp. 205–214. 1

[VT00] VOLINO P., THALMANN N. M.: Implementing fast cloth
simulation with collision response. In CGI ’00: Proceedings of
the International Conference on Computer Graphics (Washing-
ton, DC, USA, 2000), IEEE Computer Society, p. 257. 2

[Zel05] ZELLER C.: Cloth simulation on the gpu. In SIGGRAPH
’05: ACM SIGGRAPH 2005 Sketches (New York, NY, USA,
2005), ACM, p. 39. 2

Figure 5: The optimizations were measured with three dif-
ferent simulations, each with a maximum strain of 0.001%,
1% and 10%.

