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ABSTRACT

In  this paper a new, efficient  method for  dynamic simulation on the GPU is presented. The method is based on an 
impulse-based approach which is an ideal candidate to simulate on limited hardware due to its simplicity. The proposed 
method shows how the impulse-based dynamic simulation can benefit from the highly parallel structure of
the GPU without  suffering  too much losses  by its  limitations.  This  is  achieved  by the use of  a  new way to  solve 
constraints. Most parts of the actual computation can be done in parallel, using only a few number of operations. This 
allows the implementation to run on a wide range of graphics boards.
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1. INTRODUCTION

The physically-based simulation of constrained bodies is a challenging problem in the field of computer 
graphics. In recent years, it became more and more important to create animations that are closer to reality.
The requirements nowadays exceed the simulation of a comparable small number of constrained rigid bodies. 
Deformable bodies, for example, can be simulated through a huge number of interconnected parts. In this 
case  the  simulation  quality  is  directly  related  to  the  number  of  parts  in  which  the  deformable  body is 
subdivided. The computation of such complex simulations is quite expensive. To decrease the CPU load, 
parts of this computation can be outsourced to the GPU.
In this paper an impulse-based method is presented which computes dynamic simulations on the GPU. It was 
developed to simulate particle-based deformable bodies, such as cloth. Therefore, this paper is focused on 
particle simulations, but the given approach also works for the simulation of constrained rigid bodies. 
Since constraints  are handled implicitly,  the simulation can use a large time step size without getting a 
stability problem. The method supports equality (holonomic) constraints which are used to simulate joints as 
well  as  inequality  and  velocity  (nonholomic)  constraints  which  are  required  to  simulate  collisions  and 
contacts with friction. The approach handles systems with cycles and is not affected by numerical drift in 
contrast to the Lagrange multiplier method (cf. [1]). This enables the method to efficiently compute a wide 
range of simulations, such as articulated rigid bodies or constrained particle systems for deformable bodies.

2. RELATED WORK

Due  to  their  increasing  performance  and  programmability,  graphics  boards  become  more  and  more 
interesting for general purpose computation (GPCGPU). Today GPCGPU covers a wide range of topics, for 
example collision detection (cf. [2]). [3] gives a technical motivation for GPCGPU and a summary of its 
application domains.
In the area of physically-based simulation GPU-based methods are an important field of research. Harris et 
al., for example, used cellular automata to simulate various dynamic phenomena like boiling, convection and 



chemical reaction-diffusion [4]. There are many other works to simulate a variety of physical processes, like 
fluid flow (cf. [5]) or n-body simulations.
In the area of dynamic simulation on the GPU most works discuss the simulation of particle systems. Kolb et 
al. introduced a state-preserving particle system fully implemented on the GPU [6]. They describe how to 
store the states of a particle system in textures on the GPU. Furthermore,  methods for the detection and 
resolution of collisions are presented in this paper. Their collision detection is based on distance maps. The 
contact  resolution  and  other  constraints  are  computed  as  explicit  forces.  Therefore,  the  constraint  error 
directly depends on the time step size and a fulfilment of the constraint cannot be guaranteed. The work of 
Kolb et al. motivated the data management and collision detection used in the approach presented in this 
paper.
Particle systems have also been used to simulate elastic bodies on the GPU. Zeller used spring-mass systems 
for a  basic cloth simulation on the GPU [7].  Georgii  et  al.  extended this approach to three-dimensional 
deformable bodies by adding volume preservation [8]. Since these approaches use spring forces, they cannot 
handle  conflicting  constraints.  Furthermore,  these  methods  can  run  into  problems  like  stiff  differential 
equations  which cannot  be solved  efficiently  using large  time step  sizes  and  lead to  stability problems. 
Hence, for the simulation of inflexible materials, a very small time step size has to be used. An alternative for 
the simulation of cloth is the use of Finite Element Methods [9].
The dynamic simulation of rigid bodies is also an area of research which profits from GPU-based methods. 
Takahiro Harada presented several works in this area, as for example [10] and [11].

3. GPU-BASED DYNAMIC SIMULATION

The following sections describe how constrained particles are simulated dynamically and in which way this 
computation can be done using the graphics hardware.

3.1 Particle simulation

A particle, or point mass, is a body without extend and has therefore, in contrast to rigid bodies, no rotation. 
Its physical state can be expressed with its constant scalar mass m , its position p and its linear velocity v . 
To dynamically simulate a particle, its position and velocity have to be integrated over a time step of size h . 
Using external forces F that are constant during [ t0 ; t 0h ] , the new position and velocity can be directly 
computed by the following equations:
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where t 0  is the current time before the time step.

3.2 Constraint enforcement

The particles’ motion is constrained by the use of implicit functions C  p ,v , t=0 or C  p ,v , t ≥0 where 
the vectors p and v contain all positions and velocities of the particles. Any function of this kind can be used 
to restrict the motion. The simulation of these constraints is explained in detail in the following. At first, the
joint state is evolved forward in time in order to predict the constraint error at the end of the simulation step. 
This is done by integrating the differential equation 2 to get the positions of the particles at time t 0h . With 
this predicted state the constraint error e can be computed by solving the constraint function at time t 0h :

e=C  pt 0h ,v t 0h ,t 0h.  



For unilateral constraints e is zero, if C t 0h ≥0 . If the error is greater than a certain tolerance value  , a 
correction impulse I is applied. For two bodies i and j , which are linked by a constraint C , this impulse is 
given by:
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The impulse points in the direction ∇ C , as the principle of virtual work states, and is applied to both linked 
bodies in opposite directions. Hence, I does not violate the conservation of momentum of the multi-body 
system. The resulting impulse instantaneously changes the velocity of the linked bodies, so that the error is 
eliminated.
If the system contains more than one constraint, the corresponding impulses are computed and applied one 
after  another.  The  effect  of  one  impulse  may  violate  a  constraint  that  was  already  satisfied.  These 
dependencies between the constraints are resolved by computing the impulses in an iterative process. The 
process ends, when all errors are below a certain threshold value  . This process converges to the physical 
correct  solution (cf.  [12]).  The iterative  approach  has  the  advantage  that  it  can  even handle  multi-body 
systems  with  cycles  without  additional  effort  (cf.  [1]).  This  is  an  important  property,  especially  when 
simulating cloth models.

3.3 Parallel constraint enforcement

The  dependence  of  single  operations  has  to  be  reduced  to  make  reasonable  use  of  the  parallel  GPU 
architecture.  As seen in the previous section any computed impulse changes  the velocity of both linked 
bodies. The single iterations depend on each other, since the velocity change of one body, to satisfy one 
constraint, may violate another constraint. In dense systems, like cloth models, each particle is linked with all 
adjacent particles. The resolution of one constraint will effect the velocities of all neighbouring particles and 
therefore the whole model.
The main contribution of this paper is an efficient strategy to process the constraints, so that large parts can 
be solved independently. Schmitt et al. have proofed that the iterative process that is used in the presented 
method always  converges  to  the  physical  correct  solution  [12].  The  order  in  which  the  corrections  are 
performed  can  influence  the  convergence  rate  but  not  the  convergence  itself.  As  the  results  show  the 
influence on the convergence rate is even insignificant.
In order to do the computation on the GPU, the constraints are separated in several groups, so that every 
group is internally independent. This means every group consists of constraints whose bodies are pairwise 
linked  by  at  most  one  constraint  of  this  group.  Algorithm  1  shows  how  these  groups  of  independent 
constraints are determined. Thereby, the maximum number of constraints per body is the number of groups 
needed. With this arrangement, all impulses for one group can be determined in parallel.

Input:  List of all constraints C, G=[]
Output: List of constraint groups G
for all c1 in C
        addToNewGroup = true

           for all g in G
                addToThisGroup = true
                for all c2 in G
                        if haveCommonBody(c1, c2)
                                addToThisGroup = false
                                break
                if addToThisGroup
                        addConstraintToGroup(c1, g)
                        addToNewGroup = false
                        break

           if addToNewGroup
                   addConstraintToNewGroup(c1)

return G
Algorithm 1: Build groups of independent constraints



3.4 Circumvention of memory interchanges

Interchanges between system memory and graphics memory are a performance bottleneck and should be 
reduced to a minimum. In this approach this is done by managing the data only in the graphics memory 
whenever  possible.  Therefore,  external  forces,  positions,  velocities  and  constraint  states  are  maintained 
completely on the GPU. Memory interchanges are only necessary to decide, if the error of all constraints is 
below  or when the constraint structure or particle states are changed on the CPU side.

3.5 Real-time simulation

A major advantage of the proposed method is, that the computation can be aborted with an approximate 
solution at any time. This property makes it well-suited for real-time applications. In such an application the 
iteration process is interrupted, when the time of the next frame is reached. This allows a guaranteed and 
fixed frame rate,  although the constraint  errors  may exceed  the desired  tolerance  temporarily.  Another 
advantage of this procedure is that the status of the constraints has not to be accessed by the CPU.

4. IMPLEMENTATION

Based on the previous sections this chapter describes details of the implementation of the presented method. 
The next section presents the structure of the simulated model. Afterwards the data structures and shader 
programs used for the impulse-based dynamic simulation on the GPU are explained in detail.

4.1 Simulated model

A rectangular piece of cloth interacting with a static environment was chosen to test the given approach. This 
simulation contains equality constraints for the cloth model and inequality constraints for the contacts.

Figure 1. Subdivision of a small cloth model in independent constraint groups which are required for the parallel 
simulation 

A simple collision detection with static obstacles like planes and spheres was implemented in order to detect 
the contacts. The obstacles are described as implicit functions. By the use of distance maps this method is 



easily extended to work for any polyhedral model. In case of the GPU-based simulation the contacts are 
directly computed on the graphics hardware.
The cloth model is motivated by [13] and consists of distance constraints connecting the particles with their 
direct neighbours. These constraints restrict the inner plane motions, like stretching and shearing, and allow 
to make the cloth inextensible (cf. [14]). The model is completed by interlaced constraints connecting always 
two particles by skipping the direct neighbour. These constraints are necessary for bending and compression 
resistance and are modelled as explicit spring-dampers.
Figure  1 shows how a small  piece of cloth is  subdivided in independent  constraint  groups.  Using these 
groups a whole iteration can be performed by just three shader calls.

4.2 Data structures

128-bit floating point textures are used to store the physical properties of the system in the graphics memory.  
This means there are four floating point values per pixel. It is important to note that it is not possible to read 
from and write to the same texture at the same time. Therefore, pairs of textures are used for each variable 
property of the system. After each computation these textures are swapped so that the output can be used as 
input for the next render pass.

4.3 Shader programs

Figure 2. Procedure of the GPU-based computation and its memory interchanges

Three  pixel  shaders  and  one  vertex  shader  were  implemented  to  compute  the  impulse-based  dynamic 
simulation  on  the  GPU.  Figure  2  summarizes  the  whole  computation  process  and  displays  all  memory 
interchanges between the CPU on the left side and the GPU on the right side. Every task except the scene 
management is performed on the GPU. The CPU accesses the GPU memory only for initialisation and to 
check,  if  all  constraints  are  satisfied.  In  the  case  of  real-time  computation  (see  section  ”Real-time 
simulation”) this test is not even necessary, since a fixed amount of iterations are computed for each frame. 



At first, a pixel shader is used to compute external forces like the gravity g and a set of spring-dampers S . 
These forces are considered constant for one time step. Depending on the number of explicit constraints this 
shader may need multiple passes. For all particles i :

F i=gmi∑
∀ s∈S {F spring i , s  , s connected to i

0 , otherwise
 

is computed, where F spring i , s returns the spring damper force of spring s and body i . 
The second pixel shader computes the impulses and, therefore, the new velocities. This shader also writes the 
according  constraint  errors  in a status textures.  If  there is  an error  greater  than  ,  the input  and output 
velocity textures are swapped. This process is repeated for each joint group until the velocity texture is not 
swapped any more.
In this implementation two different implicit constraints are used (see section ”Simulated scene”). At first 
there is a distance joint connecting two particles i and j at positions pi and p j with an initial distance l 0 . 
This constraint is given by the following equation:

Cdistance  p i , p j=∣p i−p j∣−l 0=0.  
The second constraint is a simple contact constraint to avoid penetration with the static environment. It is 
given by the equation

C contact  pi = pi−c n≥0  
where c is the contact point on the static geometry and n the outwards pointing normal of the contact surface.
After all constraints have been fulfilled the third pixel shader computes the new positions and velocities of 
the bodies using equations 1 and 2. After that, the system is in a legal state and can be drawn. This is done by 
the vertex shader which computes the positions of the vertices of a mesh according to the new physical 
positions of the particles.

5. RESULTS

To test the proposed method, a simulator based on DirectX/HLSL was implemented. The simulator enables 
the change of global parameters during runtime, for example, the external force or the scene structure. It also 
allows  the  direct  comparison  between  the  CPU-  and  the  GPU-based  computation  by  supporting  both 
techniques. 
Figure 3(a) shows a comparison of the GPU and CPU simulation in the simulator. The cloth model used for 
the comparison consists of 1024 particles. A maximum of 100 iterations was used for the simulation. The 
maximal strain of the cloth model was less than one percent during the simulation.
The results of the runtime measurements made with the simulator are summarized in figure 3(b). For these 
measurements also a maximum of 100 iterations was used. The figure displays the average computation time 
in milliseconds against the number of connected particles for the CPU and the GPU computation with and 
without shader model 3.0 support.
The cloth model with 1024 particles required less than 100 iterations and had a maximal strain of less than 
one percent. The iteration process of the biggest model with 16384 particles was stopped after 100 iterations 
and  therefore,  had  a  maximal  strain  of  eight  percent.  The  tests  where  run  on  a  Intel  Core2  Quad 
Q9450@2.66GHz with 8GB Ram and a NVIDIA GeForce9800 GTX@675MHz with 512MB Ram.
The diagram shows, that the GPU-based method for large systems is faster than the CPU-based. It is almost 
able to compute 16384 constrained particles in real-time. Whereas the CPU is able to compute up to 512 in 
real-time. Up to this number of particles the CPU-based approach is faster than the GPU-based method. The 
computation times of the GPU-based methods with and without shader model 3.0 support are nearly equal, 
which shows that even older hardware can challenge the CPU for larger systems. It is important to mention 
that this measurements are made without rendering the scene, because the GPU-based method with shader 
model 3.0 support gets a major boost through the direct rendering using the vertex shader described before.
The more  complicated  the  piece  of  cloth gets,  the  more  iterations  are  needed  to  satisfy all  constraints. 
Therefore, an inextensible piece of cloth containing a very large number of particles cannot be simulated in 
real-time. The GPU-based approach requires nearly the same computation time for one piece of cloth and for 



the simulation of many independent pieces of cloth due to the parallel computation. For the next comparison 
multiple cloths with 64, 128, 256, 512 and 1024 particles where computed by the GPU. As figure 3(c) shows, 
up to 16 pieces with 1024 particles could be computed in real-time by the GPU, whereas the CPU could not 
even compute one in real-time.

Figure 3. (a) Simulation of a piece of cloth consisting of 1024 linked particles. (b) The results show the average 
computation time of the CPU-based and the GPU-based approach, with and without shader model 3.0 support. (c) 

Average computation time of the GPU-based approach simulating multiple grids of the same dimension.

Using a fixed number of iteration steps, even more complicated pieces of cloth can be simulated in real-time, 
since the status of the constraints has not to be checked on the CPU. Figure 4 shows the simulation of a cloth 
model consisting of 65536 particles. The drawback is, that the cloth may get more expandable as it should, 
but this error  is  comparable small  and eliminated over the time, thus leading to at  least  visual  plausible 
results.

6. CONCLUSION

In this paper a method for the dynamic simulation on the GPU is presented. This method is well suited for 
large  systems  of  articulated  bodies.  As  figure  3  shows,  a  huge  number  of  constrained  particles  can  be 
computed in real-time on the GPU. This is possible by the use of the presented constraint solving strategy to 
minimise interdependent operations and memory interchanges.

c

b

a 



Figure 4. Real-time simulation of a cloth model consisting of 65536 particles with more than 130 000 distance constraints 
and a few thousand contact constraints

A wide range of different constraints can be computed, due to the general constraint specification. Inequality 
constraints and cyclic systems are handled without special treatment. The implicit constraint enforcement 
allows the system to take large time steps and to make connections stiff.
The implementation on the graphics hardware is simple, so that it is possible to do the complete computation 
within the limits of a shader model 2.0 GPU. With little changes, the implementation can easily be extended 
to support rigid-bodies as well, which has already been proven.
The presented approach has real-time capabilities. This makes it interesting for computer games and virtual 
reality applications, where a guaranteed frame rate is more important than an exact solution. Especially, if the 
GPU-based objects have no physical influence on the user action, managed on the CPU, the method is well 
suited. This holds for example for cloths and curtains, simulated in a computer game.
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