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Abstract

A dynamic simulation system for VR applications consists of multiple
parts. The first task that must be accomplished is the generation of com-
plex dynamic models. A 3D modelling tool is required that supports the
definition of joint constraints and dynamic parameters. For the dynamic
simulation of the generated models a modular simulator is required. This
simulator must handle constrained models, detect and resolve collisions re-
garding dynamic and static friction, manage user interactions and provide
the possibility of extensions. It also requires an interface for the output of
the simulation data. There exist several different methods for the dynamic
simulation of joint constraints, for collision detection and for the handling of
collisions and resting contacts with friction. The simulation system should
support multiple of these methods and provide the possibility to exchange
them at runtime.

1 Introduction

The design of a dynamic simulation system is a complex task. Such a system
must include a tool which allows the creation of complex dynamic models. A
dynamic model consists of bodies, constraints, external forces and torques as well as
simulation parameters like the time step size. A body can have multiple geometries
and a set of dynamic parameters like its mass or its velocity. The geometries are
used for the determination of the inertia tensor, the graphical output and for the
collision detection. The geometries for the graphical output and for the collision
detection can be different. For the real-time simulation of a body with a high-
resolution mesh often a low-resolution mesh is used for the collision detection in
order to increase the performance.

Today there exist many 3D modelling tools and some of them even support the
creation and simulation of dynamic models, like e. g. Autodesk Maya [Aut08]. The
problem is that these dynamic models are often only supported by the built-in
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simulator of the corresponding modelling tool. The free modelling tool Blender
[Ble08] is an exception because it is able to export models using the exchange
format COLLADA [Col08] which also supports dynamics.

Since dynamic simulation has a long history of research, many different methods
exist for the dynamic simulation of joints, the collision detection and the collision
response. Therefore a simulation system must have a modular design in order to
support multiple methods at the same time. A modular design also provides the
possibility of extending the simulator by new methods. The extensibility of the
simulation system is an important feature. The extension by new methods is one
important part but it is also required that the user can extend the functionality
of the simulator easily. Additionally the user must be able to manipulate the
simulation by changing parameters and by directly interacting with the simulation
objects.

For the research of the impulse-based dynamic simulation method [BS06,Ben07a,
Ben07b] a simulation system was developed that is introduced in the following sec-
tions. This simulation system consists of two parts. The first part is an extension
for the 3D modelling tool Maya1. Maya is used to create all geometries which are
required in a dynamic model. The dynamic parameters of the bodies and all con-
straints between the bodies can be defined by the developed extension. The second
part of the simulation system is a modular simulator. This simulator provides the
possibility to simulate dynamic models using different methods for the handling
of constraints, the collision detection and the collision resolution. The resulting
simulation data is used for the graphical output, for plotting certain values or for
the generation of photo-realistic videos. During a simulation the user can interact
with the dynamic models.

2 Dynamic simulation

This section gives a short introduction to the dynamic simulation of multi-body
systems. The simulator that is introduced in section 4 supports the simulation of
particles and rigid bodies. Each rigid body in a three-dimensional world has six
degrees of freedom: three translational and three rotational ones. A particle has
only three translational degrees of freedom, since it has no volume. A particle is
defined by:

• its mass m,

• its position x(t) and

1Maya from Autodesk is a tool for the modelling of complex geometries and the creation of
animations.
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• its velocity v(t).

A rigid body has the following additional parameters to define its rotational mo-
tion:

• the inertia tensor J,

• an unit quaternion q(t) that describes the rotation of the body [Sho85] and

• the angular velocity ω(t).

Constraints can be defined for these bodies in order to simulate joints, resting
contacts or to interact with the bodies.

Joint constraints are holonomic constraints which decrease the degrees of freedom
in a dynamic model permanently. Constraints for the velocities of the bodies are
non-holonomic constraints. The introduced simulation system supports several
different constraint types:

Ball joint A ball joint links two bodies together in one point (see figure 1). This
kind of joint removes three translational degrees of freedom, since a relative
translational motion of the bodies in the joint point is not possible. A ball
joint is defined by the position of its joint point.

Figure 1: Ball joint

Ball slider joint The ball slider joint (see figure 2) removes two translational
degrees of freedom. The bodies are linked together in a joint point which
can freely move on a slider. This joint is defined by the orientation of the
slider and the position of the joint point.

Ball on plane joint This joint type removes just one translational degree of free-
dom (see figure 3). The linked bodies can rotate freely around the joint point.
The translational motion of this point is constrained by a plane. The posi-
tion of the joint point and the normal of the plane define this kind of joint.
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Figure 2: Ball slider joint

Figure 3: Ball on plane joint

Cardan joint A cardan joint (see figure 4) is defined by two axes and one joint
point. The linked bodies can rotate freely around both axes. A relative
translational motion in the joint point is not possible. The joint removes one
rotational and three translational degrees of freedom.

Distance joint The distance joint type is very similar to a ball joint. Each of the
linked bodies has a joint point. The constraint of this joint type is that the
distance between the joint points must be constant during the simulation.
So a ball joint is a distance joint where the distance is zero.

Fixed joint Sometimes it is useful to fix two bodies temporary or permanently
together by a joint. The corresponding joint type is the fixed joint (see
figure 5). This joint type removes all six degrees of freedom between the
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Figure 4: Cardan joint

linked bodies. No axes or joint points are required to define this kind of
joint.

Figure 5: Fixed joint

Hinge joint Another important joint type is the hinge joint (see figure 6). It
has just one rotational degree of freedom that allows the linked bodies to
rotate around a common axis. The joint is defined by a joint point and the
orientation of the rotation axis.

Figure 6: Hinge joint

Hinge slider joint In contrast to the hinge joint, the hinge slider joint (see fig-
ure 7) removes not all translational degrees of freedom in the joint point.
The joint point is able to move freely on a slider and the linked bodies can
rotate around this slider. This joint is defined by the orientation of the slider
and by a joint point.
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Figure 7: Hinge slider joint

Motor hinge joint The motor hinge joint is an angular servo motor. The joint
constraint is the same as the one of a hinge joint. Additionally an external
torque acts on the linked bodies in order to simulate the motor. The mag-
nitude of this torque is determined by a PID controller to reach a certain
angular velocity or angle.

Motor slider joint Another servo motor joint is the motor slider joint. Using
this joint type a linear servo motor is simulated. The required constraint is
the same as the one of a slider joint. To simulate the motor an external force
acts on the linked bodies. If a certain position or linear velocity should be
reached, the magnitude of the force is determined by a PID controller.

Point velocity constraint A point velocity constraint is a non-holonomic con-
straint. In contrast to a holonomic constraint it does not reduce the degrees
of freedom of the dynamic model. The point velocity constraint is defined
by two points, one for each of its bodies. The velocities of these points must
be equal to satisfy the constraint.

This kind of constraint is very useful, if the motion of a body should be
controlled by another one. For example this can be used to control the
motion of a body by the mouse pointer. A static body is introduced at
the position of the pointer. The static body is linked by a point velocity
constraint with the body which should be controlled. So user interactions
can be easily realised using velocity constraints.

Slider joint Another holonomic constraint is the slider joint (see figure 8). The
linked bodies can only move on the defined slider. This joint type removes
three rotational degrees of freedom and two translational ones. The joint is
defined by the orientation of the slider and a joint point.

Spring A spring (see figure 9) does not define a constraint but the simulator in-
troduced in the following handles springs very similar to joint constraints.
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Figure 8: Slider joint

Springs also link two bodies together but they use forces instead of a con-
straint.

Figure 9: Spring

Constraints for the simulation of collisions and resting contacts with friction are
introduced automatically by the simulation system.

3 Modelling

This section introduces the modelling system. The first task of the modelling pro-
cess is the creation of three-dimensional objects. The second task is the definition
of dynamic parameters, joints and other constraints.

The modelling of three-dimensional bodies is a complex task which is accomplished
using the 3D modelling tool Maya (see figure 10). Autodesk Maya provides an own
simulation system that supports the simulation of rigid bodies. In this simulation
system each rigid body has a set of physical parameters which can be defined
by the user. So Maya already supports the definition of dynamic parameters for
each body. But the actual version of the simulation system can only handle a few
joint constraints. Because of that an extension of Maya was developed in order to
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Figure 10: Design of a dynamic model using Autodesk Maya

support the definition of all possible joint constraints easily. This extension was
implemented using the scripting language MEL2.

Each object in Maya can have additional attributes that are defined by the user.
For the implementation of the required extension these user-defined attributes are
very useful. An attribute is added to each object of the dynamic model in order
to define its type. The extension supports the following object types:

• settings object that stores the settings of a simulation method, a collision
detection method or collision resolution method,

• rigid body or particle,

• geometry of a body,

• geometry for the collision detection,

• joint constraint, e. g. ball joint, hinge joint or slider joint,

2MEL is a shortcut for ”Maya Embedded Language”
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• position of a joint point and

• orientation of a joint axis.

Each simulation, collision detection and collision response method has several pa-
rameters. These parameters can be defined by a settings object. Such an object
has no geometry and just stores the user-defined settings for the simulation. If no
settings object is created the simulator uses default settings.

At the moment the simulation system supports two kinds of bodies: particles and
rigid bodies. A particle is a point with a mass that has no volume. Because
of this, it has just translational parameters in the dynamic simulation. A rigid
body has translational and rotational parameters (see section 2). Particles and
rigid bodies have additional parameters that define the coefficients of dynamic
and static friction and the coefficient of restitution.

A body can have multiple geometries. The first geometry and the mass of a rigid
body are used by the simulator to compute the inertia tensor of the body. The
inertia tensor is determined by using the algorithm that was published by Brian
Mirtich [Mir96]. The geometries are also required for the collision detection of the
simulator, if the corresponding body has no special collision geometry. Otherwise
the additional geometries are only needed for the visualisation of the body.

A collision geometry can be defined by the user, if he wants to use different ge-
ometries for the collision detection and for the graphical output. This feature is
very helpful to increase the performance of the collision detection by using low-
resolution collision geometries. Each particle or rigid body can have multiple
independent collision geometries. These special geometries can be used to define a
decomposition of a non-convex body into convex parts. Collision geometries that
belong to the same body can never collide with each other because their relative
position stays constant over time. Because of this, there is no collision detection
necessary between these collision geometries. It is also possible to explicitly ex-
clude pairs of bodies from the collision detection process in order to improve the
performance of the simulation. For example, this is done automatically for static
bodies, since they cannot collide.

Each joint object has at least two additional attributes which define the bodies that
are linked by the joint. Except the fixed joint (see section 2) all joint types require
some attributes to define the positions of their joint points and the orientations
of their joint axes. Other properties like the maximum torque of a motor hinge
joint or the parameters of its corresponding PID controller are also defined by such
attributes.

The modelling of joints should be a simple and intuitive task for the user. Because
of this, the developed extension provides a graphical representation for each joint
type. To create a joint, the user have first to select the two bodies which should
be linked together. Then he chooses the desired joint type and a graphical repre-
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sentation of the joint appears between the bodies. The user can manipulate this
graphical joint object in a simple way by moving its points or rotating its axes.
Joint objects of different types are shown in figure 11.

Figure 11: Ball joint, hinge joint, cardan joint and slider joint as joint
objects in Maya

Some joint types like a spring or a motor hinge joint have additional attributes.
These attributes are automatically added to the joint object. So the user can easily
define the properties of a joint by using the GUI of Maya.

After creating a dynamic model the user can export it in a XML3 file. This file
contains the geometries of all bodies, all joints and the values of their attributes.

The representation of a rigid body in XML looks like this:

<RigidBody name="SphereBody">

<Mass value="1"/>

<Dynamic value="1"/>

<InitialVelocity value="5 0 0"/>

<InitialSpin value="0 1 0"/>

<ImpulsePosition value="0 0 0"/>

<Impulse value="0 0 0"/>

<Geometry type="Sphere">

<Transformation value="1 0 0 0

0 1 0 0

0 0 1 0

-1.75 -0.7 0.9 1"/>

<Color value="0.5 0.5 0.5 1"/>

<Radius value="0.3"/>

</Geometry>

<Collision value="1">

<Bounciness value="0.6"/>

3XML is a shortcut for ”‘Extensible Markup Language”’. XML provides the possibility to
save data in a tree structure.
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<StaticFriction value="0.2"/>

<DynamicFriction value="0.2"/>

<CollisionGeometry type="Sphere">

<Transformation value="1 0 0 0

0 1 0 0

0 0 1 0

-1.75 -0.7 0.9 1"/>

<Radius value="0.3"/>

</CollisionGeometry>

</Collision>

</RigidBody>

The position and rotation of the body is defined by the 4x4 transformation matrix
of its geometry while its linear and angular velocity are directly defined. The
attribute ”Dynamic” defines, if the body is dynamic or static. The body has a
sphere geometry with a radius of 0.3m. The corresponding collision geometry as
well as the bounciness and the coefficients of friction are defined in the section
”Collision”.

Here is an example for a joint definition in the XML format:

<SpringJoint name="SpringJoint">

<SpringConstant value="10"/>

<Length value="0.55"/>

<Friction value="1"/>

<Body1 value="FirstBody"/>

<Body2 value="SecondBody"/>

<SpringJointPoint1 value="-1.75 -0.15 0.5"/>

<SpringJointPoint2 value="-1.75 -0.7 0.5"/>

</SpringJoint>

This XML section defines a spring linking two bodies together. The additional
attributes of this joint type are the spring constant, the length and a coefficient of
friction.

4 Simulator

The simulator that was developed for this research project is shown in figure 12.
It is able to load XML files containing dynamic models and to simulate these
models using different simulation methods. After a dynamic model is imported,
the simulator automatically computes the inertia tensors of all rigid bodies using
the method introduced by Brian Mirtich in [Mir96]. Each tensor is transformed in
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Figure 12: Simulator

a diagonal matrix by a principal axis transformation [GPS01]. Then the simulation
can start.

In this section first the modular architecture of the simulator is explained in detail.
Afterwards the possibilities for user interaction in the simulator are described.

4.1 Architecture of the simulator

The simulator is written in C++. The graphical user interface is implemented
using the open-source library wxWidgets [wxW08] which is a widget toolkit for
cross-platform applications. Because of that the simulator can be compiled on
different platforms. This was successfully tested on Microsoft Windows and Unix
platforms.

The architecture of the simulation system is shown in figure 13. Bodies and joints
are defined and modified using the introduced extension of Maya. During the sim-
ulation the user is able to change all dynamic parameters like positions, velocities
etc. by the graphical user interface or by a Python script. This user interaction is
described in detail in section 4.2. The simulator consists of different independent
modules for the simulation and for the graphical output. This modular architec-
ture has the following advantages. Different simulation methods can be integrated

12



easily in the simulation system. The resulting simulation data can be exported
and visualised in multiple ways.

Maya Simulator OpenGL

Gnuplot

MEL

Python

GUI

model output

execute
scripts

user
input

Figure 13: Architecture of the simulation system

4.1.1 Modules

Some parts of the simulator were designed as independent modules with a well-
defined interface. Such modules are used for:

• the simulation of joints,

• the collision detection,

• the collision response,

• the simulation of external forces and

• the output of the resulting simulation data.

The simulation system should support different methods for the dynamic simu-
lation of joint constraints. Therefore it is important that these methods can be
easily exchanged during runtime. Another important feature of the simulator is the
simultaneous simulation with different methods. This is possible, if the model is
subdivided into independent chains of linked bodies. Each chain can be simulated
by a different method which allows the direct comparison of simulation methods.
In contrast to this the methods used for collision detection and collision and con-
tact handling must always be exchanged for the whole model because in this case
no independent subsets of the model can be determined.
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The generation of external forces was also realised by different modules. For ex-
ample, gravity is simulated using such a module. Multiple force modules can be
active at the same time. Each module knows all bodies that are influenced by its
force field. The force modules are called in each simulation step to generate the
external forces and torques for the bodies. These forces can depend on the actual
state of the model or on user inputs. Therefore user interaction with the model
is implemented as a force module. Force modules can also be used to realise PID
controllers for servo motors.

The last kind of module is used for the output of simulation data. At the moment
the simulation system has three different modules of this kind. The first module
is responsible for the 3D visualisation of the dynamic model. It uses OpenGL for
the visualisation. This module is called by a timer to render the actual state of the
model. At the same time the mouse and keyboard inputs of the user are handled.
Like this the user can navigate through the scene and interact with the model (see
section 4.2). The other two modules are called after each simulation step. One
is able to export the simulation data in a file and to plot this data set using the
open-source program ”Gnuplot”. The other one writes the data to a MEL file in
order to export the whole simulation to Autodesk Maya. The MEL file contains all
geometries, all motion data, the positions of the joint points, the velocity vectors
and some more information. Maya can be used to create photo-realistic animations
from the simulation data.

4.1.2 Multi-threading

The simulation of dynamic models takes much computation time. A simulation
step of a very complex model can take multiple seconds. It is essential that the
graphical user interface (GUI) and the simulation runs in their own threads. Oth-
erwise the user is not able to interact with the simulator during a simulation step.
Figure 14 shows the subdivision of the simulator in a GUI thread and a simulation
thread. A data storage and a command list is used for the subdivision. When
a simulation parameter is changed by the user during runtime, a corresponding
change command is inserted in the command list. Before each simulation step
all commands in the list are executed and removed from the list. In this way it
is guaranteed that the parameters are only changed between the simulation steps
which prevents the simulation from unstable states. After a simulation step the
actual data of the model (e.g. the positions and velocities of the bodies) is copied
to the data storage. The data of the storage is used by the GUI and the output
modules. By using the command list and the data storage it is prevented that a
thread reads data which is changed by another thread at the same time.
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Figure 14: The threads of the simulator

4.2 Interaction

At runtime, the user can interact with the joints and bodies in the simulation
by changing their parameters or by applying impulses or external forces. The
simulator provides different dialogs to change the parameters of the bodies, the
motors and the springs. It is even possible to program a chronological sequence
for the target values of a servo motor. In this way, e.g. a simple robot can be
controlled. All parameters for the different modules described above can also be
set by using the graphical user interface. The user has also the possibility to pause,
to resume or to slow down the simulation.

The motion of a body can be influenced by changing its parameters. This is not
a very intuitive way of interaction and the simulation can become unstable, if the
chosen parameters are unsuitable. Because of this, two different ways of interaction
were developed. Both provide the possibility to interact directly with a body by
using the mouse pointer.

The user can select a point on a body that he wants to push or to pull by an impulse.
After selecting a point the user can control the magnitude and the direction of the
impulse by moving the mouse. At the end he can decide, if he wants to push or
pull the body by a left or right mouse click. The impulse changes the velocity of
the body directly.

If the position or rotation of a body should be changed during the simulation,
all constraints of this body must be regarded. Therefore the translational and
rotational parameters must not be changed directly. For this kind of interaction
the simulator provides the possibility to select a body with the mouse and change
its position and rotation parameter by using velocity constraints. After selecting
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a body the user can control its motion directly by manipulators (see figure 15). A

(a) Translation (b) Rotation

Figure 15: Manipulators for controlling the translation and rotation of a
body

manipulator can be selected by the mouse. As long as the mouse button is pressed
the translation or rotation of the body will be controlled by the mouse movement.
The control is realised as a velocity constraint for the body. That means that the
body will follow the mouse cursor as long as its position constraints allow this
motion.

5 Extensibility

The simulator provides two different possibilities for extensions. The first one is
the implementation of new modules (see section 4.1.1). The second possibility is
the extension by Python scripts. For the simulator an interface was implemented
that allows the user to execute own scripts at runtime.

New methods for the simulation of joints, for collision detection, for collision reso-
lution or for the generation of external forces can be integrated in the simulator as
a module. Such a module can be linked statically or dynamically, when the simu-
lator starts. In this way the modules can be exchanged easily and the methods can
be developed independently from the simulation system. The development of new
modules also provides the possibility to compare different methods in the same
simulator.

Programs written in the scripting language Python can be executed by the simu-
lator. These scripts can access and change all parameters of the bodies, the joints
and the different modules. There are two ways to execute a Python script in the
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simulator. Either the script is called manually by the user or it is executed auto-
matically by an event callback. For example, a script method can be called after
each simulation step in order to manipulate the simulation parameters or to export
the simulation data. Each part of the simulation system can be controlled by such
script programs.

6 Conclusion and future work

In this report the design of a new dynamic simulation system for VR applications is
presented. The system consists of a modelling tool and a simulator. An extension
was written for Maya that allows the creation of dynamic models. These models
are exported as XML file for the simulator.

During a simulation the user has different possibilities to interact with the simu-
lated model. He can manipulate the dynamic parameters directly, apply impulses
or use manipulators that influence the bodies by using a velocity constraint.

The simulation system has a modular architecture in order to support multiple
simulation methods. Due to this architecture an extension by new methods can
be done easily. The simulator supports modules for the simulation of joints, the
collision detection, the collision response, the simulation of external forces and the
output of the simulation data. The Python interface of the simulator is another
possibility for extending the simulator. Scripts can be loaded and executed at
runtime in order to manipulate the simulation or to control the functions the
simulator.
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