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Abstract

A dynamic simulation method for multi-body systems is piteskin this paper. The special feature of this method
is that it satisfies all given constraints by computing ingsl In each simulation step the joint states after the step
are predicted. In order to obtain valid states after the dation step, impulses are computed and applied to the
connected bodies. Since a valid joint state is targetedtgxdbere is no drift as the simulation proceeds in time
and so no additional stabilisation is required. In previaygproaches the impulses for a multi-body system were
computed iteratively. Since dependencies between joiers mot taken into account, the simulation of complex
models was slow. A novel method is presented that uses asybtmear equations to describe these dependen-
cies. By solving this typically sparse system the requingplilses are determined. This method allows a very fast

simulation of complex multi-body systems.

Categories and Subject Descript¢scording to ACM CCS) 1.3.7 [Computer Graphics]: Animation

1. Introduction

There are many applications for the simulation of realistic
mechanical behaviour, for example computer animation, vir
tual reality or the simulation of robots. It depends on the pu
pose of the application, if the simulation has to be very accu
rate or very fast or if a trade-off between accuracy and speed
is needed. Usually a computer animation does not need the
same degree of accuracy as the simulation of robots but it
must run fast, whereas the simulation of a robot may run
even several hours but the result must be accurate. For vir-
tual reality applications it is necessary that the simataél-
ways runs in real-time. Otherwise the virtual world appears
less realistic. A dynamic simulation method has to support
many different joint types to simulate complex models, like
e.g. a robot in a virtual environment. For the simulation of
such models in real-time the method has to be very fast. In
this paper a fast simulation method for multi-body systems
containing all kinds of joints is presented. All constraiate
satisfied by applying impulses. Collisions and contacts are
resolved by using the method presentedB804.

Impulse-based methods for the dynamic simulation of
multi-body systems are easy to implement and very fast
[BFSO05WTFO0€. Another advantage of using impulses is

that impulses change the velocities of the bodies directly.
Hence no integration of continuous constraint forces is
needed to determine the new positions of the bodies in a time
step. These impulse-based methods work as follows. For ev-
ery joint in the system a prediction of the joint state after t
next simulation step is made. If the predicted joint stateis
valid, an impulse is computed and applied in order to correct
this. In an iterative process the computation of these cerre
tion impulses is continued until all predicted joint staiies

the system are valid. Then a simulation step is performed.
If there exist velocity constraints that are not satisfigeraf
the simulation step, they are solved by iteratively comput-
ing impulses. Since the impulse-based methods compute im-
pulses in order to exactly obtain a valid joint state, no nume
ical drift occurs as the simulation proceeds in time. Rachel
Weinstein et al.\WTF0§ combined their impulse-based dy-
namic simulation with the collision and contact handling al
gorithm of Eran Guendelman et aGBFO03. Therefore they
changed the typical order of a simulation step. With their
method they are able to simulate complex scenes and at-
tain visually plausible results. The method presented by Ja
Bender et al. in BFS0Y is fast and provides accurate re-
sults. In EB0J the accuracy of this method is compared to
reduced coordinate (generalised coordinate) and Lagrange
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multiplier methods. The proof that this impulse-based dy- this system in linear timeHar94. After the forces are com-

namic simulation method converges towards the exact solu-
tion is given in EBP03. The main difference between the
methods of Weinstein et al. and Bender et al. lies in the way

puted, a system of differential equations must be integrate
twice to get the new positions of the rigid bodies. The La-
grange multiplier method has a drifting problem which can

the correction impulses are computed that are needed in or-be solved by an additional stabilisation, for example by the

der to obtain a valid joint state. In the first method, in each
iteration a prediction of the joint state is made first. Then a
black box model$NTHO3WGO]] is used to project the pre-
dicted state to a desired state. Finally a nonlinear equétio
solved with Newton iteration to determine the impulse that
is required to reach the desired joint state. The method of
Bender et al. uses a simplification instead of solving a non-
linear equation. Dependent on the predicted joint state an
approximation of the required velocity change of the bod-

ies is made. An appropriate impulse that causes exactly this

velocity change is computed and applied. Since an approxi-
mation is used, the computation of impulses is continued in
an iterative process which ends, when a valid joint state is
reached. Velocity constraints are handled in a similar way i
the methods of Weinstein et al. and Bender et al.

Bender et al. describe their method only for a spherical
joint. In this paper, their method is extended in order to-sim
ulate several kinds of joints in an uniform way. It is shown
how six basic joint types are simulated with their method.
With these basic joints it is possible to remove all combina-
tions of translational and rotational degrees of freedom be
tween two rigid bodies. After the basic joints are introdiice

combinations of these joints are discussed. By using a com-

bination of two basic joints in a simulation all kinds of jeén
can be simulated. Since the method uses the simplification

described above and therefore only linear equations have to

one proposed by Baumgart®du73 or by post-stabilisation
techniquesAsc97. A survey of stabilisation techniques can
be found in Chi95 ACR95.

Reduced coordinates are a set of unconstrained indepen-
dent coordinates. Holonomic constraints can be expressed i
terms of these coordinates. The number of reduced coordi-
nates is equal to the number of degrees of freedom of the
simulated system. The determination of a set of such coordi-
nates for systems without loops is well knowkep8T. The
advantages of the method are that the constraint forcestdo no
need to be computed explicitly and no drift problems occur.
The disadvantages are that nonholonomic constraints tanno
be expressed in terms of reduced coordinates and it is hard
to find these coordinates for systems with loops.

The goal of the methods mentioned above is to obtain ac-
curate results. In contrast to that, Ronen Barzel et aludsc
plausible motion inBHW96], since a high degree of accu-
racy is not necessarily required for most computer anima-
tions. Stephane Redon et al. propose an adaptive algorithm
for the simulation of articulated bodieRGLOY. The algo-
rithm approximates the motion of the bodies by automat-
ically determining a set of active joints whereas the other

joints are treated as rigid. By this approximation largaksc

simulations of many articulated bodies can be accelerated.

be solved, the equations can also be written as a system of3  gjulation of an unconstrained rigid body
linear equations. In the same system dependencies between

joints in a multi-body system can be described. Because of

In the dynamic simulation a rigid body is defined by six pa-

the approximations that are used, the system of linear equa- rameters. The parameters of the translational motion lage: t

tions must be solved multiple times until all joints get a

massm, the position of the centre of ma€st) and the ve-

valid state. But since the dependencies between the joints locity v(t). The rotational parameters are: the inertia tensor

are taken into account, less impulses must be determined.

Especially the accurate simulation of complex models with
many joints runs much faster with the method presented in

J in body-space coordinates, a unit quatermgt) that de-
scribes the orientation of the bodgHo83 and the angular
velocity w(t). If the geometry of a rigid body with uniform

this paper. The goal of the presented method is to perform a mass distribution and its mass are known, the inertia tensor

fast and accurate simulation.

2. Related work

There exist several further methods for the handling oftjoin
constraints in a dynamic simulation. The most important are
the penalty methodJB94, the Lagrange multiplier method
and the simulation with reduced coordinates. The penalty
method is easy to implement but it satisfies the constraints
not exactly and is slow if a high degree of accuracy is re-
quired. The dynamic simulation with Lagrange multipliess i
more complicated to implement. The internal forces that act
in the joints are computed by solving a system of linear equa-
tions. David Baraff presented an algorithm which can solve

of this body can be computed with the algorithm presented
by Brian Mirtich in [Mir96a). Unit quaternions are used in-
stead of rotation matrices to represent the rotation ofgitl r
bodies in the simulation because the numerical error that oc
curs during the simulation is smalleBr97.

The motion of an unconstrained rigid body has six de-
grees of freedom. It depends on the actual state of the body
as well as on the external forces (e.g. gravity) and torques
acting on the body. The dynamic simulation of a rigid body
is done in discrete time steps. The parameters of the body
must be known at the beginning of a time step (at tig)e
and a time step siZe must be given to compute the param-
eters at timeg + h. Because the mass and the inertia tensor
in body-space coordinates are constant over time, only four
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parameters have to be computed for tige- h. In the fol-
lowing let us assume that the sum of all external forlegs
and the sum of all external torquegx: are constant during
the time step.

The position of the centre of mass and the velocity at the

end of a time step can be computed by integrating the accel-

eration due to the external for€ex::

h
Clto+h) = C(t0)+/o v(to)+%xtt dt
_ 1Fex 2
= C(to) + V(to)h+ >m he, Q)
h
Vito +h) = to) + Fet 4t — vit) + 2. (2)
0o m m

To compute the rotation at tintg + h the following differ-
ential equation for the unit quaternigyt) has to be solved:

0t = 560 () €
whered(t) is the quaterniorO, wx, wy, wy]. The solution of
the differential equation can be computed by numerical in-
tegration. In this work the fourth order Runge Kutta method
is used for numerical integration. The change of the angular
velocity during the time step can be computed by numeri-
cally integrating

w(t) = J L (Text— (w(t) x (J-w(t))))

in body-space coordinates.

4)

A simulation step of an unconstrained rigid body can be
done by solving the four equations above. The next section

describes how constraints between rigid bodies can be sim-

ulated.

4. Simulation of constraints

In this section the handling of joint constraints betweea tw
rigid bodies is discussed. The simulation of a joint works as
follows (see figurd). In every simulation step, the joint state
is evolved forward in time to obtain the joint state after the
simulation step. If this predicted joint state does notségati
the joint constraint, the error that occurred is determimed
the case of an error, it is approximated how the velocities of

the connected bodies must change to eliminate this error. An
impulse is computed that causes exactly the approximated

velocity change and it is applied at the beginning of the sim-
ulation step. The whole procedure is continued in an itezati
process until the error vanishes and the constraint idfigatis
for the predicted joint state. Then a simulation step can be
done as described in secti@nDue to the changed velocities
of the bodies, the joint constraint will be satisfied aftex th
simulation step. The iterative computation of joint impss

converges towards the exact solution (the proof can be found Kpg(t) =

in [SBP0Y). Velocity constraints are satisfied after the sim-
ulation step by applying an impulse. Since the required ve-

locity change is known in the case of such a constraint, the
impulse can be determined at once.

compute and
apply impulse

approximation of
velocity change

compute predicted
joint state

simulation step

velocity correction

Figure 1: Simulation step

In this section first some definitions are introduced that
are needed for the computation of constraint impulses. Then
three translational and three rotational joint constsaare
presented. Itis shown that by combining these six conggrain
every kind of joint can be created. In the beginning only
systems with a single constraint are regarded. After thet th
simulation of systems with multiple constraints is expéain
Closed kinematic chains must be treated in a special way and
are discussed separately.

4.1. Basics

In the following let be the inertia tensor in world space of
the rigid body with the index. The cross product matrix*
of a vectora is defined as follows:

0 -—az &
a'=| a 0 —ax|,axb=a"-h
—ay ax 0

The velocity of a poinP of thei-th rigid body is given by
Up(t) = Vi (1) + 1 (t) x (P(t) —Ci(t)).

Let P(t) and Q(t) be two arbitrary points of the-th
rigid body in world space and lep(t) = P(t) — Ci(t) and
ro(t) = Q(t) — Ci(t) be the vectors from the centre of mass
to these points. If an impulgeis applied aQ(t), the change
Aup(t) of the point velocity ofP(t) can be computed with
the following matrixKpg(t):

g —rp(®)FH(t)rg(t)if body i is dynamic
0 otherwise

Aup(t) = Kpolt)-p
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wherelj is the 3x3 identity matrix.

The matrixL(t) is used to determine the change of the
angular velocityAw (t), if an angular momenturmis applied
to a rigid bodyi:

_ Jit
o

Awi(t) = Li(t)-I.

if body i is dynamic

Li(t
i(t) otherwise

in the removal of three translational degrees of freedom of
the system. If both rigid bodies of this joint are simulated
without regarding the constraint (see sect®)n the joint
points will drift apart during the simulation step as shown
in figure 3. The goal of the presented dynamic simulation is
to find an impulsepjc for the timety that eliminates the dis-
tanced between the two points at the end of a simulation
step. The impulse has to be applied with a positive sign to
the first point and with a negative sign to the second point
to avoid a gain of energy in the system. The computation of

Two more matrices are needed to describe the dependen-is impulse is called thiint correction In the following,

cies between an impulse and the angular velocity and be-

tween an angular momentum and the point velocity.R(&f

be an arbitrary point of rigid bodyin world space and let
rp(t) = P(t) —Ci(t) be the vector from the centre of mass to
this point. Then the change of the angular velogity (t) of
the body when applying an impulgeat the pointP(t) is:

J(t)-rp(t) ifbodyiis dynamic
0 otherwise

Wp(t) = {
Awy(t) = Wip(t)-p.
The velocity of pointP(t) changes byAup(t) if an angular
momentum is applied to the-th rigid body:
—rp(t)-JL(t) if bodyi is dynamic
Upi(t) = ! .
’ 0 otherwise

Aup(t) = UpJ(t) -l

4.2. Trandational joint constraints

In this subsection a simulation step with a single transla-
tional joint is described. Systems with multiple joints are
discussed in sectiod.5. It is assumed that each joint con-
straint is satisfied at the beginning of a simulation step (at
timetp). Then impulses are computed in order to satisfy the
constraints at the end of the step.

Figure 2: Degrees of freedom of the translational joints

A translational constraint removes only translational de-
grees of freedom. For examplespherical joint(see figure
2(a) connects a poinA of a body to a poinB of another
body. The effect of the joint constraif— B| = O is that the
two bodies can only rotate around this position. This raesult

first the computation of this joint impulse is explained for
a spherical joint and then a modification of the introduced
equations is presented to simulate joints which remove less
translational degrees of freedom.

rigid body 1

rigid body 2

Figure 3: Impulses for a spherical joint

Before the joint impulsepjc can be computed, the dis-
tanced between the two joint points at the end of the sim-
ulation step must be known. If the parameters of a biody
and the position of a poirk fixed to this body are known at
time tp, the direction of the vectar(tp) = A(tp) — Ci(tp) at
timeto + h can be determined by solving the following dif-
ferential equation with the forth order Runge Kutta method:

F(t) = wi(t) xr(t). ©)

If the position of the centre of mass at the end of the sim-
ulation step is determined by using equatibnthe new
position of the pointA can be computed by(tg + h) =
r(to+h)+C(to+h). Since the new positions of the two joint
points can be determined, the distance between them at the
end of the simulation step is

d(to+h) = A(to+ h) — B(to + ).

Now an impulsepjc must be computed to eliminate the dis-
tance between the two points within one time step of size
h. Since the points have typically a nonlinear motion, the
required impulse can be determined by solving a nonlinear
equation iteratively\WTFO§. In this work a simplification
was used. If the relative velocity of the two points is chahge
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by d(to + h) /h as if the relative motion of the points is lin- B which is fixed to the second body. The point of the sec-
ear, the resulting impulse will reduce the distad¢® + h), ond body can move freely on the line of the first body. Each
but in general it will not eliminate it completely. The com- time before an impulse is computed the pofnts moved
putation of such impulses is continued iteratively unté th  on the line to the position where it has the smallest distance
distanced(tp + h) vanishes within a tolerance. In practice to the pointB. This is necessary to obtain a physical cor-
the time step sizh is normally at most 0.04 s (25 frames per rect result. The impulses for this joint can be computed by
second). In several tests with= 0.04 s the desired impulse  projecting equatioré and 7 in the two-dimensional space.
was computed. In most cases one or two iteration steps werelLet b andc be two linearly independent vectors perpendic-
needed even with a small tolerance of fom. More iter- ular to the given vectoa. These vectors correspond to the
ations were only needed, if the connected bodies had very two degrees of freedom that should be removed. The two-
high velocities. The advantage of the introduced simplfica dimensional joint impulse is then computed by solving the
tion is that the equation for the required impulse is lineata  following equation in an iterative process until the distan

can be solved easily. Pd(to + h) vanishes:
The impulse that changes the relative velocity of the two PK(ta) P - D — 1 Pd(ti+h 8
points byd(to + h) /h must be applied with a positive sign to (to) Pie h (to-+h) ®

point A and with a negative sign to poiBt This impulse can b7
be computed by solving the following equation: where P = (J) € R?? is the projection matrix. The
1 three-dimensional joint impulsgic is given by
Kaa(to) - Pic —Keg(to) - (—pyc) = d(to+h). ’

.
. . . Pic =P" - Pje-

The matrixK(tg) := Ka a(to) + Kg g(to) is constant at time o .

to, nonsingular, symmetric and positive definite (the proof Equation?is also projected onto the plane spannedlayd

can be found inWir96b]). Hence the equation can be solved € to compute the two-dimensional impulse for the velocity

by inverting the matrix (to): correction at once:
1 PK(to+h) P - plc = P-Au(ty + h). 9)
pic =  K(to) *d(to+h). ©) ’

This impulse must be transformed in world space before ap-
Impulses are computed iteratively with equat®ontil the plying it to the bodies.

distance vanishes. In each iteration the distagig + h)
must be updated. The impulses are applied at the beginning
of the time step (at timg)). When the iteration ends, a sim-
ulation step for unconstrained motion (see sec8poan be
done and the joint constraint will be satisfied at titge- h

due to the changed velocities.

The last translational joint removes one degree of freedom
(see figure2(c)). The joint is defined by a plank+Aa+pub
that is fixed to the first rigid body and a poiBtthat is fixed
to the second body. The joint allovigsto move freely in the
plane of the first body. In order to obtain a physical correct
result the poinf is moved in the plane to the position where

After the simulation step it is not guaranteed that the ve- it has the smallest distance to the pdiriefore an impulse is
locities of the two joint points are equal. A velocity differ ~ computed. The normal vector of the plane is givercbya x
enceAu(to + h) = ug(to + h) — ua(to + h) between the two b. This joint can be realised by using the projection matrix
joint points can be corrected by applying the following im- P = (CT) e R™3in equations3 and9 and solving them as
pulse at timeg + h: described for the last joint.

pve = K L(to+h) - Au(to+h). (7 The impulses for a spherical joint can also be computed
. o o by solving equation$ and 9 if the projection matrixP is
The velocity change caused by this impulse eliminates the the identity matrix. In conclusion all translational joictin-

differenceAu(to + h) immediately. This is called theeloc- straints can be satisfied by computing impulses with these
ity correction The computation of an impulse in order to  twg equations.

correct the velocities is not absolutely necessary for the d
namic simulation because the joint impulse of the next sim-
ulation step will solve the problem as well, but a higher de- 4.3. Rotational joint constraints
gree of accuracy can be achieved. All translational degrees
freedom are removed between the connected bodies by the
impulses computed above and in this way a spherical joint
can be simulated.

In this subsection three rotational joints are discusseidiwh
remove one, two or three rotational degrees of freedom. In
every simulation step an angular momentlg is deter-
mined to satisfy the joint constraint at the end of the time

The next kind of joint removes only two translational de- step and another angular momentlygis computed to cor-
grees of freedom (see figugb)). This joint is defined by rect the difference between the angular velocities of thme co
a line A+ Aa which is fixed to the first body and a point  nected bodies at the end of the simulation step.
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Figure 4: Degrees of freedom of the rotational joints

The first rotational joint that is discussed removes all ro-
tational degrees of freedom between two rigid bodies (see
figure 4(a)). This means that the bodies can move freely in
all directions but are not allowed to rotate relative to each
other. Before an angular momentuga for the joint correc-
tion can be computed, the error that occurs, if both bodies
are simulated without any constraint, must be determined.
If 01(0) andqy(0) are the rotation quaternions of two rigid
bodies at the beginning of the simulation, then the change of
the relative rotation at timg + h is described by the follow-
ing quaternion:

Aq(to+h) = (q2(0) - ga(to+h) - (qu(0) - au (to+ ).

The rotation quaternions of the bodies at tibge+ h can

be determined by solving the differential equati®@nThe
quaterniomq(to + h) is converted to a rotation axégty + h)

and an anglei(to + h). An angular momenturhc must be
computed that eliminates the rotatiality + h) = a(tg +
h)a(tp + h) within one time step of sizé. The same sim-
plification is used as the one introduced for the translation
joints. An angular momentum is determined that changes
the relative angular velocity of the connected bodies by
d(tg +h)/h as if the relative rotatory motion of the bodies
is linear. The required angular momentuig is obtained

by computing such angular momenta in an iterative process
until d(tp + h) vanishes within a tolerance. The following
equation must be solved to determine the angular momen-
tum that changes the relative angular velocity of the bodies
by d(tg + h) /h within one time step of sizk:

(La(to) +La(to) 1je = ¢

Since the inertia tensor of a rigid body and its inverse are
symmetric and positive definiteMir96b], L(t) = L1(t) +
L,(t) is also symmetric and positive definite, if at least one of
the two bodies is dynamic. This implies tHalt) is nonsin-
gular and the equation can be solved by inverting the matrix
L(to).

At the end of the time step the difference between the an-
gular velocitiesAw(to + h) = wyp(tg +h) — o (to + h) must

d(to+h). (10)
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be eliminated by applying an angular momentiygn This is
determined at once by solving the equation:

(La(to+h) +La(to+h)) - Ive = Aw(to + h). (11)

The next joint removes two rotational degrees of freedom
of the two connected bodies. This means that both bodies
are allowed to rotate around one common rotation axis and
to move freely in all directions. Led; anday be this axis
with unit length fixed to the first and the second body re-
spectively (see figurd(b)). The joint constraint forces both
axes to have the same orientation. Because of this, thagoint
calledorientation joint At time tg the constraint is satisfied,
soay(tg) = ax(tp). Letb andc be two linearly independent
vectors perpendicular to the axasg(tp). The error that oc-
curs during the simulation step can be described by the cross
product of the two rotation axes at timie+ h:

d(to+h) =a1(to+h) x ax(to+h).

The two-dimensional angular momentlhjpmaintaining the
joint constraint for a time step of siZe is computed by
solving the following equation in an iterative process lunti
Pd(tp +h) is zero:

lodtorh)  (12)

P(La(to) +La(to) P"lfe =
T
where P = (2T
three-dimensional angular momentum for the joint correc-
tion isljc = PT - lic- The angular momentuitj. needed for
the velocity correction is determined by projecting ecprati

11 onto the plane spanned byandc:

) € R?*3 is the projection matrix. The

P(L1(to+h) + La(to+h))P Ije = PAw(to+h).  (13)
The last rotational joint allows the connected bodies to

move in all directions and to rotate around two linearly inde

pendent axeaandb. Axis ais fixed to the first body and axis

b to the second body (see figuc)). In the following it is

assumed that both axes are normalised. The joint constraint

prevents the bodies from rotating around the axsa x b.

This means that the angdgt) = arccosa(t) - b(t)) must be

constant during the simulation. The three-dimensionarerr

that occurs during one simulation step is given by

d(to+h) = (d(to+h) — $(0)) - c.

The angular momentum to correct this error can be deter-
mined by computing angular momenta with equatiéin

an iterative process wheR= (c') € R**? is the projec-
tion matrix. The same projection matrix is used in order to
correct the angular velocities with equatib®

All rotational joints can be simulated by computing an-
gular momenta with equatiat®? for the joint correction and
with equation13 for the velocity correction, if the identity
matrix is used as projection matrixfor the first joint.
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4.4. Combinations of joint constraints The dimension of this system is equal to the amount of de-
grees of freedom that are removed in the multi-body system.
The matrix of the system of linear equatiokkis a block
matrix. The diagonal bloch;; is the matrix that is nec-
essary to compute the joint impulse of théh joint. This
means thai;j is the matrix of equatior if i is a trans-
lational joint and the one of equatidt? if i is a rotational
joint. The off-diagonal blockV; j describes the dependency
between joint and joint j. The two joints depend on each
other, if they are connected to the same rigid body. Other-
wise M; j is a zero matrix. If there is a dependency, the ma-
trix Mj j must describe how the velocities at jointhange,

if at joint j an impulse or an angular momentum is applied.
This can be done by using the matrices defined in subsection

In the preceding subsections six different joint constsain
have been introduced. By combining two of these constraints
new joint types can be created. A hinge joint can be simu-
lated by combining a spherical and an orientation joint. The
spherical joint eliminates the translational degrees eé{r
dom between the bodies and the orientation joint allows the
connected bodies to rotate around a common axis. If a torque
is applied to the bodies in direction of the rotation axis,& m
tor can be simulated. A PID controller can be used to control
this motor. Different kinds of sliders can be simulated by
combining a joint which removes two translational degrees
of freedom with different rotational joints. It is possitie
remove every combination of translational and rotational
degrees of freedom using the introduced constraints. Com-
bined joints that have been implemented are: hinge joints, In the following we assume that we have a system with
fixed joints, universal joints and all kinds of sliders. n joints and that there are no loops in this system. Two dis-
jointindex setsT andR are used. Let = {1,...,m} be the
indices of all translational joints anld= {m+1,...,n} be
4.5. Systemsof joint constraints the indices of all rotational joints. The block math j de-

If a system of rigid bodies connected with multiple joints is PENdS on the joint types afand j. If the two joints have a
given, it is not possible to satisfy all constraints by siypnpl ~ common body, then the following matrix is used to differ-

computing an impulse for every joint. In figuEea double entiate between the four possible cases:

pendulum is shown. The constraint of the left joint is sat- Kxy ifi,jeT

isfied but not the right one. If an impulse is computed and Lk7 ifi,j eR
applied to correct the right joint, the left joint will breaip. Nij(k X,Y) = L .
This problem can be solved by computing impulses for each y ifi€RandjeT

Uxk ifieTandjeR

whereX andY are the joint points fixed to body of joint

i and joint j respectively. A joint point is only used in the

matrix, if the corresponding joint is a translational one.
)\‘ With the matrixN; j(k,X,Y) the block matrice3\7li7j in
three-dimensional space can be computed. The matrices for
constraints with a lower dimension can be determined by a
proje~ction of matrixl\7|i7j which is explained later. The ma-
joint in an iterative loop as Weinstein et al. and Bender et trix M; j describes the number of common bodies the two
al. do WTF06,BFS0Y. The iteration stops if all joint con-  joints have and how they are connected to the bodies. Only
straints are satisfied. This iterative method is very robnst the translational joints have joint points but in the follog
even closed kinematic chains can be simulated without any We will assume that each rotational joint also has two joint
additional effort. Another advantage of the method is that Points. The position of these points is arbitrary becausg th
it does not have drift problems like the Lagrange multiplier ~are only needed for a simpler notation. légtandB; be the
method because the computed impulses correct every drift joint points of thei-th joint andk;, andk;, be the connected
that occurs. The only problem is that the iterative method rigid bodies. The matri; j is defined as
does not regard the dependencies between the joints in a

Figure5: System with two spherical joints

multi-body system. Because of this, the method needs many Nij (kiss A, Ay !f ki = ki, A ki, 7 ki,

iterations to simulate systems which have a complex joint Ni;(ki;,Bi, Bj) if ki, = kj, A kiy ki,

structure, especially if a high degree of accuracy is reghir (Nij (kig, A Aj)+

Therefore the simulation of such systems is slow. Nij(kiy,Bi,Bj)) if ki, =kj, A ki, =Kk,
If a rigid body is connected with multiple joints to other Mij=q—Nij(k, ALBj)  if ki, =kj, Ak, £k,

bodies, the impulses needed to maintain the constraints de- —Ni j(ki,, Bi,Aj) if ki, =kj, A ki, #Kj,

pend on each other. These dependencies can be described in —(Ni j(kip, A, Bj)+

a system of linear equations: Nij(Kip, Bi,A))) if ki, =Ki, A ki, = Ki,

M-p’ =Au. (14) 0 otherwise.
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The last step to build the matrid is to project the matri-
cesM; j using the projection matrices of the corresponding
joints. The resulting system of linear equations is

P1M171PI P]_Ml’mpr-[] pg_ PlAul

PeMmiPl ... PoMmmPm/ \Pm PmAUm

wherep/ is the projected impulse or angular momentum of
thei-th joint andAvy; is the velocity difference that has to be
corrected. In the case of joint correction, the vq%mhéto—k h)

is used as velocity difference whedét + h) is the distance

of the corresponding joint as it was defined in sectidris

and 4.3 By solving the system of linear equations all im-
pulses and angular momenta are determined at once. It has
to be kept in mind that the velocity differen(%ei(to+ h) is

just an approximation. Hence, after the impulses and angula edge is removed. This is continued until there are no more
momenta computed with the system of linear equations are cycles in the graph. The impulses for the multi-body system
app“ed to the r|g|d bodiesy for every joint a hew prediction without the marked jOintS and the impulses for the marked
of the distancei(to + h) has to be made in order to verify, if ~ joints are computed by using two separate systems of linear
all joint constraints will be satisfied after a simulatioest equations. Both systems are solved in a common iterative
As long as there exist joints whose constraints are not sat- [00p. The loop ends, if the constraints of both parts are sat-
isfied, the system of linear equations has to be solved for isfied.

the actual prediction of the distancddo + h) in an iterative

process. Since all dependencies of the joints are taken into 5 Reqlts

account during the computation of the impulses and angular

momenta, only a few iterations are needed even for complex All simulations in this section have been performed on a PC
multi-body systems. No approximation is made for the ve- with a 3.4 GHz Intel Pentium 4 processor. All differential

locity correction and so the exact solution can be deterchine €quations have been solved with the fourth-order Runge-
in one step. Kutta method. At first a tree with 127 rigid bodies that are

Figure 6: Multi-body system with loops

The system of linear equations can be solved, for example
by using a LU decomposition of the mati#. Because the
matrix is constant at a timte the decomposition can be used
for the velocity correction and the joint correction of thexh
step (since both are computed for the same simulation time).
This means that the decomposition must be computed only
once per simulation step. Hence the method does not slow
down much even if several iterations are necessary. Siece th
matrix is typically sparse, a sparse solver is a better ehoic
than using a LU decomposition. Therefore in this work the
solver PARDISO was use®[502 SG04.

4.6. Closed kinematic chains

The system of linear equations of a model which contains Figure 7. A tree with 127 spherical joints

closed kinematic chains can have a higher dimension than

the amount of degrees of freedom that are remoVéid7[7]. connected by 127 spherical joints (see figdyavas simu-

In this case solving the system of linear equations can leadt lated without collisions and contacts. This means that 381
unstable results. Multi-body systems with closed kinemati degrees of freedom were removed by the constraints. The
chains can be simulated by breaking the loops in the model. bodies were between 1 m and 11.4m long and had equal
An undirected graph is used to find these loops (see figure densities. In order to obtain accurate results, the totesn
6). Every rigid body in the model is represented by a node ¢jc = 10 %m andey = 107 % were used for the joint

in this graph. Two nodes are connected by an edge, if there and the velocity correction respectively. Since the prieskn
exists a joint between the corresponding rigid bodies. koop method with systems of linear equations (SLE) computes
in the model can be detected by finding cycles in the graph. the exact impulses for the velocity correction in one step,
If a cycle is found the corresponding joint is marked and the the toleranceyc was only required for the iterative method
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without using systems of linear equations which was men- 1072 1074 10°°

tioned in the beginning of sectioh5. A time step size of Tree31l | 0.97ms | 6.78ms 14.31ms
h= % s was used in order to produce 30 frames per second. Tree 63 | 2.48ms | 28.46ms | 67.50ms
At the start of the simulation a torque acts on the top body Tree 127| 6.25ms | 87.05ms | 228.57 ms
of the model causing a rotation of the tree. The computation Tree 255| 15.86ms| 246.71ms| 703.48 ms

times of the simulation steps with both methods were mea-

sured and the results are shown in fig8relable 1 shows Table 2: Simulation times without SLE

—— —2 — —6
0.35f without SLE —— | | 10 10 10
with SLE —— Tree31 | 3.23ms | 3.54ms | 3.79ms
03 1 Tree 63 | 7.12ms | 7.14ms | 7.69ms
0.25 Tree 127| 18.78 ms| 18.95ms| 20.09 ms
L 02 Tree 255| 62.06 ms| 63.21ms| 63.61ms
Q .
E 015! | Table 3: Simulation times with SLE
0.1 i
0.05 | 1
— accelerated the simulation. The average simulation tirhes o
50 100 150 200 250 300 350 400 450 500 the first method strongly depend on the tolerance values that

are used. The times of the second method seem to be inde-
pendent from the tolerances. The reason for this is that the
Figure 8: Computation times degree of accuracy of the results is always high, even if this

is not demanded.

number of simulation steps

the average values of both methods. The simulation with the  The use of the new method has advantages if a rigid body
second method runs faster than real-time and is more thanis connected with many joints. To show this, the tree with
eleven times faster than the first method. This speed up is 127 joints has been simulated again. This time a body in the
even higher, if a model with more dependencies between the tree was not connected to its direct parent but to the root of
joints is simulated as shown later. The first method needed the tree. So the model had 127 joints and all joints were con-
nected to the root body. The toleranags = 10~ m and

without SLE | with SLE eve=10"% % have been used for this simulation. The simu-
average time per step 228.57ms | 20.09ms lation with the new method was almost 80 times faster than
average iteration steps (jc 518.15 2 without using a SLE.
average iteration steps (v¢) 745.54 1

Table 1: Average values

more than 518 iterations for the joint correction and 745 for
the velocity correction. The second method needed only 2
iterations for the joint correction but the computation loé t
impulses in one iteration step needed more time because
system of linear equations had to be solved.

Trees of different sizes have been simulated to show the Figure9: A car and a walking machine
scalability of the methods. Furthermore different valuas f
the tolerancesjc andevc have been used. The average time
needed for one simulation step has been measured for the At last the practical use of different joint types is shown.
method without using systems of linear equations and for Therefore a car and a walking machine were build (see fig-
the new method. The results of the first method are shown ure 9). The car has a servo motor for each wheel and one
in table2. Equal tolerance values have been used foand servo motor for the steering. A slider joint has been com-
eve. The times needed by the new method are shown in table bined with a spring to simulate the dampers for the wheels.
3. In the simulation with large tolerance values the use of The simulation of the joints of this car ran nearly six times
systems of equations has no advantage, since the computafaster than real-time. Each leg of the walking machine is sim
tion of single impulses runs very fast and not many iteration ulated by one servo motor, two hinge joints and one slider.
are needed. If smaller tolerances were used, the use of a SLEThis model has one closed kinematic chain per leg.
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6. Conclusion

An extension of the method of Bender et al. has been pre-

sented that allows to simulate several different kinds ioft§o
in an uniform way. For the fast simulation of complex mod-

J. Bender & A. Schmitt / Fast Dynamic Simulation of Multi-B&ystems Using Impulses

[GBFO3] GUENDELMAN E., BRIDSONR., FEDKIW R.:
Nonconvex rigid bodies with stackingCM Transactions
on Graphics 223 (July 2003), 871-878.

[Mir96a] MIRTICH B.: Fast and accurate computation of

els a new method has been introduced that uses a system Polyhedral mass properties. Graph. Tools 12 (1996),

of linear equations to describe the dependencies in a multi-
body system. The advantages of the method are that it is easy[Mir96b]

to implement, it has no drift problem, accurate results @n b
achieved and it is fast.
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