
Fast Dynamic Simulation of Multi-Body Systems Using
Impulses

Jan Bender and Alfred A. Schmitt

Institut für Betriebs- und Dialogsysteme, Universität Karlsruhe, Germany
{jbender, aschmitt}@ira.uka.de

Abstract
A dynamic simulation method for multi-body systems is presented in this paper. The special feature of this method
is that it satisfies all given constraints by computing impulses. In each simulation step the joint states after the step
are predicted. In order to obtain valid states after the simulation step, impulses are computed and applied to the
connected bodies. Since a valid joint state is targeted exactly, there is no drift as the simulation proceeds in time
and so no additional stabilisation is required. In previousapproaches the impulses for a multi-body system were
computed iteratively. Since dependencies between joints were not taken into account, the simulation of complex
models was slow. A novel method is presented that uses a system of linear equations to describe these dependen-
cies. By solving this typically sparse system the required impulses are determined. This method allows a very fast
simulation of complex multi-body systems.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

There are many applications for the simulation of realistic
mechanical behaviour, for example computer animation, vir-
tual reality or the simulation of robots. It depends on the pur-
pose of the application, if the simulation has to be very accu-
rate or very fast or if a trade-off between accuracy and speed
is needed. Usually a computer animation does not need the
same degree of accuracy as the simulation of robots but it
must run fast, whereas the simulation of a robot may run
even several hours but the result must be accurate. For vir-
tual reality applications it is necessary that the simulation al-
ways runs in real-time. Otherwise the virtual world appears
less realistic. A dynamic simulation method has to support
many different joint types to simulate complex models, like
e.g. a robot in a virtual environment. For the simulation of
such models in real-time the method has to be very fast. In
this paper a fast simulation method for multi-body systems
containing all kinds of joints is presented. All constraints are
satisfied by applying impulses. Collisions and contacts are
resolved by using the method presented in [BS06].

Impulse-based methods for the dynamic simulation of
multi-body systems are easy to implement and very fast
[BFS05, WTF06]. Another advantage of using impulses is

that impulses change the velocities of the bodies directly.
Hence no integration of continuous constraint forces is
needed to determine the new positions of the bodies in a time
step. These impulse-based methods work as follows. For ev-
ery joint in the system a prediction of the joint state after the
next simulation step is made. If the predicted joint state isnot
valid, an impulse is computed and applied in order to correct
this. In an iterative process the computation of these correc-
tion impulses is continued until all predicted joint statesin
the system are valid. Then a simulation step is performed.
If there exist velocity constraints that are not satisfied after
the simulation step, they are solved by iteratively comput-
ing impulses. Since the impulse-based methods compute im-
pulses in order to exactly obtain a valid joint state, no numer-
ical drift occurs as the simulation proceeds in time. Rachel
Weinstein et al. [WTF06] combined their impulse-based dy-
namic simulation with the collision and contact handling al-
gorithm of Eran Guendelman et al. [GBF03]. Therefore they
changed the typical order of a simulation step. With their
method they are able to simulate complex scenes and at-
tain visually plausible results. The method presented by Jan
Bender et al. in [BFS05] is fast and provides accurate re-
sults. In [SB05] the accuracy of this method is compared to
reduced coordinate (generalised coordinate) and Lagrange

2 J. Bender & A. Schmitt / Fast Dynamic Simulation of Multi-Body Systems Using Impulses

multiplier methods. The proof that this impulse-based dy-
namic simulation method converges towards the exact solu-
tion is given in [SBP05]. The main difference between the
methods of Weinstein et al. and Bender et al. lies in the way
the correction impulses are computed that are needed in or-
der to obtain a valid joint state. In the first method, in each
iteration a prediction of the joint state is made first. Then a
black box model [SNTH03,WG01] is used to project the pre-
dicted state to a desired state. Finally a nonlinear equation is
solved with Newton iteration to determine the impulse that
is required to reach the desired joint state. The method of
Bender et al. uses a simplification instead of solving a non-
linear equation. Dependent on the predicted joint state an
approximation of the required velocity change of the bod-
ies is made. An appropriate impulse that causes exactly this
velocity change is computed and applied. Since an approxi-
mation is used, the computation of impulses is continued in
an iterative process which ends, when a valid joint state is
reached. Velocity constraints are handled in a similar way in
the methods of Weinstein et al. and Bender et al.

Bender et al. describe their method only for a spherical
joint. In this paper, their method is extended in order to sim-
ulate several kinds of joints in an uniform way. It is shown
how six basic joint types are simulated with their method.
With these basic joints it is possible to remove all combina-
tions of translational and rotational degrees of freedom be-
tween two rigid bodies. After the basic joints are introduced,
combinations of these joints are discussed. By using a com-
bination of two basic joints in a simulation all kinds of joints
can be simulated. Since the method uses the simplification
described above and therefore only linear equations have to
be solved, the equations can also be written as a system of
linear equations. In the same system dependencies between
joints in a multi-body system can be described. Because of
the approximations that are used, the system of linear equa-
tions must be solved multiple times until all joints get a
valid state. But since the dependencies between the joints
are taken into account, less impulses must be determined.
Especially the accurate simulation of complex models with
many joints runs much faster with the method presented in
this paper. The goal of the presented method is to perform a
fast and accurate simulation.

2. Related work

There exist several further methods for the handling of joint
constraints in a dynamic simulation. The most important are
the penalty method [dJB94], the Lagrange multiplier method
and the simulation with reduced coordinates. The penalty
method is easy to implement but it satisfies the constraints
not exactly and is slow if a high degree of accuracy is re-
quired. The dynamic simulation with Lagrange multipliers is
more complicated to implement. The internal forces that act
in the joints are computed by solving a system of linear equa-
tions. David Baraff presented an algorithm which can solve

this system in linear time [Bar96]. After the forces are com-
puted, a system of differential equations must be integrated
twice to get the new positions of the rigid bodies. The La-
grange multiplier method has a drifting problem which can
be solved by an additional stabilisation, for example by the
one proposed by Baumgarte [Bau72] or by post-stabilisation
techniques [Asc97]. A survey of stabilisation techniques can
be found in [Chi95,ACR95].

Reduced coordinates are a set of unconstrained indepen-
dent coordinates. Holonomic constraints can be expressed in
terms of these coordinates. The number of reduced coordi-
nates is equal to the number of degrees of freedom of the
simulated system. The determination of a set of such coordi-
nates for systems without loops is well known [Fea87]. The
advantages of the method are that the constraint forces do not
need to be computed explicitly and no drift problems occur.
The disadvantages are that nonholonomic constraints cannot
be expressed in terms of reduced coordinates and it is hard
to find these coordinates for systems with loops.

The goal of the methods mentioned above is to obtain ac-
curate results. In contrast to that, Ronen Barzel et al. discuss
plausible motion in [BHW96], since a high degree of accu-
racy is not necessarily required for most computer anima-
tions. Stephane Redon et al. propose an adaptive algorithm
for the simulation of articulated bodies [RGL05]. The algo-
rithm approximates the motion of the bodies by automat-
ically determining a set of active joints whereas the other
joints are treated as rigid. By this approximation large-scale
simulations of many articulated bodies can be accelerated.

3. Simulation of an unconstrained rigid body

In the dynamic simulation a rigid body is defined by six pa-
rameters. The parameters of the translational motion are: the
massm, the position of the centre of massC(t) and the ve-
locity v(t). The rotational parameters are: the inertia tensor
J in body-space coordinates, a unit quaternionq(t) that de-
scribes the orientation of the body [Sho85] and the angular
velocity ω(t). If the geometry of a rigid body with uniform
mass distribution and its mass are known, the inertia tensor
of this body can be computed with the algorithm presented
by Brian Mirtich in [Mir96a]. Unit quaternions are used in-
stead of rotation matrices to represent the rotation of all rigid
bodies in the simulation because the numerical error that oc-
curs during the simulation is smaller [Bar97].

The motion of an unconstrained rigid body has six de-
grees of freedom. It depends on the actual state of the body
as well as on the external forces (e.g. gravity) and torques
acting on the body. The dynamic simulation of a rigid body
is done in discrete time steps. The parameters of the body
must be known at the beginning of a time step (at timet0)
and a time step sizeh must be given to compute the param-
eters at timet0 + h. Because the mass and the inertia tensor
in body-space coordinates are constant over time, only four

J. Bender & A. Schmitt / Fast Dynamic Simulation of Multi-Body Systems Using Impulses 3

parameters have to be computed for timet0 + h. In the fol-
lowing let us assume that the sum of all external forcesFext

and the sum of all external torquesτext are constant during
the time step.

The position of the centre of mass and the velocity at the
end of a time step can be computed by integrating the accel-
eration due to the external forceFext:

C(t0 +h) = C(t0)+
∫ h

0
v(t0)+

Fext

m
t dt

= C(t0)+v(t0)h+
1
2

Fext

m
h2, (1)

v(t0 +h) = v(t0)+
∫ h

0

Fext

m
dt = v(t0)+

Fext

m
h. (2)

To compute the rotation at timet0 + h the following differ-
ential equation for the unit quaternionq(t) has to be solved:

q̇(t) =
1
2

ω̃(t) ·q(t) (3)

whereω̃(t) is the quaternion[0,ωx,ωy,ωz]. The solution of
the differential equation can be computed by numerical in-
tegration. In this work the fourth order Runge Kutta method
is used for numerical integration. The change of the angular
velocity during the time step can be computed by numeri-
cally integrating

ω̇(t) = J−1 · (τext− (ω(t)× (J ·ω(t)))) (4)

in body-space coordinates.

A simulation step of an unconstrained rigid body can be
done by solving the four equations above. The next section
describes how constraints between rigid bodies can be sim-
ulated.

4. Simulation of constraints

In this section the handling of joint constraints between two
rigid bodies is discussed. The simulation of a joint works as
follows (see figure1). In every simulation step, the joint state
is evolved forward in time to obtain the joint state after the
simulation step. If this predicted joint state does not satisfy
the joint constraint, the error that occurred is determined. In
the case of an error, it is approximated how the velocities of
the connected bodies must change to eliminate this error. An
impulse is computed that causes exactly the approximated
velocity change and it is applied at the beginning of the sim-
ulation step. The whole procedure is continued in an iterative
process until the error vanishes and the constraint is satisfied
for the predicted joint state. Then a simulation step can be
done as described in section3. Due to the changed velocities
of the bodies, the joint constraint will be satisfied after the
simulation step. The iterative computation of joint impulses
converges towards the exact solution (the proof can be found
in [SBP05]). Velocity constraints are satisfied after the sim-
ulation step by applying an impulse. Since the required ve-

locity change is known in the case of such a constraint, the
impulse can be determined at once.

Figure 1: Simulation step

In this section first some definitions are introduced that
are needed for the computation of constraint impulses. Then
three translational and three rotational joint constraints are
presented. It is shown that by combining these six constraints
every kind of joint can be created. In the beginning only
systems with a single constraint are regarded. After that the
simulation of systems with multiple constraints is explained.
Closed kinematic chains must be treated in a special way and
are discussed separately.

4.1. Basics

In the following letJ̃i be the inertia tensor in world space of
the rigid body with the indexi. The cross product matrixa∗

of a vectora is defined as follows:

a∗ =





0 −az ay

az 0 −ax

−ay ax 0



 , a×b = a∗ ·b.

The velocity of a pointP of the i-th rigid body is given by

uP(t) := vi(t)+ωi(t)× (P(t)−Ci(t)).

Let P(t) and Q(t) be two arbitrary points of thei-th
rigid body in world space and letrP(t) = P(t)−Ci(t) and
rQ(t) = Q(t)−Ci(t) be the vectors from the centre of mass
to these points. If an impulsep is applied atQ(t), the change
∆uP(t) of the point velocity ofP(t) can be computed with
the following matrixKP,Q(t):

KP,Q(t) :=

{

1
mi

I3− r∗P(t)J̃−1
i (t)r∗Q(t) if body i is dynamic

0 otherwise

∆uP(t) = KP,Q(t) · p

4 J. Bender & A. Schmitt / Fast Dynamic Simulation of Multi-Body Systems Using Impulses

whereI3 is the 3x3 identity matrix.

The matrixLi(t) is used to determine the change of the
angular velocity∆ωi(t), if an angular momentuml is applied
to a rigid bodyi:

Li(t) :=

{

J̃−1
i (t) if body i is dynamic

0 otherwise

∆ωi(t) = Li(t) · l .

Two more matrices are needed to describe the dependen-
cies between an impulse and the angular velocity and be-
tween an angular momentum and the point velocity. LetP(t)
be an arbitrary point of rigid bodyi in world space and let
rP(t) = P(t)−Ci(t) be the vector from the centre of mass to
this point. Then the change of the angular velocity∆ωi(t) of
the body when applying an impulsep at the pointP(t) is:

Wi,P(t) :=

{

J̃−1
i (t) · r∗P(t) if body i is dynamic

0 otherwise

∆ωi(t) = Wi,P(t) · p.

The velocity of pointP(t) changes by∆uP(t) if an angular
momentuml is applied to thei-th rigid body:

UP,i(t) :=

{

−r∗P(t) · J̃−1
i (t) if body i is dynamic

0 otherwise

∆uP(t) = UP,i(t) · l .

4.2. Translational joint constraints

In this subsection a simulation step with a single transla-
tional joint is described. Systems with multiple joints are
discussed in section4.5. It is assumed that each joint con-
straint is satisfied at the beginning of a simulation step (at
time t0). Then impulses are computed in order to satisfy the
constraints at the end of the step.

x

y

z

A

B

(a)

x

y

z a

A

B

(b)

x

y

z a

b

A

B

(c)

Figure 2: Degrees of freedom of the translational joints

A translational constraint removes only translational de-
grees of freedom. For example aspherical joint(see figure
2(a)) connects a pointA of a body to a pointB of another
body. The effect of the joint constraint|A−B|= 0 is that the
two bodies can only rotate around this position. This results

in the removal of three translational degrees of freedom of
the system. If both rigid bodies of this joint are simulated
without regarding the constraint (see section3), the joint
points will drift apart during the simulation step as shown
in figure3. The goal of the presented dynamic simulation is
to find an impulsep jc for the timet0 that eliminates the dis-
tanced between the two points at the end of a simulation
step. The impulse has to be applied with a positive sign to
the first point and with a negative sign to the second point
to avoid a gain of energy in the system. The computation of
this impulse is called thejoint correction. In the following,
first the computation of this joint impulse is explained for
a spherical joint and then a modification of the introduced
equations is presented to simulate joints which remove less
translational degrees of freedom.

rigid body 1

rigid body 2

A

B

d
p jc

−p jc

Figure 3: Impulses for a spherical joint

Before the joint impulsep jc can be computed, the dis-
tanced between the two joint points at the end of the sim-
ulation step must be known. If the parameters of a bodyi
and the position of a pointA fixed to this body are known at
time t0, the direction of the vectorr(t0) = A(t0)−Ci(t0) at
time t0 + h can be determined by solving the following dif-
ferential equation with the forth order Runge Kutta method:

ṙ(t) = ωi(t)× r(t). (5)

If the position of the centre of mass at the end of the sim-
ulation step is determined by using equation1, the new
position of the pointA can be computed byA(t0 + h) =
r(t0+h)+C(t0+h). Since the new positions of the two joint
points can be determined, the distance between them at the
end of the simulation step is

d(t0 +h) = A(t0 +h)−B(t0 +h).

Now an impulsep jc must be computed to eliminate the dis-
tance between the two points within one time step of size
h. Since the points have typically a nonlinear motion, the
required impulse can be determined by solving a nonlinear
equation iteratively [WTF06]. In this work a simplification
was used. If the relative velocity of the two points is changed

J. Bender & A. Schmitt / Fast Dynamic Simulation of Multi-Body Systems Using Impulses 5

by d(t0 + h)/h as if the relative motion of the points is lin-
ear, the resulting impulse will reduce the distanced(t0 +h),
but in general it will not eliminate it completely. The com-
putation of such impulses is continued iteratively until the
distanced(t0 + h) vanishes within a tolerance. In practice
the time step sizeh is normally at most 0.04 s (25 frames per
second). In several tests withh = 0.04 s the desired impulse
was computed. In most cases one or two iteration steps were
needed even with a small tolerance of 10−6 m. More iter-
ations were only needed, if the connected bodies had very
high velocities. The advantage of the introduced simplifica-
tion is that the equation for the required impulse is linear and
can be solved easily.

The impulse that changes the relative velocity of the two
points byd(t0 +h)/h must be applied with a positive sign to
pointA and with a negative sign to pointB. This impulse can
be computed by solving the following equation:

KA,A(t0) · p jc −KB,B(t0) · (−p jc) =
1
h

d(t0 +h).

The matrixK(t0) := KA,A(t0)+ KB,B(t0) is constant at time
t0, nonsingular, symmetric and positive definite (the proof
can be found in [Mir96b]). Hence the equation can be solved
by inverting the matrixK(t0):

p jc =
1
h

K(t0)
−1d(t0 +h). (6)

Impulses are computed iteratively with equation6 until the
distance vanishes. In each iteration the distanced(t0 + h)
must be updated. The impulses are applied at the beginning
of the time step (at timet0). When the iteration ends, a sim-
ulation step for unconstrained motion (see section3) can be
done and the joint constraint will be satisfied at timet0 + h
due to the changed velocities.

After the simulation step it is not guaranteed that the ve-
locities of the two joint points are equal. A velocity differ-
ence∆u(t0 + h) = uB(t0 + h)−uA(t0 + h) between the two
joint points can be corrected by applying the following im-
pulse at timet0 +h:

pvc = K−1(t0 +h) ·∆u(t0 +h). (7)

The velocity change caused by this impulse eliminates the
difference∆u(t0 + h) immediately. This is called theveloc-
ity correction. The computation of an impulse in order to
correct the velocities is not absolutely necessary for the dy-
namic simulation because the joint impulse of the next sim-
ulation step will solve the problem as well, but a higher de-
gree of accuracy can be achieved. All translational degreesof
freedom are removed between the connected bodies by the
impulses computed above and in this way a spherical joint
can be simulated.

The next kind of joint removes only two translational de-
grees of freedom (see figure2(b)). This joint is defined by
a line A+ λa which is fixed to the first body and a point

B which is fixed to the second body. The point of the sec-
ond body can move freely on the line of the first body. Each
time before an impulse is computed the pointA is moved
on the line to the position where it has the smallest distance
to the pointB. This is necessary to obtain a physical cor-
rect result. The impulses for this joint can be computed by
projecting equation6 and7 in the two-dimensional space.
Let b andc be two linearly independent vectors perpendic-
ular to the given vectora. These vectors correspond to the
two degrees of freedom that should be removed. The two-
dimensional joint impulse is then computed by solving the
following equation in an iterative process until the distance
Pd(t0 +h) vanishes:

PK(t0)PT · p′jc =
1
h
·Pd(t0 +h) (8)

where P =

(

bT

cT

)

∈ R2×3 is the projection matrix. The

three-dimensional joint impulsep jc is given by

p jc = PT · p′jc.

Equation7 is also projected onto the plane spanned byb and
c to compute the two-dimensional impulse for the velocity
correction at once:

PK(t0 +h)PT · p′vc = P·∆u(t0 +h). (9)

This impulse must be transformed in world space before ap-
plying it to the bodies.

The last translational joint removes one degree of freedom
(see figure2(c)). The joint is defined by a planeA+λa+µb
that is fixed to the first rigid body and a pointB that is fixed
to the second body. The joint allowsB to move freely in the
plane of the first body. In order to obtain a physical correct
result the pointA is moved in the plane to the position where
it has the smallest distance to the pointBbefore an impulse is
computed. The normal vector of the plane is given byc= a×
b. This joint can be realised by using the projection matrix
P =

(

cT
)

∈R1×3 in equations8 and9 and solving them as
described for the last joint.

The impulses for a spherical joint can also be computed
by solving equations8 and 9 if the projection matrixP is
the identity matrix. In conclusion all translational jointcon-
straints can be satisfied by computing impulses with these
two equations.

4.3. Rotational joint constraints

In this subsection three rotational joints are discussed which
remove one, two or three rotational degrees of freedom. In
every simulation step an angular momentuml jc is deter-
mined to satisfy the joint constraint at the end of the time
step and another angular momentumlvc is computed to cor-
rect the difference between the angular velocities of the con-
nected bodies at the end of the simulation step.

6 J. Bender & A. Schmitt / Fast Dynamic Simulation of Multi-Body Systems Using Impulses

x

x

y

y

z

z

(a)

x

x

y

y

z

z

a1

a2

(b)

x

x

y

y

z

z

a

b
(c)

Figure 4: Degrees of freedom of the rotational joints

The first rotational joint that is discussed removes all ro-
tational degrees of freedom between two rigid bodies (see
figure 4(a)). This means that the bodies can move freely in
all directions but are not allowed to rotate relative to each
other. Before an angular momentuml jc for the joint correc-
tion can be computed, the error that occurs, if both bodies
are simulated without any constraint, must be determined.
If q1(0) andq2(0) are the rotation quaternions of two rigid
bodies at the beginning of the simulation, then the change of
the relative rotation at timet0 +h is described by the follow-
ing quaternion:

∆q(t0+h) = (q2(0)−1 ·q2(t0+h))−1 ·(q1(0)−1 ·q1(t0+h)).

The rotation quaternions of the bodies at timet0 + h can
be determined by solving the differential equation3. The
quaternion∆q(t0+h) is converted to a rotation axisa(t0+h)
and an angleα(t0 + h). An angular momentuml jc must be
computed that eliminates the rotationd(t0 + h) = α(t0 +
h)a(t0 + h) within one time step of sizeh. The same sim-
plification is used as the one introduced for the translational
joints. An angular momentum is determined that changes
the relative angular velocity of the connected bodies by
d(t0 + h)/h as if the relative rotatory motion of the bodies
is linear. The required angular momentuml jc is obtained
by computing such angular momenta in an iterative process
until d(t0 + h) vanishes within a tolerance. The following
equation must be solved to determine the angular momen-
tum that changes the relative angular velocity of the bodies
by d(t0 +h)/h within one time step of sizeh:

(L1(t0)+L2(t0)) · l jc =
1
h

d(t0 +h). (10)

Since the inertia tensor of a rigid body and its inverse are
symmetric and positive definite [Mir96b], L(t) = L1(t) +
L2(t) is also symmetric and positive definite, if at least one of
the two bodies is dynamic. This implies thatL(t) is nonsin-
gular and the equation can be solved by inverting the matrix
L(t0).

At the end of the time step the difference between the an-
gular velocities∆ω(t0 + h) = ω2(t0 + h)−ω1(t0 + h) must

be eliminated by applying an angular momentumlvc. This is
determined at once by solving the equation:

(L1(t0 +h)+L2(t0 +h)) · lvc = ∆ω(t0 +h). (11)

The next joint removes two rotational degrees of freedom
of the two connected bodies. This means that both bodies
are allowed to rotate around one common rotation axis and
to move freely in all directions. Leta1 anda2 be this axis
with unit length fixed to the first and the second body re-
spectively (see figure4(b)). The joint constraint forces both
axes to have the same orientation. Because of this, the jointis
calledorientation joint. At time t0 the constraint is satisfied,
soa1(t0) = a2(t0). Let b andc be two linearly independent
vectors perpendicular to the axisa1(t0). The error that oc-
curs during the simulation step can be described by the cross
product of the two rotation axes at timet0 +h:

d(t0 +h) = a1(t0 +h)×a2(t0 +h).

The two-dimensional angular momentuml ′jc maintaining the
joint constraint for a time step of sizeh is computed by
solving the following equation in an iterative process until
Pd(t0 +h) is zero:

P(L1(t0)+L2(t0))P
T l ′jc =

1
h

Pd(t0 +h) (12)

where P =

(

bT

cT

)

∈ R2×3 is the projection matrix. The

three-dimensional angular momentum for the joint correc-
tion is l jc = PT · l ′jc. The angular momentuml ′vc needed for
the velocity correction is determined by projecting equation
11onto the plane spanned byb andc:

P(L1(t0 +h)+L2(t0 +h))PT l ′vc = P∆ω(t0 +h). (13)

The last rotational joint allows the connected bodies to
move in all directions and to rotate around two linearly inde-
pendent axesa andb. Axis a is fixed to the first body and axis
b to the second body (see figure4(c)). In the following it is
assumed that both axes are normalised. The joint constraint
prevents the bodies from rotating around the axisc = a×b.
This means that the angleϕ(t) = arccos(a(t) ·b(t)) must be
constant during the simulation. The three-dimensional error
that occurs during one simulation step is given by

d(t0 +h) = (ϕ(t0 +h)−ϕ(0)) ·c.

The angular momentum to correct this error can be deter-
mined by computing angular momenta with equation12 in
an iterative process whereP =

(

cT)

∈ R1×3 is the projec-
tion matrix. The same projection matrix is used in order to
correct the angular velocities with equation13.

All rotational joints can be simulated by computing an-
gular momenta with equation12 for the joint correction and
with equation13 for the velocity correction, if the identity
matrix is used as projection matrixP for the first joint.

J. Bender & A. Schmitt / Fast Dynamic Simulation of Multi-Body Systems Using Impulses 7

4.4. Combinations of joint constraints

In the preceding subsections six different joint constraints
have been introduced. By combining two of these constraints
new joint types can be created. A hinge joint can be simu-
lated by combining a spherical and an orientation joint. The
spherical joint eliminates the translational degrees of free-
dom between the bodies and the orientation joint allows the
connected bodies to rotate around a common axis. If a torque
is applied to the bodies in direction of the rotation axis, a mo-
tor can be simulated. A PID controller can be used to control
this motor. Different kinds of sliders can be simulated by
combining a joint which removes two translational degrees
of freedom with different rotational joints. It is possibleto
remove every combination of translational and rotational
degrees of freedom using the introduced constraints. Com-
bined joints that have been implemented are: hinge joints,
fixed joints, universal joints and all kinds of sliders.

4.5. Systems of joint constraints

If a system of rigid bodies connected with multiple joints is
given, it is not possible to satisfy all constraints by simply
computing an impulse for every joint. In figure5 a double
pendulum is shown. The constraint of the left joint is sat-
isfied but not the right one. If an impulse is computed and
applied to correct the right joint, the left joint will breakup.
This problem can be solved by computing impulses for each

Figure 5: System with two spherical joints

joint in an iterative loop as Weinstein et al. and Bender et
al. do [WTF06,BFS05]. The iteration stops if all joint con-
straints are satisfied. This iterative method is very robustand
even closed kinematic chains can be simulated without any
additional effort. Another advantage of the method is that
it does not have drift problems like the Lagrange multiplier
method because the computed impulses correct every drift
that occurs. The only problem is that the iterative method
does not regard the dependencies between the joints in a
multi-body system. Because of this, the method needs many
iterations to simulate systems which have a complex joint
structure, especially if a high degree of accuracy is required.
Therefore the simulation of such systems is slow.

If a rigid body is connected with multiple joints to other
bodies, the impulses needed to maintain the constraints de-
pend on each other. These dependencies can be described in
a system of linear equations:

M ·p′ = ∆u. (14)

The dimension of this system is equal to the amount of de-
grees of freedom that are removed in the multi-body system.
The matrix of the system of linear equationsM is a block
matrix. The diagonal blockMi,i is the matrix that is nec-
essary to compute the joint impulse of thei-th joint. This
means thatMi,i is the matrix of equation8 if i is a trans-
lational joint and the one of equation12 if i is a rotational
joint. The off-diagonal blockMi, j describes the dependency
between jointi and joint j . The two joints depend on each
other, if they are connected to the same rigid body. Other-
wiseMi, j is a zero matrix. If there is a dependency, the ma-
trix Mi, j must describe how the velocities at jointi change,
if at joint j an impulse or an angular momentum is applied.
This can be done by using the matrices defined in subsection
4.1.

In the following we assume that we have a system with
n joints and that there are no loops in this system. Two dis-
joint index setsT andR are used. LetT = {1, . . . ,m} be the
indices of all translational joints andR = {m+ 1, ...,n} be
the indices of all rotational joints. The block matrixMi, j de-
pends on the joint types ofi and j . If the two joints have a
common bodyk, then the following matrix is used to differ-
entiate between the four possible cases:

Ni, j (k,X,Y) =



















KX,Y if i, j ∈ T

Lk if i, j ∈ R

Wk,Y if i ∈ R and j ∈ T

UX,k if i ∈ T and j ∈ R

whereX andY are the joint points fixed to bodyk of joint
i and joint j respectively. A joint point is only used in the
matrix, if the corresponding joint is a translational one.

With the matrixNi, j (k,X,Y) the block matricesM̃i, j in
three-dimensional space can be computed. The matrices for
constraints with a lower dimension can be determined by a
projection of matrixM̃i, j which is explained later. The ma-
trix M̃i, j describes the number of common bodies the two
joints have and how they are connected to the bodies. Only
the translational joints have joint points but in the following
we will assume that each rotational joint also has two joint
points. The position of these points is arbitrary because they
are only needed for a simpler notation. LetAi andBi be the
joint points of thei-th joint andki1 andki2 be the connected
rigid bodies. The matrixM̃i, j is defined as

M̃i, j =







































































Ni, j (ki1 ,Ai,A j) if ki1 = k j1 ∧ ki2 6= k j2

Ni, j (ki2 ,Bi,B j) if ki2 = k j2 ∧ ki1 6= k j1

(Ni, j (ki1,Ai ,A j)+

Ni, j(ki2 ,Bi,B j)) if ki1 = k j1 ∧ ki2 = k j2

−Ni, j (ki1,Ai,B j) if ki1 = k j2 ∧ ki2 6= k j1

−Ni, j (ki2,Bi,A j) if ki2 = k j1 ∧ ki1 6= k j2

−(Ni, j (ki1,Ai,B j)+

Ni, j(ki2 ,Bi,A j)) if ki1 = k j2 ∧ ki2 = k j1

0 otherwise.

8 J. Bender & A. Schmitt / Fast Dynamic Simulation of Multi-Body Systems Using Impulses

The last step to build the matrixM is to project the matri-
cesM̃i, j using the projection matrices of the corresponding
joints. The resulting system of linear equations is






P1M̃1,1PT
1 . . . P1M̃1,mPT

m
...

. . .
...

PmM̃m,1PT
1 . . . PmM̃m,mPT

m













p′1
...

p′m






=







P1∆u1
...

Pm∆um







wherep′i is the projected impulse or angular momentum of
the i-th joint and∆ui is the velocity difference that has to be
corrected. In the case of joint correction, the value1

hd(t0+h)
is used as velocity difference whered(t0 +h) is the distance
of the corresponding joint as it was defined in sections4.2
and 4.3. By solving the system of linear equations all im-
pulses and angular momenta are determined at once. It has
to be kept in mind that the velocity difference1hd(t0 + h) is
just an approximation. Hence, after the impulses and angular
momenta computed with the system of linear equations are
applied to the rigid bodies, for every joint a new prediction
of the distanced(t0 +h) has to be made in order to verify, if
all joint constraints will be satisfied after a simulation step.
As long as there exist joints whose constraints are not sat-
isfied, the system of linear equations has to be solved for
the actual prediction of the distancesd(t0 +h) in an iterative
process. Since all dependencies of the joints are taken into
account during the computation of the impulses and angular
momenta, only a few iterations are needed even for complex
multi-body systems. No approximation is made for the ve-
locity correction and so the exact solution can be determined
in one step.

The system of linear equations can be solved, for example
by using a LU decomposition of the matrixM. Because the
matrix is constant at a timet, the decomposition can be used
for the velocity correction and the joint correction of the next
step (since both are computed for the same simulation time).
This means that the decomposition must be computed only
once per simulation step. Hence the method does not slow
down much even if several iterations are necessary. Since the
matrix is typically sparse, a sparse solver is a better choice
than using a LU decomposition. Therefore in this work the
solver PARDISO was used [SG02,SG04].

4.6. Closed kinematic chains

The system of linear equations of a model which contains
closed kinematic chains can have a higher dimension than
the amount of degrees of freedom that are removed [Wit77].
In this case solving the system of linear equations can lead to
unstable results. Multi-body systems with closed kinematic
chains can be simulated by breaking the loops in the model.
An undirected graph is used to find these loops (see figure
6). Every rigid body in the model is represented by a node
in this graph. Two nodes are connected by an edge, if there
exists a joint between the corresponding rigid bodies. Loops
in the model can be detected by finding cycles in the graph.
If a cycle is found the corresponding joint is marked and the

A

B

C
D

E

F

G

H

I

(a)

A

B

C

D

E

F

G

H

I

(b)

Figure 6: Multi-body system with loops

edge is removed. This is continued until there are no more
cycles in the graph. The impulses for the multi-body system
without the marked joints and the impulses for the marked
joints are computed by using two separate systems of linear
equations. Both systems are solved in a common iterative
loop. The loop ends, if the constraints of both parts are sat-
isfied.

5. Results

All simulations in this section have been performed on a PC
with a 3.4 GHz Intel Pentium 4 processor. All differential
equations have been solved with the fourth-order Runge-
Kutta method. At first a tree with 127 rigid bodies that are

Figure 7: A tree with 127 spherical joints

connected by 127 spherical joints (see figure7) was simu-
lated without collisions and contacts. This means that 381
degrees of freedom were removed by the constraints. The
bodies were between 1 m and 11.4 m long and had equal
densities. In order to obtain accurate results, the tolerances
ε jc = 10−6 m and εvc = 10−6 m

s were used for the joint
and the velocity correction respectively. Since the presented
method with systems of linear equations (SLE) computes
the exact impulses for the velocity correction in one step,
the toleranceεvc was only required for the iterative method

J. Bender & A. Schmitt / Fast Dynamic Simulation of Multi-Body Systems Using Impulses 9

without using systems of linear equations which was men-
tioned in the beginning of section4.5. A time step size of
h = 1

30 s was used in order to produce 30 frames per second.
At the start of the simulation a torque acts on the top body
of the model causing a rotation of the tree. The computation
times of the simulation steps with both methods were mea-
sured and the results are shown in figure8. Table1 shows

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 50 100 150 200 250 300 350 400 450 500

without SLE
with SLE

number of simulation steps

tim
e

[s
]

Figure 8: Computation times

the average values of both methods. The simulation with the
second method runs faster than real-time and is more than
eleven times faster than the first method. This speed up is
even higher, if a model with more dependencies between the
joints is simulated as shown later. The first method needed

without SLE with SLE
average time per step 228.57 ms 20.09 ms
average iteration steps (jc) 518.15 2
average iteration steps (vc) 745.54 1

Table 1: Average values

more than 518 iterations for the joint correction and 745 for
the velocity correction. The second method needed only 2
iterations for the joint correction but the computation of the
impulses in one iteration step needed more time because a
system of linear equations had to be solved.

Trees of different sizes have been simulated to show the
scalability of the methods. Furthermore different values for
the tolerancesε jc andεvc have been used. The average time
needed for one simulation step has been measured for the
method without using systems of linear equations and for
the new method. The results of the first method are shown
in table2. Equal tolerance values have been used forε jc and
εvc. The times needed by the new method are shown in table
3. In the simulation with large tolerance values the use of
systems of equations has no advantage, since the computa-
tion of single impulses runs very fast and not many iterations
are needed. If smaller tolerances were used, the use of a SLE

10−2 10−4 10−6

Tree 31 0.97 ms 6.78 ms 14.31 ms
Tree 63 2.48 ms 28.46 ms 67.50 ms
Tree 127 6.25 ms 87.05 ms 228.57 ms
Tree 255 15.86 ms 246.71 ms 703.48 ms

Table 2: Simulation times without SLE

10−2 10−4 10−6

Tree 31 3.23 ms 3.54 ms 3.79 ms
Tree 63 7.12 ms 7.14 ms 7.69 ms
Tree 127 18.78 ms 18.95 ms 20.09 ms
Tree 255 62.06 ms 63.21 ms 63.61 ms

Table 3: Simulation times with SLE

accelerated the simulation. The average simulation times of
the first method strongly depend on the tolerance values that
are used. The times of the second method seem to be inde-
pendent from the tolerances. The reason for this is that the
degree of accuracy of the results is always high, even if this
is not demanded.

The use of the new method has advantages if a rigid body
is connected with many joints. To show this, the tree with
127 joints has been simulated again. This time a body in the
tree was not connected to its direct parent but to the root of
the tree. So the model had 127 joints and all joints were con-
nected to the root body. The tolerancesε jc = 10−4 m and
εvc = 10−4 m

s have been used for this simulation. The simu-
lation with the new method was almost 80 times faster than
without using a SLE.

Figure 9: A car and a walking machine

At last the practical use of different joint types is shown.
Therefore a car and a walking machine were build (see fig-
ure 9). The car has a servo motor for each wheel and one
servo motor for the steering. A slider joint has been com-
bined with a spring to simulate the dampers for the wheels.
The simulation of the joints of this car ran nearly six times
faster than real-time. Each leg of the walking machine is sim-
ulated by one servo motor, two hinge joints and one slider.
This model has one closed kinematic chain per leg.

10 J. Bender & A. Schmitt / Fast Dynamic Simulation of Multi-Body Systems Using Impulses

6. Conclusion

An extension of the method of Bender et al. has been pre-
sented that allows to simulate several different kinds of joints
in an uniform way. For the fast simulation of complex mod-
els a new method has been introduced that uses a system
of linear equations to describe the dependencies in a multi-
body system. The advantages of the method are that it is easy
to implement, it has no drift problem, accurate results can be
achieved and it is fast.

References

[ACR95] ASCHERU. M., CHIN H. S., REICH S.: Stabi-
lization of constrained mechanical systems with daes and
invariant manifolds.J. Mech. Struct. Machines 23(1995),
135–158.

[Asc97] ASCHERU. M.: Stabilization of invariants of dis-
cretized differential systems.Numerical Algorithms 14,
1–3 (1997), 1–24.

[Bar96] BARAFF D.: Linear-time dynamics using la-
grange multipliers. InSIGGRAPH ’96: Proceedings of
the 23rd annual conference on Computer graphics and in-
teractive techniques(New York, NY, USA, 1996), ACM
Press, pp. 137–146.

[Bar97] BARAFF D.: An introduction to physically based
modeling: Rigid body simulation 1 - unconstrained rigid
body dynamics. SIGGRAPH Course Notes, 1997.

[Bau72] BAUMGARTE J.: Stabilization of constraints and
integrals of motion in dynamical systems. InComputer
Methods in Applied Mechanics(1972), pp. 1–16.

[BFS05] BENDER J., FINKENZELLER D., SCHMITT A.:
An impulse-based dynamic simulation system for VR ap-
plications. InProceedings of Virtual Concept 2005(Biar-
ritz, France, 2005), Springer.

[BHW96] BARZEL R., HUGHES J. F., WOOD D. N.:
Plausible motion simulation for computer graphics anima-
tion. In Computer Animation and Simulation ’96(1996),
pp. 183–197.

[BS06] BENDERJ., SCHMITT A.: Constraint-based colli-
sion and contact handling using impulses. InProceedings
of the 19th international conference on computer anima-
tion and social agents(Geneva (Switzerland), July 2006),
pp. 3–11.

[Chi95] CHIN H. S.: Stabilization methods for simula-
tions of constrained multibody dynamics. PhD thesis, Inst.
of App. Math., University of British Columbia, 1995.

[dJB94] DE JALON J. G., BAYO E.: Kinematic and Dy-
namic Simulation of Multibody Systems : the Real Time
Challenge. Springer-Verlag, New York, 1994.

[Fea87] FEATHERSTONER.: Robot dynamics algorithms.
Kluwer, 1987.

[GBF03] GUENDELMAN E., BRIDSON R., FEDKIW R.:
Nonconvex rigid bodies with stacking.ACM Transactions
on Graphics 22, 3 (July 2003), 871–878.

[Mir96a] M IRTICH B.: Fast and accurate computation of
polyhedral mass properties.J. Graph. Tools 1, 2 (1996),
31–50.

[Mir96b] M IRTICH B. V.: Impulse-based dynamic simu-
lation of rigid body systems. PhD thesis, University of
California, Berkeley, 1996.

[RGL05] REDON S., GALOPPON., LIN M. C.: Adaptive
dynamics of articulated bodies.ACM Trans. Graph. 24, 3
(2005), 936–945.

[SB05] SCHMITT A., BENDER J.: Impulse-based dy-
namic simulation of multibody systems: Numerical com-
parison with standard methods. InProc. Automation of
Discrete Production Engineering(2005), pp. 324–329.

[SBP05] SCHMITT A., BENDER J., PRAUTZSCH H.:
On the Convergence and Correctness of Impulse-Based
Dynamic Simulation. Internal Report 17, Institut für
Betriebs- und Dialogsysteme, 2005.

[SG02] SCHENK O., GÄRTNER K.: Two-level dynamic
scheduling in pardiso: improved scalability on shared
memory multiprocessing systems.Parallel Comput. 28,
2 (2002), 187–197.

[SG04] SCHENK O., GÄRTNER K.: Solving unsymmetric
sparse systems of linear equations with pardiso.Future
Gener. Comput. Syst. 20, 3 (2004), 475–487.

[Sho85] SHOEMAKE K.: Animating rotation with quater-
nion curves. InSIGGRAPH ’85: Proceedings of the 12th
annual conference on Computer graphics and interac-
tive techniques(New York, NY, USA, 1985), ACM Press,
pp. 245–254.

[SNTH03] SHAO W., NG-THOW-HING V.: A general
joint component framework for realistic articulation in hu-
man characters. InSI3D ’03: Proceedings of the 2003
symposium on Interactive 3D graphics(New York, NY,
USA, 2003), ACM Press, pp. 11–18.

[WG01] WILHELMS J., GELDER A. V.: Fast and easy
reach-cone joint limits.J. Graph. Tools 6, 2 (2001), 27–
41.

[Wit77] W ITTENBURG J.: Dynamics of systems of rigid
bodies. Teubner, 1977.

[WTF06] WEINSTEIN R., TERAN J., FEDKIW R.: Dy-
namic simulation of articulated rigid bodies with contact
and collision. InIEEE Transactions on Visualization and
Computer Graphics(2006), vol. 12, pp. 365–374.

