
Constraint-based collision and contact handling
using impulses

Jan Bender
Universität Karlsruhe
jbender@ira.uka.de

http://i31www.ira.uka.de

Alfred Schmitt
Universität Karlsruhe
aschmitt@ira.uka.de

http://i31www.ira.uka.de

Abstract
In this paper a new method for handling
collisions and permanent contacts between
rigid bodies is presented. Constraint-based
methods for computing contact forces with
friction provide a high degree of accuracy.
The computation is often transformed into an
optimization problem and solved with tech-
niques like linear or quadratic programming.
Impulse-based methods compute impulses to
prevent colliding bodies from interpenetrating.
The determination of these impulses is simple
and fast. The impulse-based methods are very
efficient but they are less accurate than the
constraint-based methods because they resolve
only one contact between two colliding bodies
at the same time. The presented method uses
a constraint-based approach. It can handle
multiple contacts between two colliding bodies
at the same time. For every collision and contact
a non-penetration constraint is defined. These
constraints are satisfied by iteratively computing
impulses. In the same iteration loop impulses
for dynamic and static friction are determined.
The new method provides the accuracy of a
constraint-based method and is efficient and
easy to implement like an impulse-based one.

Keywords: physically-based animation,
rigid bodies, collision, contact, friction

1 Introduction

The resolution of collisions and permanent con-
tacts with friction is an important part of the dy-
namic simulation of rigid bodies. A rigid body
is defined by its mass m, the position of its cen-
tre of mass c(t), its velocity v(t), its inertia
tensor J, its actual orientation represented by a
unit quaternion q(t) [1] and its angular velocity
ω(t).

There exist two main approaches for collision
and contact handling: the impulse-based and the
constraint-based approach. The impulse-based
method works as follows. For every pair of col-
liding bodies one pair of closest points is de-
termined and an impulse is computed and ap-
plied to resolve the collision at these points. Due
to the impulses new collisions can occur. Be-
cause of this, the computation of collision im-
pulses is continued in a loop until all collisions
are resolved. Since the determination of such
impulses runs fast, the method is very efficient.
If two bodies are resting on each other, in gen-
eral they have multiple contacts at the same time
but only one contact is handled per simulation
step. This results in a vibratory motion of the
bodies. There exist some approaches to cope
with this problem but if a high degree of accu-
racy is required, all existing contacts must be
resolved at once. This is done by constraint-
based methods. These methods define a non-
penetration constraint for each contact that oc-
curs. The defined constraints are unilateral and
can be formulated as a linear complementarity

problem (LCP). The contact forces can be com-
puted by solving this LCP. Alternatively the con-
straints can be written as a quadratic program
and solved by using quadratic programming al-
gorithms [2].

The goal of the presented method is to com-
bine the advantages of the constraint-based and
impulse-based approaches. To avoid problems
with vibratory motion between bodies resting
on each other and to achieve a higher degree of
accuracy, a constraint-based approach was cho-
sen for this method. But instead of transform-
ing the collision and contact resolution into an
optimization problem, the non-penetration con-
straints are satisfied by iteratively computing
impulses. The advantage of using impulses is,
that the computation is simple and fast. Im-
pulses change the velocities of the bodies di-
rectly, so no numerical integration is needed to
determine the velocity change due to contact
forces.

2 Previous work

Analytical methods define the determination of
contact forces as a linear complementarity prob-
lem [3]. Either two colliding rigid bodies are
accelerating away from each other or a nor-
mal force is needed to prevent interpenetration.
So either the normal acceleration or the nor-
mal force must be zero. Per Löstedt was the
first to handle contacts in this way [4]. David
Baraff presented a heuristic approach to com-
pute the contact forces analytically [5]. Vic-
tor Milenkovic and Harald Schmidl solved the
problem of computing non-interpenetrating po-
sitions, momenta and accelerations by using
quadratic programming [6]. In [7] they used
impulses to resolve collisions and contacts with
friction and determined the necessary impulses
by the solution of quadratic programs. To ac-
celerate the simulation of many objects, Vic-
tor Milenkovic proposed a simplified position-
based physics and used linear programming [8].
Danny Kaufman et al. presented an algorithm
for the simulation of large sets of non-convex
rigid bodies [9]. Contacts are solved simultane-
ously by quadratic programming. The solution
is linear in the number of contacts detected in
each iteration. David Baraff presented an algo-

rithm to determine the contact forces with fric-
tion without solving an optimization problem
[10]. This algorithm is faster, simpler and more
robust than methods based on optimization tech-
niques.

Brian Mirtich and John Canny proposed an
impulse-based method to handle collisions and
contacts with friction [11, 12]. They identify
the occurrence of a contact by using a velocity
threshold. During the simulation of a block rest-
ing on a plane small impulses are applied to dif-
ferent corners of the block to prevent interpene-
tration. These impulses lead to a vibratory mo-
tion. In the case of static friction a block slides
erroneously down an inclined plane due to these
vibrations. A microcollision model was intro-
duced to reduce this error [13]. Eran Guendel-
man et al. also use an impulse-based approach
for collision and contact handling [14]. They
proposed a new order of the simulation loop to
cope with the vibration problem. After all col-
lisions are processed, only the velocities of the
rigid bodies are updated. With the new veloci-
ties the contact handling is done and at last the
positions are updated. The change of order is not
physically correct but with a sufficiently small
time step size the results are plausible.

3 Collision response

A dynamic simulation system for non-
penetrating rigid bodies needs a collision
detection. The collision detection controls
the time step size of the dynamic simulator to
determine the time of impact. At this point
of time the colliding bodies just have contact
and do not penetrate each other. Especially in
the case of bodies resting on each other, two
colliding bodies can have contact in more than
one point. In the case of collision or contact,
the collision detection determines all contact
points and a contact normal n for each pair of
colliding bodies. A contact normal is always
directed from the second body to the first one.
The collision detection will not be discussed in
further detail in this paper.

The collision response of a dynamic simula-
tion system must handle collisions and resting
contacts. A collision occurs if two bodies are in
contact and their velocity towards each other in

the contact point is greater than zero. If the rel-
ative velocity of the bodies in the contact point
is equal to zero, then the bodies are in resting
contact. In both cases an impulse is computed
to prevent the bodies from interpenetrating.

Let us assume that gravity is the only exter-
nal force that acts on the bodies. In the case of
contact between two bodies, let a be the contact
point in the first body and b the one in the sec-
ond body and let ua and ub be the corresponding
point velocities. The velocity of a point a of a
rigid body can be computed by

ua(t) := v(t) + ω(t)× (a(t)− c(t)).

The relative velocity of the contact points is de-
fined as urel := ua − ub. The relative point
velocity in normal direction u′rel,n = urel · n is
determined to differentiate between three cases.
If u′rel,n is greater than zero the bodies are sep-
arating and no impulse need to be applied. Oth-
erwise the bodies are in resting contact or a col-
lision occurs. The criterion for a resting contact
is

−u′rel,n <
√

2 g εc

where εc is the tolerance of the collision detec-
tion and g is the acceleration of gravity. This
criterion was proposed by Brian Mirtich in [13].

The difference between resolving a collision
and handling a resting contact is that the du-
ration of a collision is infinitesimal whereas a
resting contact lasts for a whole simulation step.
Because of this, the resolution of all collisions is
done before the simulation step and the contacts
are handled during the simulation step (see fig-
ure 1). The collision resolution has to be done
in a loop because the applied impulses that pre-
vent the bodies from interpenetrating can cause
further collisions. The loop ends if no pair of
contact points satisfies the criterion for a colli-
sion. After all collisions are resolved, impulses
for the resting contacts are computed, so that a
simulation step can be done without interpene-
tration. In the following first the resolution of
collisions is discussed and then the handling of
resting contacts.

3.1 Collision resolution

The impact law of Newton is an approxima-
tion of the collision process without friction. It

Figure 1: Simulation step with collision and
contact handling

states that the relative velocity of a pair of con-
tact points in the direction of the normal after a
collision is

uc
rel,n = −e · urel,n

where e is the coefficient of restitution and
urel,n := u′rel,n · n is the normal velocity be-
fore the collision. If two bodies collide, an im-
pulse p has to be applied to the first body and an
equal impulse in opposite direction−p has to be
applied to the second body to prevent interpene-
tration. These impulses must act in the direction
of the normal n. To resolve the collision the im-
pulses must change the relative velocity of the
contact points by

∆urel,n = uc
rel,n − urel,n.

Let x and y be two arbitrary points of a rigid
body and let rxc := x − c and ryc := y − c
be the vectors from the centre of mass to these
points. The velocity change ∆ux of the point x

if an impulse p is applied at the point y can be
determined with the following matrix Kx,y:

Kx,y :=

1
m I3 − r∗xc J−1 r∗yc if the body

is dynamic
0 otherwise

∆ux = Kx,y · p

where r∗xc and r∗yc are the cross product matrices
of the vectors rxc and ryc and I3 is the 3×3 iden-
tity matrix. The impulse in normal direction that
changes the relative velocity of the pair of con-
tact points a and b by ∆urel,n is determined by

pn =
1

nTKn
∆urel,n (1)

where K := Ka,a +Kb,b. The resulting impulse
pn is applied at point a and the impulse −pn at
point b in order to resolve the collision. If there
occur multiple collisions at the same time or two
colliding bodies have multiple pairs of contact
points, then for each pair an impulse must be
computed and applied. Since in general the col-
lision impulses depend on each other this pro-
cess must be continued in an iterative loop until
all collisions are resolved correctly.

The collision resolution with multiple pairs
of contact points works as follows. In the be-
ginning the relative velocity uc

rel,n of each pair
of contact points after the collision is computed
with Newton’s law. Then the computation of the
collision impulses is done in an iterative loop. In
the i-th iteration for each pair of contact points it
is tested if the relative velocity urel,n of the pair
has already reached the corresponding collision
velocity uc

rel,n. If this is true, the computation
continues with the next contact. Otherwise an
impulse pn,i is determined with equation 1 to
eliminate the actual velocity difference ∆urel,n.
To prevent the colliding bodies from sticking to-
gether it must be ensured that in each iteration
the sum of all impulses that are applied to a pair
of contact points is in positive normal direction:

n ·
i∑

j=1

pn,j ≥ 0. (2)

If condition 2 holds in iteration i− 1 and is
not satisfied anymore in the i-th iteration, then
−n · pn,i > n ·

∑i−1
j=1 pn,j must hold. The fol-

lowing impulse p′
n,i is applied at the contact

points instead of pn,i to ensure that sticking is
prevented:

p′
n,i =

{
pn,i if n

∑i
j=1 pn,j ≥ 0

−
∑i−1

j=1 pn,j otherwise.
(3)

The iteration loop ends, if every pair of contact
points has reached its corresponding collision
velocity.

The friction that occurs if two bodies collide
depends on the collision impulse in normal di-
rection. Because of this, friction impulses are
computed in the same iteration loop as the col-
lision impulses. The computation of static and
dynamic friction is based on the friction law of
Coulomb. Dynamic friction occurs, if the rela-
tive tangential velocity urel,t = urel−urel,n be-
tween two colliding bodies at the contact point
is not zero. To simulate dynamic friction an im-
pulse is computed that acts in the opposite di-
rection of the tangent t = urel,t/|urel,t|. The
friction impulse of a pair of contact points in the
i-th iteration is computed by

pt,i = −µd|p′
n,i|t (4)

where µd is the coefficient of dynamic friction.
Before this impulse is applied to the contact
points, it must be ensured that it does not turn
the relative tangential velocity urel,t in the oppo-
site direction because friction impulses are only
allowed to decelerate the bodies. The maximal
allowed friction impulse is determined by

pt,max = − 1
tTKt

urel,t. (5)

This impulse eliminates the relative tangential
velocity completely. If the impulse pt,max is
taken into account, the resulting impulse for dy-
namic friction is given by

p′
t,i =

{
pt,i if pt,max · t < pt,i · t
pt,max otherwise.

In the case that the impulse pt,max is applied,
the relative tangential velocity vanishes and
static friction may occur.

Let µs be the coefficient of static friction. If in
the i-th iteration the relative tangential velocity
urel,t of a pair of contact points is zero and the
condition

|pt| ≤ µs|pn| (6)

is satisfied for the sum of the tangential impulses
pt =

∑i
j=1 p′

t,j and the sum of the normal im-
pulses pn =

∑i
j=1 p′

n,j , static friction occurs
between the colliding bodies. The sum of fric-
tion impulses pt is exactly the impulse that has
eliminated the relative tangential velocity of the
two colliding bodies at the contact point. As
long as condition 6 is satisfied, the correspond-
ing pair of contact points is marked to have static
friction. The friction impulses computed in the
iteration process for such a marked contact must
eliminate the relative tangential velocity. An
impulse computed with equation 5 eliminates
urel,t and is therefore exactly the impulse that
must be applied to simulate static friction. In
the case that a pair of contact points is marked
to have static friction but friction is not strong
enough to maintain sticking, the bodies start to
slide at this position. This happens, if condi-
tion 6 is not satisfied anymore. Then the corre-
sponding mark is removed and in the following
iteration steps impulses for dynamic friction are
applied. To guarantee that contacts where static
friction occurs have no relative tangential veloc-
ity at the end of the collision resolution, the it-
eration process continues until this condition is
satisfied.

3.2 Contact handling

After the collisions are resolved, all pairs of con-
tact points are tested, if they satisfy the criterion
for resting contacts. The contact handling works
similar to the resolution of collisions. The only
difference is that in the case of a resting con-
tact the bodies remain in contact for a whole
simulation step. Hence an impulse in normal
direction has to be computed that prevents in-
terpenetration during the whole step in order to
satisfy the non-penetration constraint. Let us
assume that at the time t0 all collisions are re-
solved and for one pair of contact points a and
b the criterion for a resting contact is satisfied.
If the simulation would continue without regard-
ing the non-penetration constraint, in general the
rigid bodies would interpenetrate due to the ex-
ternal forces acting on the bodies as shown in
figure 2. The distance of the contact points af-
ter a simulation step of size h has to be deter-
mined. Let rac = a − c1 and rbc = b − c2 be
the vectors from the centres of mass of the col-

Figure 2: Interpenetration of two bodies

liding rigid bodies to the corresponding contact
points at the time of contact t0. The directions
the vectors will have after a simulation step of
size h can be computed by numerically integrat-
ing the following differential equation:

ṙ = ω × r. (7)

The fourth order Runge-Kutta method is used to
do the numerical integration. Since gravity is the
only external force, the position of the centre of
mass c of a rigid body after a simulation step is
determined by:

c(t0 + h) = c(t0) + v(t0) h +
1
2

g h2.

If the resulting vectors are added to the new cen-
tres of mass, the distance of the contact points
after the simulation step can be computed:

a(t0 + h) = rac(t0 + h) + c1(t0 + h)
b(t0 + h) = rbc(t0 + h) + c2(t0 + h)

d = a(t0 + h)− b(t0 + h).

By numerically integrating differential equation
7, the new direction of the contact normal is de-
termined. The distance and the new contact nor-
mal n(t0 + h) can be used to compute the pene-
tration depth after the simulation step:

dn(t0 + h) = −d · n(t0 + h).

The impulse that eliminates exactly this pen-
etration depth within one simulation step can
be determined by solving a non-linear equation
[15]. In the presented method a simplification
was used. An impulse is determined that causes
a change of the relative velocity of the contact
points in normal direction by dn(t0 + h)/h:

pn =
1

nTKn
· 1
h

dn(t0 + h) · n. (8)

This impulse must be applied at time t0. Since in
general the contact points have no linear motion,
the resulting impulse will possibly not resolve
the contact directly but it is a good approxima-
tion. The contact can be completely resolved by
computing impulses with equation 8 in an iter-
ative loop until dn(t0 + h) is zero within a tol-
erance. In practice the time step size h is nor-
mally at most 0.04 s (25 frames per second). In
several tests with h = 0.04 s the desired im-
pulse could always be computed in one or two
iteration steps even when a small tolerance of
10−6 m was used. The advantage of the used
simplification is that the equation for the re-
quired impulse is linear and can be solved easily.
In the case that multiple resting contacts occur at
the same time in the system, the iterative com-
putation of the impulses solves emerging depen-
dencies between the contacts. In this iterative
process it must be guaranteed that rigid bodies
in contact do not stick together due to the com-
puted impulses. Hence condition 2 must be sat-
isfied for the impulses pn,i that are determined
by using equation 8. Analogous to the resolu-
tion of collisions, an impulse p′

n,i computed by
equation 3 is applied instead of pn,i to satisfy
the condition in every iteration step.

If a stack of bodies lies on the floor, the body
at the top pushes all other bodies in the floor and
many iterations are needed to handle all the con-
tacts. Eran Guendelman et al. proposed an algo-
rithm in [14] called shock propagation to reduce
the number of iterations needed for such situa-
tions. A contact graph is used to describe the
dependencies between the contacts in a system
of rigid bodies. Every body is represented by a
node in the graph. Static bodies are marked as
root nodes. For every contact between two bod-
ies the corresponding nodes are connected by
an edge. After a given number of iterations the
shock propagation starts with the bodies whose
corresponding nodes are connected to the root
nodes. All contacts in this level of the contact
graph are handled. Then the bodies of this level
are assigned infinite mass. In the same way the
shock propagation method traverses the contact
graph level by level. When the traversal ends,
all contacts are resolved and the simulation can
continue. In this way the contact handling of
systems with stacks is more efficient.

The determination of impulses to simulate dy-

namic friction works exactly in the same way as
described for the resolution of collisions. If the
relative tangential velocity of a pair of contact
points is zero and condition 6 is satisfied, then
static friction occurs. The distance the contact
points have after a simulation step of size h is
given by

dt(t0 + h) = −d− dn(t0 + h)n(t0 + h).

In the case that dt(t0 + h) has zero length, no
impulse has to be applied in tangential direction.
Otherwise the tangent t can be determined by
normalising the vector dt(t0 + h). The friction
impulse that eliminates the distance of the con-
tact points in tangential direction is determined
by

pt =
1

tTKt
· 1
h
dt(t0 + h).

With this impulse static friction can be simu-
lated. It assures that the contact points are still at
the same position after the simulation step. The
iteration process ends, if interpenetration is pre-
vented for all contacts and the distance in tan-
gential direction dt(t0 + h) after the simulation
step is zero for all contacts where static friction
occurs.

4 Results

The presented method for collision and contact
handling was implemented in C++. Different
models have been simulated to test the method.
First of all, blocks with different coefficients of
friction were dropped on an inclined plane. The
blocks with a higher coefficient stopped their
movement due to static friction and were able
to hold their positions until the end of the sim-
ulation without any erroneous sliding. The dis-
tances the blocks needed for stopping in the case
of static friction have been compared to analyti-
cally computed stopping distances to verify that
the simulation delivers correct results.

To measure the performance of the collision
and contact handling a model with 1000 cubes
was created. The cubes fall through a funnel in
order to cause many collisions and contacts (see
figure 3). The performance tests were run on a
PC with a 3.4 GHz Intel Pentium 4 processor.
The cubes had a side length of 1 m. The resti-
tution coefficient was set to e = 0.48 and the

Figure 3: 1000 cubes falling through a funnel.

coefficients of static and dynamic friction were
µs = µd = 0.1. Resting contacts were re-
solved until they had at most a penetration depth
of 10−4 m. 6000 simulation steps were per-
formed with a time step size of h = 0.001 s.
Shock propagation was not used in this simula-
tion in order to produce very accurate results.
The results of the performance tests are pre-
sented in figures 4(a) and 4(b). During the sim-
ulation the rigid bodies had 41 collisions and
426 resting contacts per time step on average.
The simulation method needed 3.09 ms on av-
erage for the resolution of all collisions. The
average time needed for contact handling was
6.30 ms. Since the time step size and the maxi-
mal allowed penetration depth were very small,
accurate results could be achieved. The simu-
lation of 1000 cubes with friction was less than
ten times slower than real-time. This is a good
result for an accurate simulation. If only plau-
sible results are required, the parameters can be
changed and the simulation runs much faster.

The next model that was simulated was a
tippe top (see figure 5). This is a top that spins
first on its spherical body and then after a while
it turns around and spins on its stem. The tippe
top turns around due to the friction between the
top and the plane on which it spins. The sim-
ulation of this model is not trivial [16]. It is a
good example for showing the capabilities of the
presented method concerning frictional effects.
The model was simulated with different coeffi-
cients of friction. The tippe top always turned
around without any problems. In simulations
with a small friction coefficient it spun longer on
its spherical body before it turned around due to

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 100 200 300 400 500 600 700

tim
e

[s
]

number of collisions

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 200 400 600 800 1000 1200 1400 1600

tim
e

[s
]

number of contacts

(b)

Figure 4: Computation times for collision and
contact handling

the lower friction.

For the last simulation the dynamic simula-
tion method of Bender et al. [17] was imple-
mented to simulate joints by iteratively comput-
ing impulses. Since the computation of the joint
and the contact impulses both work in an iter-
ative loop, the iterative processes can be easily
combined. In this way the collisions and con-
tacts for a system with articulated rigid bodies
can be resolved. The office toy that is shown
in figure 6 was simulated to test if the collision
impulses are propagated correctly through the
balls. Every ball had a restitution coefficient of
e = 1.0. When the two balls on the left hit the
rest of the balls, they stopped and the two balls
on the right bounced off. After the collision the
balls on the right had the same velocity as the
balls on the left had before the collision. The en-
ergy of the system was measured during the sim-
ulation to verify that it is conserved. The results
showed that the energy was constant except for
a small numerical error during the whole simu-

Figure 5: Tippe top

Figure 6: Office toy

lation.

5 Conclusion

A method for collision and contact handling
with friction was presented. This method is
based on a constrained-based approach and is
able to handle collisions and resting contacts be-
tween rigid bodies. The method works by iter-
atively computing impulses. The equations to
determine these impulses are simple and no nu-
merical integration has to be done to compute
the resulting velocities. Therefore this method is
easy to implement. The results have shown that
the method is also very fast and even complex
frictional effects can be simulated. Contacts can
be simulated even faster, if the shock propaga-
tion algorithm is used. The presented method
can handle multiple contact points between two
colliding bodies at the same time. Hence no er-
roneous vibratory motion occurs and very accu-

rate results can be achieved. Finally, the method
was successfully integrated in a dynamic simu-
lation system for articulated rigid bodies.

References

[1] Ken Shoemake. Animating rotation with
quaternion curves. In SIGGRAPH ’85:
Proceedings of the 12th annual confer-
ence on Computer graphics and inter-
active techniques, pages 245–254. ACM
Press, 1985.

[2] Nick Gould and Philippe Toint. A
quadratic programming bibliography,
2001.

[3] Richard W. Cottle, Jong-Shi Pang, and
Richard E. Stone. The linear complemen-
tarity problem. Academic Press, 1992.

[4] Per Lötstedt. Numerical simulation of
time-dependent contact and friction prob-
lems in rigid body mechanics. 5(2):370–
393, June 1984.

[5] David Baraff. Analytical methods for dy-
namic simulation of non-penetrating rigid
bodies. Computer Graphics, 23(3):223–
232, 1989.

[6] Victor J. Milenkovic and Harald Schmidl.
Optimization-based animation. In SIG-
GRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics
and interactive techniques, pages 37–46,
New York, NY, USA, 2001. ACM Press.

[7] Harald Schmidl and Victor J. Milenkovic.
A fast impulsive contact suite for rigid
body simulation. IEEE Transactions
on Visualization and Computer Graphics,
10(2):189–197, 2004.

[8] Victor J. Milenkovic. Position-based
physics: simulating the motion of many
highly interacting spheres and polyhe-
dra. In SIGGRAPH ’96: Proceedings of
the 23rd annual conference on Computer
graphics and interactive techniques, pages
129–136, New York, NY, USA, 1996.
ACM Press.

[9] Danny M. Kaufman, Timothy Edmunds,
and Dinesh K. Pai. Fast frictional dynam-
ics for rigid bodies. ACM Trans. Graph.,
24(3):946–956, 2005.

[10] David Baraff. Fast contact force compu-
tation for nonpenetrating rigid bodies. In
SIGGRAPH ’94: Proceedings of the 21st
annual conference on Computer graphics
and interactive techniques, pages 23–34,
New York, NY, USA, 1994. ACM Press.

[11] Brian Mirtich and John Canny. Impulse-
based dynamic simulation. In WAFR: Pro-
ceedings of the workshop on Algorithmic
foundations of robotics, pages 407–418,
Natick, MA, USA, 1994. A. K. Peters, Ltd.

[12] Brian Mirtich and John Canny. Impulse-
based simulation of rigid bodies. In SI3D
’95: Proceedings of the 1995 symposium
on Interactive 3D graphics, pages 181–ff.,
New York, NY, USA, 1995. ACM Press.

[13] Brian Vincent Mirtich. Impulse-based
dynamic simulation of rigid body sys-
tems. PhD thesis, University of California,
Berkeley, 1996.

[14] Eran Guendelman, Robert Bridson, and
Ronald Fedkiw. Nonconvex rigid bod-
ies with stacking. ACM Transactions on
Graphics, 22(3):871–878, July 2003.

[15] Rachel Weinstein, Joseph Teran, and Ron
Fedkiw. Dynamic simulation of articu-
lated rigid bodies with contact and colli-
sion. In IEEE Transactions on Visualiza-
tion and Computer Graphics, volume 12,
pages 365–374, 2006.

[16] Jörg Sauer and Elmar Schömer. A
constraint-based approach to rigid body
dynamics for virtual reality applications.
In VRST ’98: Proceedings of the ACM
symposium on Virtual reality software and
technology, pages 153–162, New York,
NY, USA, 1998. ACM Press.

[17] Jan Bender, Dieter Finkenzeller, and Al-
fred Schmitt. An impulse-based dynamic
simulation system for VR applications.
In Proceedings of Virtual Concept 2005,
Biarritz, France, 2005. Springer.

