
Proceedings of Virtual Concept 2005
Biarritz, France, November 8th – November 10th, 2005

77 -1- Copyright Virtual Concept

Feature-based decomposition of façades

Dieter Finkenzeller, Jan Bender, Alfred Schmitt

University of Karlsruhe
Institut für Betriebs- und Dialogsysteme

Am Fasanengarten 5
76128 Karlsruhe

Germany
Phone: +49(0)721 608 3965
Fax: +49(0)721 608 8330

E-mail : {dfinken|jbender|aschmitt}@ira.uka.de

Abstract: Due to advances in computer hardware, virtual
environments become significantly larger and more complex.
Therefore the modeling of virtual worlds, e.g. for computer
animation and games becomes increasingly time and resource
consuming.

In architectural settings façade features are influenced by the
underlying geometrical structure or even by other façade
structures, e.g. façade edges made of large stones influence the
adjacent walls. To achieve an aesthetic look of the façade
adjacent structures must be seamlessly aligned.

The modeling of such structures is a tedious work. With our
approach only a few basic parameters are needed to create
highly detailed façades. This relieves the designer of the
burden of difficult modeling tasks and gives him more high
level control.

In this paper we present a strategy for a floor plan
representation that permits arbitrary floor plan outlines. This
simplifies the roof generation for different roof types in an easy
way to achieve an aesthetic goal. Based on the floor plan
representation we describe a hierarchical decomposition of
architectural façade features. With an order relation on it we
represent the interdependencies between the façade features
and introduce a geometry generator for them.

With our approach every building in a large VR city will look
different but can have a high level on architectural details.

Keywords: virtual architecture; procedural modeling;
geometrical algorithms and data structures; computer-aided
design; virtual reality.

1- Introduction

Nowadays, the powerful computer hardware, especially in the
field of graphics hardware, allows complex and highly detailed
scenes in computer games, animations and virtual
environments. In massively multiplayer online (role-playing)
games, like ‘World of Warcraft’ [1], there are many different

locations all with a different design. In such virtual
environments we will concentrate on generating highly
detailed building façades.
Creating a building using a 3D modeling program, e.g.
Maya [2] or 3D Studio Max [3] is a very time consuming
work. To obtain a realistic and pleasant appearance adjacent
architectural structures have to be adapted in a way that their
connecting borderlines match. The modeling of such
structures is extremely complex, time demanding and
requires extensive human resources. Hence the desire arises
to automate the process as much as possible. One possibility
to achieve this goal is to use procedural methods which help
the designer to generate complex and detailed structures.
Also repetitive modeling tasks, e.g. window frames with
similar design patterns, are automatically arranged by these
methods.
Consequently these methods will relieve the designer of the
burden of the tedious recurrent and difficult modeling task.
Hence it allows him to spend more time to model on a higher
level. But surely the designer should always have the ability
to modify the details as needed.
The main problem is to detect the connecting borderlines of
adjacent architectural structures. As we have seen they
appear between walls and doors or windows or quoins – this
all happens in a single floor (intra floor connections). But
also the “inter floor connections”, like balconies with their
sustainers, oriels or bay windows, have to be considered. To
solve this problem we use a hierarchical decomposition
representing the architectural structures. To optimize this
decomposition, it is based on a special floor plan
representation which also allows arbitrary floor plan outlines
and an easy way to create different roof types.
The outline of this paper is as follows. We discuss related
building and pattern generation in section 2. Then we present
our method for floor plan representation in section 3. Based
on the results of the previous section we describe the
hierarchical decomposition of building façades in section 4.
In section 5 we present how the floor plan representation can
be applied in creating different roof types. We then introduce

Virtual Concept 2005 Feature-based decomposition of façades

77 -2- Copyright Virtual Concept

a geometry factory to produce façades and show results
achieved with our method in section 6. In section 7 we give an
overview of the implemented prototype. We conclude in
section 8 and discuss future work in section 9.

2- Related Work

There are several research papers describing the procedural
modeling of cities [4], [5], [6] and [7]. They are mainly
focused on generating whole cities on the basis of rule systems.
Parish and Müller [4] distinguish between several parts of a
city, e.g. commercial and residential regions. With a set of
rules and constraints they build motorways between these parts
connecting them. Roads are leaving the motorways and branch
to several directions providing access to the buildings. The
generation of single buildings is also rule based, e.g. the
façades are procedurally textured. In [5] and [6] Greuter et al.
focus on a real-time generation of procedural cities. In these
papers the main aspect concentrates on building a large amount
of low to medium detailed buildings.
In contrast, the authors of the papers [8], [9], [10] and [11]
present specialized methods for the description and generation
of architectural structures. Birch et al. [8] describe an
interactive procedural modeling technique for buildings. Hence
their main goal is to reduce the number of parameters needed
for the description to a manageable size and to generate the
details procedurally. Legakis et al. [10] present a method for
cellular texturing for architectural models. They extract
features of an underlying geometry. Upon these features they
perform texturing operations in an order that considers the
interdependencies between cells of adjacent patterns. In [11]
Havemann et al. describe the combination of polygonal mesh
modeling with subdivision surfaces; which they call Combined
BRep. They use the Combined BRep for modeling architectural
structures like ornaments and window frames. Their power is
that they only need a coarse model of the structure and the
view dependent refinement is done at runtime.
One of the most important objectives is the adequate
representation of the geometry. This is directly reflected by the
choice of the underlying data structure. Mäntylä [12] and
Corney et al. [13] describe similar techniques representing
geometry. Mäntylä [12] introduces different boundary models
which represent faces in terms of explicit nodes of a boundary
data structure. The polygon-based boundary model represents
faces as polygons, each consisting of a set of coordinate triples.
A solid is defined by its faces and their interdependencies are
only implicitly given. A disadvantage is the redundant use of
vertex coordinates, e.g. a corner of a cube has a single vertex
but it reappears in every edge of that corner. This leads to the
improved representation of vertex-based boundary models. The
problem of redundant vertices is solved as vertices are
introduced as independent entities. Now a face is defined by a
set of vertex identifiers given either in clock wise or counter
clock wise order to distinguish the two sides of a face. Next
Mäntylä introduces edge-based boundary models. Again
vertices are represented as single entities. But now they are
used to define edges consisting of two vertices. A face
boundary is given by a closed loop of edges. The edges are
given in a certain order to distinguish the two sides of a face.
The vertices of a certain face are implicitly given by its edges.
The winged-edge data structure extends the edge-based

boundary model. Baumgart [14] was the first to use this data
structure which also takes the loop information in edge nodes
into account. Corney et al. [13] describe vertex-edge graphs
where the vertices and edges of the geometry are represented
as nodes and edges in a graph. An alternate graph dual to the
previous graph is the face-edge graph. Now the faces are
considered as the nodes and the edges are the edges
connecting two faces. With these representations they cover
neighborhood relations between the faces, the edges and the
vertices.

3- Floor plan representation

In this section we describe our representation of floor plans
and its impact for our purpose.

Figure 1 : A façade with a middle projection.

3.1 – Floor plan definition for one level

When constructing building façades we want to be able to
have arbitrary floor plan polygons. For our purpose we
define that a floor plan for one level is exactly one polygon;
disjoint polygons are not allowed. If we work with a single
concave polygon as a floor plan additional information for
some sets of connected edges is necessary. For instance the
building façade in figure 1 has a projection in the middle.
The walls to the left and to the right show a different design.
So it is crucial to have the ability to distinguish different
façade structures in an early phase. We solve the problem in
composing several convex 2D shapes to build the floor plan.
As shown in figure 2 we have the floor plan (the thick black
surrounding line) consisting of several convex 2D polygons
(the hatched polygons). Such a single convex polygon is
stored in an entity called floorPlanModule (fpm) which also
contains additional data, e.g. façade type, height, material
etc. The polygon itself is represented by an edge-based
format comparable to the one of Mäntylä [12]. A set of
connected fpms together form a floor plan. The connections
are given in a tree like order, starting at a distinguished fpm.
We will need this connection tree later when generating

Virtual Concept 2005 Feature-based decomposition of façades

77 -3- Copyright Virtual Concept

geometry. This allows us to create arbitrary concave floor
plans.

Figure 2 : Floor plan consisting of convex polygons.

A connection between two fpms is a single entity. This
incorporates the following:

• the two connected fpms;
• their connecting edges;
• the definition of the connecting interval on one of the

fpm’s edge as a start and end point of the normalized
interval [0, 1].

In figure 3 two fpms are shown. The interval where fpm2 is
connected starts at 0.1 (pS) and ends at 0.8 (pE) on the edge e0
of fpm1. The connected fpm (i.e. fpm2 in figure 3) is
transformed (scaled, rotated and translated) to match the
connection.

Figure 3 : Two connected floor plan modules.

The information about the connection is once stored in the
polygon’s edge of each fpm and even in the fpms
themselves. As a result every edge knows the edges of all
fpms connecting to this edge and every fpm knows all direct
neighbors.
Now we can join the fpms to a build a union and as a result
we get one boundary polygon. This polygon consists of
entire or partial edges of the original fpms. Connected edges
belonging to a fpm are classified as features. As we can see
in figure 4 a fpm can have several features. The big polygon
in the middle has two features (blue or solid lines) whereas
the others just have one.

Figure 4 : Features of fpms.

This decomposition enables us to extend the floor plan
arbitrarily, e.g. with features like projections, oriels, bay
windows etc. A detailed overview of different façade
structures for buildings – especially in Germany – of the late
19th century is given in [15]. As we will see next this is very
important if we will have different floor plans for different
levels.

3.2 – Floor plan definition for adjacent levels

Now that we can describe an arbitrary floor plan for a single
level we advance one step further and define the connection
between two adjacent levels. The connection starts at a single
fpm of the lowest level. There are three distinguished types
of connections:

• full: the entire polygon of the current fpm is exactly
the same in the upper level.

• aligned: partial edges of the current fpm polygon
are used in the upper level and are extended.

• free: the upper level consists of arbitrary polygons
inside the current fpm polygon.

Virtual Concept 2005 Feature-based decomposition of façades

77 -4- Copyright Virtual Concept

Figure 5 : Connections types between fpms
(full, aligned, free).

Figure 5 depicts the three connection types.
It is possible to combine different connection types at the same
level. The types aligned and free can be combined if the
polygons do not overlap. The type full can not be combined
with one of the others. A result of the floor plan representation
is presented in figure 6. It shows arbitrary floor plans for
different levels.

Figure 6 : Arbitrary floor plans for different levels.

3.3 – Adjacent structures

With our representation of floor plans the seams of adjacent
structures in a single level (intra adjacent structures) and
between two consecutive levels (inter adjacent structures) are

emphasized clearly. This information is crucial if the
geometry of interdependent structures at their seam is
adapted. Figure 7 shows an example of interdependent
structures with all potential critical seams marked. The intra
level dependencies are marked red whereas the inter level
dependencies are blue.

Figure 7 : Seams of adjacent structures.

These rectangular structures are our coarse features of the
façade. In the next section we describe the refinement of
these coarse features to achieve finer and more detailed
features.

4- Façade representation

In the previous section we presented the description for
arbitrary floor plans and a method for connecting them. With
this technique we are able to distinguish different adjacent
rectangular structures on the façade. This is quite a coarse
classification of the façade. In this section we present a step
by step refinement of the coarse structures.
In the following sections we introduce our procedure of
subdividing the coarse features to build detailed façade
elements (detailed features) as corners, walls, doors with
frames and windows with frames. First, basic corners and
walls are built directly from the coarse features of the floor
plan. Then these corners and walls can be subdivided.
Afterwards, doors and windows with their frames are
integrated into the walls.

4.1 – Corners and walls

For every line strip of a fpm simple corners and walls are
created with user adjustable parameters like thickness, color
etc. The edges of the line strips are taken as the basis for the
walls with a certain thickness. The corners are treated
equally. Metaphorically speaking, the line strip and its
vertices are given a certain thickness and extruded along the
axis perpendicular to the line strip. After this first step we
have a horizontally subdivided structure like the first
illustration in figure 8.
In a consecutive step a wall between two corners can be
further subdivided. The subdivided walls can have optional
spacers in between. The middle illustration in figure 8 shows
this issue.
In a last step the spacers, corners and walls can be vertically
independent subdivided (see last illustration in figure 8).
Every subdivision has its own parameters. If not overwritten
it inherits common parameters from its successor.

Virtual Concept 2005 Feature-based decomposition of façades

77 -5- Copyright Virtual Concept

Figure 8 : The subdivision process.

With every step the parameters for the resulting finer structure
can be adjusted, e.g. the material, the thickness etc. can be
changed.

4.2 – Doors and windows

The next big step in the façade refinement process is the
integration of doors and windows. Every wall, e.g. the three
subdivided walls in the last illustration of figure 8, can have a
door or a window.
Before creating a door or a window, a rectangular hole is
positioned in relation to the left bottom corner of a single wall.
Its parameters are the distances in percentage to the left, right,
bottom and top. An example is given in the first illustration in
figure 9 where we defined holes for three windows and a door.
Next the four edges of the hole can be refined with open
polygons or NURBS (Non-Uniform Rational B-Splines). This
process can be applied to each edge independently allowing us
to achieve a broad variety of door and window holes. In the
second image in figure 9 the top edges of all four holes were
refined with an arc.
In the following step edges or refined edges can be further
refined with borders to build frames for doors and windows.
Geometrical parameters for the frames are thickness and depth.
The thickness describes the amount the frame penetrates the
surrounding wall and the depth parameter represents the depth
of the border perpendicular to the wall. Figure 10 is a

schematic drawing of that issue. As a result the frame can
also project the wall.

Figure 9 : Door and window refinement.

The frames themselves can be individually subdivided. The
distance between adjacent frame tiles, their depth and their
thickness can be adjusted. Because of this it is possible to
create frames consisting of bricks with a larger stone in the
middle. To achieve more realism the mortar between the
frame tiles is also created with appropriate parameters. The
last image in figure 9 shows subdivided frames with mortar
in between.

Figure 10 : Thickness and depth of a frame.

Virtual Concept 2005 Feature-based decomposition of façades

77 -6- Copyright Virtual Concept

Now the doors and windows filling the holes have to be
created. This is not implemented yet but scheduled for the
future.
These techniques allow a vast amount of different styles for
door and window frames.

5- Roof generation

Roof plan generation is quite a difficult process. Most roof
algorithms compute roofs for arbitrary floor plan polygons.
The common goal is to create the gables for the roof. For this
purpose the floor plan polygon is used to determine the gable.
It is shrunk to a kind of skeleton which is used for the gable.
The algorithms mainly differ in the methods used to shrink the
polygon towards the skeleton. Felkel et al. [16] present a robust
algorithm for automatic roof generation.
But for our purpose we do not have and we do not need to
work on arbitrary polygons because fortunately we can make
use of the floor plan representation for the roof generation. The
necessary information is already given in the floor plan’s fpms
we have defined in section 3. Every fpm has an orientation. It
is represented as a vector positioned inside the polygon. The
vector defines the gable’s direction and the magnitude of the
vector defines its length. Additional information of the fpm
gives the height of the roof. We also know about the
connections between the fpms and use this information to build
aesthetic roofs of different types; we can even mix different
roof types. The types we are currently working on are flat, pent
and gable roofs. Next we present the information needed to
build one of the roof types:

• For the flat roof we directly use the fpm’s line strips
to build small surrounding walls for instance.

• The pent roof makes use of the vector of its fpm and
additionally needs an angle for the inclination.

• The gable roof also considers the fpm’s vector, its
length and the roof height.

Figure 11 shows the three roof types and the information used
for building the roof (vector, angle, height).
This method gives us the ability to build roofs on every fpm
which has no connections to an upper level. These fpms do not
need to be on a single level.

Figure 11 : Three roof types: flat, pent and gable roof.

6- Geometry factory

In the previous sections we explained our method of
representing features to generate façades. In these sections we
developed as a basis a symbolic representation for describing
façades. But at least our goal is to create geometry. In this
section we present a mapping from the symbolic representation
to the geometry.

Hierarchy
An entire hierarchy combining floor plan, roof generation
and façade representation is reflected in figure 12. This
depicts the symbolic description about the relationships
between adjacent features including essential geometric
information.

Figure 12 : Hierarchy.

Hierarchy traversal
Now we generate geometry upon this information. For that
reason we start at the root of our hierarchy, the building, and
traverse it to its leaves. While traversing the hierarchy tree
we gather information about the geometry in every step
which is equivalent to a step by step refinement of the
geometry.

Depth order relation
We characterize this order relation as a depth order relation
because deeper steps in the hierarchy have a higher priority
and hence they have the permission to modify the geometry
of lower priority steps.

Same level order relation
Nodes in the hierarchy at the same depth are also taken into
account. For instance walls, corners and spacers are all at the
same level. Here the corners and spacers have a higher
priority and the wall geometry is modified to fit the corners’
or spacers’ geometry.

Finally we build the roofs but they are treated in a special
manner because they do not fit in the relations described
before. If in the same level they are adapted according to the
order given by the connection tree of the fpms, e.g. if one
roof is adjacent to another roof then the roof with lower
priority is adapted to fit the adjacent roof. If one roof is
adjacent to other structures such as walls, corners, spacers,
doors or windows then these structures are adapted to fit the
roof.
As an example we consider the process of applying a
window hole into a wall. The window has the following
parameters: width, height, position in the wall; a refinement

Virtual Concept 2005 Feature-based decomposition of façades

77 -7- Copyright Virtual Concept

for all edges and a frame with a certain thickness, consisting of
a number of bricks. First the geometrical information about the
wall, its horizontal subdivisions respectively, is taken. Then the
appropriate window hole is computed, taking into account the
window hole rectangle, the refinement of its edges and the
frame. In the following step we build the geometrical
difference between the wall and the computed window hole.
This ensures that we have enough space to apply the window
frame into the wall, so geometry will not overlap. When
building the frame for the window every single brick is created
and positioned automatically.
The above mentioned hierarchical information gathering can
be interrupted at any depth and the geometry will be created
that far. This allows us to produce a more or less detailed
geometry for a building façade which can be used for level of
detail visualization. This is useful for real-time applications.

7- Implementation

For the implementation of our prototype and also for the final
version we want to have the software platform independent. So
we use Python as the main programming language. To keep the
software fast we chose to implement time consuming parts in
C/C++ using platform independent classes and functions. Then
with the help of Boost [17] we achieve a seamless
interoperability between C/C++ and Python [18]. For the
graphical user interface we rely on wxPython [19] which is the
Python version of wxWidgets [20].
Currently we developed Python modules for the floor plan
(single and layered floor plans) and the façade representation
implementing the geometry factory with the ability to generate
different levels of detail. At the moment the modules are
controlled by a simple command line tool. We can produce the
geometry in either MEL (Maya Embedded Language) or
RenderMan format. This allows the user to process his work
with the powerful modeler Maya and renderer RenderMan.
Figure 14 shows a model of a façade for a single level with
detailed door and window frames, rendered with the
RenderMan compliant renderer 3Delight [21].

Figure 13 : Graphical user interface

On a second branch we are working on a graphical user
interface which will replace and extend the command line
tool. The underlying structure of the user interface is based
on a graph structure in which we will map our
decomposition. This is still work in progress and future
work. At the moment we are already able to fill the graph
with dummy data via the user interface. The user interface
enables the user to traverse the graph interactively and
manipulate the data at any level. In figure 13 we see a
screenshot of the user interface. On the left side titled
“Knoten” (node) all nodes of the graph are listed. Each of
them can be selected and its data is displayed on the right
side “Aktueller Knoten” (active node). On the right side the
node’s data can be manipulated, e.g. change its attributes
values and even attributes can be added or removed.

8- Conclusion

In this paper we presented a method for creating highly
detailed building façades at a low cost of human resources.
In section 3 we described floor plans consisting of single
convex polygons, the floor plan modules. Hence we are able
to distinguish coarse façade features, e.g. projections, oriels,
bay windows etc., in an early phase of façade generation.
Then we presented a hierarchical decomposition of walls,
corners, doors and windows with the possibility of
refinement in section 4. In section 5 we discussed how the
floor plan modules can be used for roof generation. In
section 6 we presented our geometry factory. It takes the
information from the floor plan generation, the façade
representation and the roof generation to produce geometry
for the different architectural structures. The main aspect is
that the geometry of adjacent structures is automatically
adapted at a very high level of detail, relieving the burden of
a tedious modeling task from the designer. At last we
discussed in section 7 the implementation of our prototype.

9- Future work

In the near future we will extend our work with detailed
doors and windows, filling the door and window holes in the
walls. We are going to include more façade elements like
different types of balconies. Additional roof types will be
added as well. At the moment we only generate optimized
geometry. In the future we will use this geometrical
information to create textures exactly fitting the geometry.
Then we will automatically generate shaders for patterns of
brick walls, even with bump mapping and displacement
shading. We want to extend the output formats by OpenGL,
so that our method can be used for real time applications.
As mention in section 7 we are currently working on a
graphical user interface relying on a graph structure. Now we
have to connect the user interface with our Python modules.
This enables an easy manipulation of the data and should
also help us in the automatically generation of buildings,
resulting in a breakthrough in façade modeling. Different
building façades in different styles could emerge in some
seconds. Highly detailed virtual cities of different ages with
different styles could be modeled in a few seconds.

Virtual Concept 2005 Feature-based decomposition of façades

77 -8- Copyright Virtual Concept

10- References

[1] World of WarCraft. http://www.worldofwarcraft.com ©
2005 Blizzard Entertainment (seen march 2005)
[2] Maya. http://www.alias.com/maya (seen march 2005)
[3] 3D Studio Max. http://www.discreet.com/3dsmax (seen
march 2005)
[4] Parish Y., Müller P. Procedural Modeling of Cities.
International Conference on Computer Graphics and
Interactive Techniques, 2001.
[5] Greuter S., Parker J., Stewart N., Leach G. Undiscovered
Worlds – Towards a Framework for Real-Time Procedural
World Generation. Fifth International Digital Arts and Culture
Conference, Melbourne, Australia, 2003.
[6] Greuter S., Parker J., Stewart N., Leach G. Real-time
Procedural Generation of `Pseudo Infinite' Cities. International
Conference on Computer Graphics and Interactive Techniques
in Australasia and South East Asia, 2003.
[7] Arnold D. Economic reconstructions of populated
environments – progress with the CHARISMATIC project. In
VAST Conference Proceedings, 2000.
[8] Birch P., Jennings V., Day A., Arnold D. Procedural
Modelling of Vernacular Housing for Virtual Heritage
Environments. EGUK, 2001.
[9] Birch P., Browne S., Jennings V., Day A., Arnold D.
Rapid procedural-modelling of architectural structures.
Conference on Virtual reality, archeology, and cultural
heritage, Glyfada, Greece, 2001.
[10] Legakis J., Dorsey J., Gortler S. Feature-based cellular
texturing for architectural models. Conference on Computer
graphics and interactive techniques, 2001.
[11] Havemann S., Fellner D. A versatile 3D model
representation for cultural reconstruction. Conference on
Virtual reality, archeology, and cultural heritage, Glyfada,
Greece, 2001.
[12] Mäntylä M. An introduction to solid modeling. Computer
Science Press, 1988
[13] Corney J., Lim T. 3D Modeling with ACIS. Saxe-Coburg
Publications, 2001.
[14] Baumgart B. Geometric Modeling for Computer Vision.
Stanford Artificial Intelligence Laboratory, Memo no. AIM-
249, Stanford University, October 1974.
(http://www.baumgart.org/winged-edge/winged-edge.html)
[15] Brausewetter A. Das Bauformenbuch – Erster Teil.
Verlag von E. A. Seemann, Leipzig, 1895.
[16] Felkel P., Obdrzalek S. Straight Skeleton
Implementation. 14th Spring Conference on Computer
Graphics, April 23 -25, Budmerice, Slovakia, 1998.
[17] Boost. http://www.boost.org/libs/python/doc/index.html
(seen may 2005)
[18] Python. http://www.python.org (seen may 2005)
[19] wxPython. http://www.wxpython.org (seen may 2005)
[20] wxWidgets. http://www.wxwidgets.org (seen may 2005)
[21] 3Delight. http://www.3delight.com (seen march 2005)

Virtual Concept 2005 Feature-based decomposition of façades

77 -9- Copyright Virtual Concept

Figure 14 : Façade with detailed window frames.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

