
 
 

XIV Юбилейна ННТК “АДП 2005” 
 

 324 

IMPULSE BASED DYNAMIC SIMULATION OF MULTIBODY 
SYSTEMS:  

NUMERICAL COMPARISON WITH STANDARD METHODS1 
 

Alfred A. Schmitt and Jan S. Bender  
 

Abstract: At first we will give a short introduction to the new impulse-based method for dynamic 
simulation. Up till now impulses were frequently used to resolve collisions between rigid bodies. In the 
last years we have extended these techniques to simulate constraint forces. Important properties of the 
new impulse method are: (1) Simulation in Cartesian coordinates, (2) complete elimination of drift as 
known from Lagrange multiplier methods, (3) simple integration of collision and friction and (4) real 
time performance even for complex multibody systems like six legged walking machines. In order to 
demonstrate the potential of the impulse-based method, we report on numerical experiments. We com-
pare the following dynamic simulation methods: (1) Generalized (or reduced) coordinates, (2) La-
grange multipliers without and with several stabilization methods like Baumgarte, velocity correction 
and projection method, (3) impulse-based methods of order 2, 4, 6, 8, and 10. We have simulated the 
mathematical pendulum, the double and the triple pendulum with all of these dynamic simulation 
methods and report on the attainable accuracy. 

 
Keywords: dynamic simulation, impulse-based dynamic simulation, numerical experiments, Lagrange 
multiplier methods, generalized coordinates, accuracy 

 
1. Introduction  
Impulse-based dynamic simulation of multibody systems was introduced in [Schmitt 2003] and 

[Bender et al. 2003]. From the results achieved experimentally it could be demonstrated that the im-
pulse-based dynamic simulation method is competitive with the other methods known from the litera-
ture. The most important advantages are the comparatively simple program structure, the real-time ca-
pability even for the simulation of complex models (e.g., six-legged walking machines), and the input 
specification and internal simulation in Cartesian coordinates as preferably used in computer graphics 
and also in almost all engineering applications. A further advantage of the impulse-based method is the 
simple handling of collision and Coulomb friction. Impulse-based dynamic simulation of collision 
events involving two or more non-linked rigid bodies is nowadays well understood due to the fre-
quently cited work of [Mirtich and Canny 1995] whereas our extended method covering also linked 
rigid body systems is till now more or less unknown to the community of dynamics researchers. 

The goal of this work is to present numerical results comparing the impulse-based simulation 
method with other standard methods of dynamic simulation. We are only interested in experimentally 
obtained accuracy levels and not in speed and accuracy tradeoffs which play a prominent role in nu-
merics. We believe that the results presented here are not only of interest for the computer graphics 
community (computer animation, virtual reality) [Bender et al. 2005], but also for mechanical engi-
neering since well established comparative evaluations of the different methods of dynamic simulation 
are hardly found in the literature. 

The technical and mathematical basics of the dynamic simulation methods discussed here are 
given in [Schmitt 2003], [Schmitt et al. 2005a] as well as [Schmitt et al. 2005b]. These reports can be 
downloaded from the Internet. 

2. The dynamically simulated mechanical models 
Methodically our course of action is that we simulate relatively simple mechanical models, i.e. the 

mathematical pendulum, the double pendulum and the triple pendulum. The two latters are chaotic sys-
tems, dynamic simulations with high accuracy during a longer period of time are practically impossi-
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ble. All our models are point mass systems but it should be noted, that for dynamic simulations point 
mass systems are equivalent to rigid body systems, see [Schmitt et al. 2005a]. 

Pendulum10: Mathematical pendulum with a length of 1 m, a mass of 1 kg and a maximal 
amplitude of 10 degrees. 

Pendulum90: Like Pendulum10, but maximal amplitude of 90 degrees. 
2-Pendulum: Double pendulum, distance of the masses 1 m, masses 1 kg, starting configuration 

horizontally stretched to the right leading to a planar motion. 
3-Pendulum: Triple pendulum, distance of the 3 masses in each case 1 m, masses 1 kg, starting 

configuration horizontally stretched to the right, planar motion. 
If these models are simulated dynamically without friction or other influencing forces except 

gravity, the total energy consisting of the sum of the kinetic and potential energy should remain con-
stant. If thus the total energy 
is 0E  at the start of the 
simulation and the total en-
ergy of the simulated model 
after the ith time step is iE , 
then we define the quantity 
“energy drift” as 

0
1..

: :
(1/ ) i

i n

Energy Drift ED
n E E

=

= =

−∑  

where n is the total number 
of time steps recorded. In 
order to test also the stability 
of the numerical simulation 
methods, we always simu-
late over a time interval of 
60 seconds. A completely 
error free dynamic simula-
tion must result in ED=0. 
With the models Pendu-
lum10 and Pendulum90, ED 
is a good indicator for the 
accuracy of the simulation. 

For the models Pendu-
lum10 and Pendulum90 we 
can also determine the de-
viations from the correct os-
cillation time. With formu-
lae from theoretical mechan-
ics the oscillation time for 
Pendulum10 is given as 

10 2.00989262729860T =  s 
and for Pendulum90 as 

90 2.36784194757623T =  s, 
whereby we used g=9.81 
which was also used during 
the numerical computations. 
By the choice of time steps 

/h T kϕ=  for integers k and 
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Figure 1 :  Model Pendulum10 Time Step h

Energy Drift

0.00125 0.0025 0.005 0.01 0.02 0.04 0.08
10-12

10-10

10-8

10-6

10-4

10-2

100

 GC4  

 LM4  

 LMV4 

 LMVD4
 LMBS4

 Imp2 

 Imp4 

 Imp6 
 Imp8 
 Imp10

Figure 2 :  Model Pendulum10 Time Step h

Oscillation Time Drift
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10ϕ =  or 90 respectively one can measure very small deviations from the theoretical oscillation time 
by observing the perpendicular crossover of the simulated pendulum: 

: :Oscillation Time Drift OTD= =
1...

(1/ ) ( )
i m

m x t i Tϕ
=

= ⋅∑ . Here x(t) is the x coordinate of the respective 

pendulum at time t and we start the numerical simulation in a perpendicular position with x(0)=0. A 
numerical simulation with exactly the same oscillation period as theoretically computed thus results in 
OTD=0 and deviations result in OTD>0. 

 With the chaoti-
cally moving models 
2-Pendulum and 3-
Pendulum the measure 
ED is not really useful, 
because with these 
models it is often ob-
served that energy er-
rors compensate them-
selves later on due to 
chaotic influences. For 
these models we there-
fore use the measure 

1
1...

:

: (1 / ) i i
i n

Energy Increment Drift

EID n E E −
=

=

= −∑

whereby we sum up all 
the absolute values of 
energy changes occur-
ring in time steps.  

3. The dynamic 
simulation methods 
used 

The models de-
scribed above are 
simulated with a total 
of ten different simula-
tion methods:  

GC4: “General-
ized Coordinates”, 
sometimes also called 
reduced coordinates 
simulated with the 
standard Runge-Kutta 
Method of order 4. We 
did not use adaptive 
time steps but always 
used constant step 
sizes h. Whenever it is 
possible to formulate 
the differential equa-
tions of the dynamic 

motion of a multibody system in generalized coordinates, i.e. in such a way that for each degree of 
freedom these equations contain only one parameter, then this should lead to the most exact simulation 
results because constraints and the computation of constraint forces are completely eliminated off the 
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Figure 3 :  Model Pendulum90 Time Step h
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Figure 4 :  Model Pendulum90 Time Step h

Oscillation Time Drift
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equations. For the case of a mathematical pendulum of length 1 m a respective equation reads 
sin( )gϕ ϕ= − ⋅&& . For more complex models, e.g. the 3-Pendulum, the formulae are already so complex 

that they should be generated with a system like Mathematica, e.g. using Lagrange’s equation of the 
second kind. In cases of larger systems to be analysed dynamically the method of generalized coordi-
nates generates very large expressions for the differential equations and simulations on this basis can 
lead to a laborious task.  

LM4: Lagrange Multiplier method numerically solved with the standard Runge-Kutta Method of 
order 4. This well-known and wide-spread simulation method is scalable and can be automated. That 
means, one has only to describe the inertia tensors and the joints of mechanical models structurally and 
there is no limit on the complexity of the mechanical models. All further steps, e.g. the generation of 
the differential equations and their numerical solution, are easily computerized. These characteristics 
permit the integration of this dynamic simulation method as a sub-module in computer animation and 
virtual reality systems, where larger models, e.g. walking machines, have to be simulated frequently. 

The only serious disadvantage of 
this method is the constraint drift 
problem. During the simulation 
small numerical inaccuracies 
with respect to constraint condi-
tions grow steadily and cannot be 
corrected by the basic LM-
algorithm.  

LMBS4: Like LM4, how-
ever with the well known and of-
ten cited stabilization method of 
[Baumgarte1972].  

LMV4: Like LM4, but at 
the end of each integration step a 
correction of velocity errors 
across constant distance joints is 
done. To do this, we use exactly 
the impulse-based algorithm 
which we also use in the imple-
mentations of our impulse-based 
dynamic simulation method, for 
details see [Schmitt et al. 2005a].  

LMVD4: Like LMV4, but at 
the end of each integration step 
not only a correction of con-
straint velocity errors is done but 
also a correction of distance er-
rors of constraints. This is also 
done by an impulse method 
[Schmitt et al. 2005b]. The pro-
cedure LMVD4 derived from 
LM4 has the best stability and 
accuracy behaviour in the family 
of our LM-Methods. For similar 
approaches see [Ascher et al. 
1994] and [Eich-Soellner and 
Führer 1998]. 

Imp2, Imp4, Imp6, Imp8, 
Imp10: Impulse-based dynamic simulation methods of orders 2 4 6 8 10( ), ( ), ( ), ( ), ( ).O h O h O h O h O h Up 
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Figure 5 :  Model Pendulum10 Time Step h
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till now the higher order numbers are not yet theoretically verified and cannot be compared to the re-
spective orders discussed in 
numerics with respect to dif-
ferential equations since the 
impulse-based method does 
not solve differential equa-
tions. It is an open problem 
how these higher order pro-
cedures really behave nu-
merically. A detailed discus-
sion of our higher order 
methods will be given in 
[Schmitt et al. 2005b].  

4. Results from nu-
merical simulations and 
discussion 

The numerical simula-
tions were done with double 
precision reals (64 bit) for a 
total time of 60 seconds and 
with 12 different time steps 
in the range of about 
h=0.00125 s to h=0.08 s. If a 
procedure is marked in a 
diagram by "fail", then this 
means that the maximal con-
straint distance error has 
grown in the course of the 
60 seconds to values greater 
than 1 m which is by far too 
large for a realistic dynamic 
simulation. 

Pendulum10: This 
model has a calm dynamic 
behavior. In contrast to 
Pendulum90, there are no 
fail events even not with 
LM4. Here and in all the 
other diagrams the impulse-
based methods perform in 
accordance with their orders. 

 Note that Imp2 is only of order 2 and can therefore not compete with the methods of order 4. 
"Energy drift", Fig. 1: The methods GC4, LMV4 and LMVD4 have about the same characteristics 
whereas LM4 and LMBS4 have a larger energy drift. We do not quite understand why the impulse-
based methods of orders 6, 8 and 10 have more or less the same inclination. “Oscillation Time Drift”, 
Fig. 2: The impulse-based methods show a very good performance. "Constraint drift", Fig. 5, 6: Only 
the three procedures LM4, LMBS4 and LMV4 are burdened with constraint drift.  

 Pendulum90: This model has greater velocities and accelerations than Pendulum10. Therefore 
the errors are generally larger than with Pendulum10, see Fig. 3 and 4. GC4 is here the best dynamic 
simulation method since all other procedures have to deal with greater constraint forces. LM4 and 
LMBS4 fail for larger time steps, whereas the LM-methods stabilized with impulse techniques 
(LMV4, LMVD4) have for small time steps an even better performance than the best impulse method.  

0.00125 0.0025 0.005 0.01 0.02 0.04 0.08
10-12

10-10

10-8

10-6

10-4

10-2

100

 GC4  
fail: LM4  

 LMV4 

 LMVD4

 LMBS4

 Imp2 

 Imp4 

 Imp6 

 Imp8 
 Imp10

Figure 7 :  Model Double Pendulum Time Step h
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Figure 8 :  Model Triple Pendulum Time Step h

Energy Increment Drift
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Double and Triple Pendulum: The chaotic nature of these models lead to curves (Fig. 7, 8) that 
are a little bit  wavy and are no longer as smooth as with the mathematical pendulum, although the 
measure EID=Energy Increment drift is a sort of smoothing of ED. The fail events clearly document 
the ranking LM4, LMBS4, LMV4 with respect to instability. It is also of interest that the other meth-
ods of order 4 have very similar curves.  

5. Conclusion 
A comparison between the procedures that are scalable and can be automated, i.e. the LM-

methods and the impulse-methods, shows clear advantages with respect to the impulse-based methods, 
since the competitive methods LMV4 and LMVD4 are also stabilized using impulse-methods. This 
statement is at the moment only based on accuracy and energy drift statistics and not on a comparison 
of computing time. Application of the not stabilized Lagrange multiplier method LM4 cannot be rec-
ommended. Only the fully stabilized method LMVD4 is a serious candidate for stable and accurate 
dynamic simulations. But it should be noted that to implement LMVD4, one has also to implement the 
impulse method as part of the stabilization. The not scalable procedure GC4 with generalized coordi-
nates, which also cannot be automated does only have accuracy advantages with the model pendu-
lum90.  
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