
HW3D: A tool for interactive real-time 3D
visualization in GIS supported flood modelling

Jan Bender
Universität Karlsruhe
jbender@ira.uka.de

Dieter Finkenzeller
Universität Karlsruhe
dfinken@ira.uka.de

Peter Oel
Universität Karlsruhe

peter.oel@web.de

Abstract
Large numerical calculations are made to get a
prediction what damage a possible flood would
cause. These results of the simulation are used
to prevent further flood catastrophes. The more
realistic a visualization of these calculations
is the more precaution will be taken by the
local authority and the citizens. This paper
describes a tool and techniques to get a realistic
looking, three-dimensional, easy to use, real-
time visualization despite of the huge amount
of data given from the flood simulation process.

Keywords: CASA2004, computer graph-
ics, virtual reality

1 Introduction

Flood catastrophes cause tremendous damage to
people and their belongings. 21 people died in
Germany in August 2002 during a flood of the
river Elbe. Ten thousands had to be evacuated
and thousands lost their home. The total damage
runs into 15 billion Euros.

Today high sophisticated techniques are used
to simulate a flood catastrophe. The Institute
of Water Resources Management, Hydraulic
and Rural Engineering (IWK) of the University
of Karlsruhe developed a GIS-supported flood
model for the German river Neckar [1]. The
model is transferred to the water management
administration of Baden-Württemberg with the
aim to support the handling of flood-relevant
questions, e.g. the classification of legally valid
flood areas or the risk analysis. Possible inunda-

tion zones are calculated during the simulation
process and the result can be visualized as over-
lay in topographic maps or ortho-photos. These
visualizations are used by the local authority to
prevent further damage. Informing the local in-
habitants about the risk of possible floods is an-
other aim of the visualization. The visualization
tool was originally made for the flood data of the
river Neckar but it can be used for every other
river as well.

Two-dimensional map-based visualizations
do not have the degree of immersion like three-
dimensional visualizations have. Lifelike visu-
alizations are needed to make people sensitive
to the possible risk of a flood. Realistic look-
ing visualizations of that purpose are typically
made using large animation and rendering tools
like 3D Studio Max (discreet) or Cinema 4D
(MAXON). The result is a movie of a possible
flood.

But there are many disadvantages using these
tools. An expert is needed to handle the software
and to create the movie from the given data. Un-
til a movie is completed much time is spent to
prepare the data and to render all the single im-
ages. This can take several hours for the entire
animation. After a movie is finished the path of
the camera is fixed. It is not possible to change
the point of view arbitrarily without recomput-
ing the whole movie.

The flood simulation tools are used at the
local authority and should therefore be easy
to use and flexible in adjusting to different
datasets. The goal of this work is to build
a three-dimensional real-time visualization tool

1



that gives the user the possibility to navigate
freely through every simulated flood scenario.
The main objectives are realism, short loading
times and real-time visualization despite of the
really huge datasets, since the digital terrain
model used by the flood simulation software is
of very high resolution.

The following topics will be discussed in this
paper. An approach in displaying flood periled
areas in a realistic way will be shown in sec-
tion 2. An overview of existing techniques for
real-time rendering of huge terrain data sets will
be given as well. The data used for the visu-
alization will be described in detail in section
3. Afterwards in section 4 the methods which
made the real-time visualization possible will be
introduced. The following section 5 describes
how the methods mentioned in the preceding
section are combined with displaying large tex-
ture maps. Section 6 discusses the user interface
of the visualization tool. In section 7 the perfor-
mance of the developed software is measured.
The paper ends with section 8 discussing future
work.

2 Related Works

In this work the results of numerical flood sim-
ulation and its three-dimensional representation
in real-time are combined. The goal of the work
is to give the user a realistic impression of the
area affected by flood. This includes textured
buildings, aerial photos, textured land use and
animated water. For the three-dimensional real-
time rendering of the data the amount of trian-
gles for displaying must be reduced. There are
different techniques in reducing the amount of
triangles.

One is to generate a static lower resolution
mesh or triangulated irregular network (TIN) [2]
which is always used for rendering. The genera-
tion of this mesh is done in a pre-processing step
in which the original mesh is reduced and opti-
mized for a given resolution. The advantage of
this technique is that a reduced mesh has to be
built only once. But while navigating through
the scene the terrain always has the same res-
olution even when the viewpoint is close to a
rough region. A moving viewpoint leads to the
demand of a viewpoint dependent triangulation

of meshes. The term level of detail identifies the
algorithms aiming at this property.

One approach is to divide the source mesh
into smaller areas and generate several multi-
resolution triangulations. Dependent on the
point of view a different level of detail of these
areas will be shown (mentioned in [3]).

Hoppe [4] describes a continuous view depen-
dent reduction of meshes for terrain rendering
(progressive meshes). He uses TINs as well as
geomorphing to avoid the phenomenon of ver-
tex popping. As described in section 4 Hoppe’s
algorithm is not useful for this work.

Roettger et al. [3] present an algorithm for
real-time generation of continuous levels of de-
tail for height fields. As data structure they make
use of a quadtree representation of the height
field. As a limitation they assume the height
field to be at size of 2n + 1. In this work a mod-
ified version of this algorithm is used which is
described in section 4. Lindstrom and Pascucci
[5] used also a quadtree for their algorithm

Lindstrom et al. [6] and Duchaineau et al. [7]
both use a binary triangle tree (triangle bintree)
for the mesh as data structure. Duchaineau et
al. take a pre-processed bintree to built two pri-
ority queues for split and merge operations that
maintain continuous triangulation. They apply a
top-down approach in which the mesh is recur-
sively refined until an error metric stops refine-
ment. In contrast Lindstrom et al. use a bottom-
up approach to simplify the triangle mesh until
an error metric stops the simplification.

VRMLflood of Rinner and Fitzke [8] is an ap-
proach to achieve a realistic real-time visualiza-
tion of flood periled areas. Due to VRML the
user is able to access flood data over the inter-
net but a plug-in for the user’s browser is re-
quired. Usual plug-ins for browsers running on
MS Windows are Cosmo Player (Silicon Graph-
ics, Inc.), Cortona (Parallel Graphics) or Con-
tact (Blaxxun). With VRMLflood it is possible
to choose different water levels and watch the
scene from different viewpoints. A water level
is a plane that is determined by one z-value. In
contrast to that in this work every water level is
given as an elevation grid with a high resolution.
The use of a grid provides more accuracy.

2



Figure 1: Top view on the terrain grid mesh

3 Visualization Data

This paper shows how to design a tool which al-
lows the user to fly through a flood scene in real-
time considering the special needs given from
the flood simulation. The scene is a geomet-
rical representation of the river landscape and
consists of terrain with texture, water levels and
buildings. Each dataset is georeferenced by us-
ing the Gauss-Krüger coordinate system. The
data (except the texture images) is given in an
ASCII-format.

The data used as terrain is a grid mesh. A
z-value corresponding to the height of the land-
scape is given at each vertex. The z-value is a
32-bit floating point value. The top view on an
example grid mesh is shown in figure 1. The
grid consists of 3.108 x 3.869 vertices. Nor-
mally only the river surroundings are impor-
tant for the flood simulation. For the other ver-
tices there exist no z-values in the data. Only
1.686.538 vertices of the approx. 12 million ver-
tices in figure 1 have a z-value. The resolution of
the terrain grid mesh is relatively high because
the flood simulation needs an exact representa-
tion of the landscape to get good results. Two
neighbour vertices have the distance of 2 meters
in the grid.

For the visualization of the water surface the
user can load data for different water levels. The
data for each water level is a grid mesh with the
same resolution as the terrain mesh of the ac-
tual scene, also containing z-values correspond-
ing to the water level for each vertex. The water
level is not only a single z-value for the whole
scene, since the flood can be blocked by a bank.
For a large scene the absolute water level can
change during the course of the river. After load-
ing more than one water level the increase or the
decrease of the water surface can be animated
by interpolation.

The texture that is used for the terrain is nor-
mally an aerial photo or a map of the region.

In general the texture needs more space than
a modern graphics card can keep in its texture
memory. For example, a map with a low reso-
lution (one pixel per 1.25 meter) for the grid of
figure 1 would have 4.972 x 6.189 pixels. With
a colour depth of 32 bit the texture would need
123 megabytes of memory.

The flood simulation is of special interest for
regions where people live or where important
historical or industrial buildings are. For all the
buildings in the flood region there exist floor
plans given as polygon data. Using this data the
developed software is able to generate the build-
ings for the flood scene. With the visualization
tool the user can detect which buildings are af-
fected by the flood and which are not. For the
terrain grid mesh of figure 1 10.562 buildings
had to be generated by an algorithm.

The amount of data that the software has to
handle is huge. The next section will show how
the real-time visualization of this data was real-
ized.

4 Real-time Visualization

With an actual low end system it is not possible
to render the data as described in the last section
in real-time. The systems are too slow to handle
that amount of data. The only way to reach a
faster visualization is to reduce the given data.

The difficulty using a data reduction is to min-
imize the difference between the original data
and the reduced data. The minimization of this
error is a special challenge in the visualization
of flood data. Every error in the elevation data
of the terrain or the water can have the effect
that the wrong areas in the terrain are flooded.
The error at a point which is far away from the
viewer is less disturbing than the error at a near
point. This fact has to be considered when de-
signing an algorithm to reduce the data.

Both the water and the terrain grid mesh are
given as an ASCII-character-file with all vertices
inside. One of the requirements was that the
algorithm must not spend much time with pre-
processing. Because of this the construction of
a progressive mesh [9] with view-dependent re-
finement [10] was not possible. Instead of this a
continuous level of detail algorithm was needed
that works directly with the elevation grid.

3



The next sections introduce the methods used
to reduce the data. Afterwards the results of
these methods will be presented.

4.1 Continuous Level Of Detail

For the visualization tool a modified version of
Roettgers continuious level of detail algorithm
[3] is used to decrease the triangle count of the
terrain and the water triangle mesh. It has the
advantage that it does not need much time for
pre-processing. The data structure of this algo-
rithm is a quadtree.

A new triangle mesh is generated in two steps.
First a matrix is build by recursively traversing
the quadtree. This matrix has an entry for every
vertex in the original grid and it represents the
quadtree. For each node that is reached while
traversing the quadtree a special value is set to
the corresponding entry in the matrix. The value
0 is set if the actual node did not pass the view-
frustum culling, i.e. that the whole sub-tree of
this node is not visible and will not be displayed.
If none of the vertices in the node has a z-value
then the value is set to 1. Otherwise the node
lies in the view-frustum and it has valid data
for drawing. The entry in the matrix is set to
the value 2 if the actual node should not be re-
fined further and to the value 3 if more detail is
needed. If one of the first three values is set then
the corresponding part of the quadtree is not tra-
versed further. To determine if a node should
be refined further or not a cost function is used.
The decision for a refinement depends on the
distance between the viewer and the node and
on the height difference in the node. For the re-
duction of the water data the second part is not
needed because the water mesh contains no rel-
evant height differences.

After the matrix is filled with the necessary
values the second step is to draw the triangle
mesh. In this step the quadtree is traversed a
second time. The matrix is used to determine if
a node should be refined further or if it should
be drawn in the corresponding resolution. If the
matrix has the value 0 or 1 then the node will not
be drawn at all.

Triangle fans are used to draw a node in the
triangle mesh. While drawing a node it is neces-
sary to take a look at the resolution of its neigh-
bour nodes. This can be done by using the ma-

Figure 2: The problem of mesh cracks

Figure 3: Tile management

trix. If the resolution differs then cracks in the
mesh will appear as shown in figure 2.

To avoid this crack the vertex which is marked
in figure 2 is skipped. The triangle mesh can be
drawn without any cracks by skipping vertices
as shown above if it is guaranteed that the level
of detail of two neighbour nodes differs at max-
imum by one.

4.2 Tile Manager

The flood region which the software has to vi-
sualize has an arbitrary size. That means that
even with using the continuous level of detail
algorithm there are flood scenes which cannot
be handled in real-time because they contain too
much data.

The real-time condition can only be complied
with if the amount of data that the system must
handle has an upper bound. To limit the data
only a part of the whole scene is drawn. While
the viewer navigates through the flood scene the
visible part has to be changed so that he never
leaves it. To reach this goal the whole data of ter-
rain, water, buildings and texture is partitioned
in tiles with a fixed size.

Figure 3 shows the visible part of the scene
consisting of 16 tiles. If the number of tiles that

4



is used for the visible part is 4 to the power of
n then the tile management can be easily com-
bined with the quadtree of the continuous level
of detail algorithm. The quadtree algorithm just
needs to start at the n-th level. The arrow in the
figure marks the position of the viewer. If he
leaves the area in the centre of the visible part
that is limited by the dashed line a new row or a
new column of 4 tiles is loaded and on the other
side a row or a column of tiles is deleted. Af-
terwards the viewer is again in the centre of the
visible part. The limited area must have at least
the size of one tile and it should not be bigger
than four tiles for good results.

Terrain-, water- and building-tiles have ex-
actly the same size and position. The partition-
ing of the terrain texture is a special case for the
tile management. For drawing the scene a tex-
ture is needed that fits into the texture memory
of the used graphics card and that has a resolu-
tion of 2n × 2m. The size of the texture tiles is
chosen fulfilling the two conditions. In general
the texture tiles have a different size and posi-
tion than the tiles of terrain, water and buildings.
The movement of the visible part of the texture
depends just on the position of the terrain part
and not directly on the position of the viewer.

With the tile management technique only a
few tiles need to be kept in the main memory and
to be drawn. The rest of the tiles can be swapped
out in temporary files on the harddisk. These
temporary files can also be used for reducing
the time that is needed to load a scene. Every
time the user wants to load data for terrain, wa-
ter, texture or buildings the software checks if
the temporary files for the chosen data set are
already on the harddisk. If it has found the files
then they are loaded instead of reading the origi-
nal data and pre-processing it again. The speed-
up is tremendous especially on loading terrain
or water data because the grid meshes are given
in an ASCII-character-file. A mesh with 3.108
x 3.869 vertices like the one in section 1 needs
75 megabytes of disk space for example. For
the temporary files a more efficient file format is
used and it is only necessary to load the 16 visi-
ble tiles. In the end the amount of data to load is
about nine times less than with the original files.
By using this technique the software needs only
a few seconds to load a whole scene instead of a
few minutes.

4.3 Results

The terrain grid mesh shown in figure 1 has
3.108 x 3.869 vertices. Now the reduction of
data obtained by the tile management, view-
frustum culling and the continuous level of de-
tail algorithm is measured.

As described in section 3 only 1.686.538 ver-
tices of the grid mesh have a valid z-value. With-
out any reduction of the data the generated trian-
gle mesh has 3.360.793 triangles. With an actual
low-end system it is not possible to draw a mesh
like this in real-time. Figure 4 shows the terrain
mesh without any optimization.

The first reduction of the data is done by the
tile management. The 16 tiles of the terrain
mesh contain about 1 million vertices but only
444.411 of them have a valid z-value. The visi-
ble part of the real scene has a size of 2 x 2 kilo-
metres. The corresponding triangle mesh con-
sists of 878.196 triangles. So after the first re-
duction only 26 percent of the original data is
left.

Figure 4: Triangle mesh without optimization

Figure 5: Triangle mesh with full optimization

As next step of the reduction view-frustum
culling is executed. The actual camera frustum
of figure 4 is used. After the reduction only the
triangles that can be seen in this figure are left.
After executing view-frustum culling there are
102.412 triangles left. Until now there is no er-
ror in the visible triangle mesh since none of the

5



visible vertices was erased. After the two reduc-
tion steps only 3 percent of the original data is
left without any approximation error.

The last step is to reduce the rest of the tri-
angles with the continuous level of detail algo-
rithm described above. The resulting triangle
mesh is shown in figure 5.

After all optimization steps the triangle mesh
consists of 9.771 triangles and it has an accept-
able approximation error.

In the end the triangle mesh contains only 0,3
percent of the original data. This mesh can eas-
ily be drawn by an actual low-end system in real-
time. The triangle mesh of a water elevation grid
can be reduced even more. A water mesh con-
tains no relevant height differences so there is
no need for a very high resolution at a special
vertex.

5 Realism

Section 4 describes how a real-time visualiza-
tion of large data sets is realized. This section
will show how the data sets can be presented in
a realistic looking way.

5.1 Terrain Texture

To draw the surface of the terrain a triangle mesh
is generated from an elevation grid. If all trian-
gles have the same colour then the surface does
not look like a realistic terrain. A better solu-
tion would be to give each vertex of the triangle
mesh a colour that depends on its height. Af-
terwards the surface of a triangle is filled with
interpolation.

The visualization with a texture as surface of
the terrain provides the best results. For exam-
ple aerial photos could be used as a texture to
get a very realistic visualization. Another possi-
bility is to use a map as texture to give important
information about the region to the viewer.

In general the textures used for the terrain
mesh do not fit in the texture memory. Because
of that the textures are partitioned in smaller
tiles. In the end there is no big terrain tex-
ture anymore. There are many texture tiles that
fit together. The disadvantage of having more
than one texture tile is that on each line where
two neighbour texture tiles meet there appears

Figure 6: The division of triangle fans

a problem with the triangle mesh. If a texture
tile ends in the middle of a triangle fan and an-
other tile begins then there are triangles in the
fan which have more than one texture. This is
undesirable because every triangle should be-
long to exactly one texture tile. To solve this
problem the affected triangle fan has to be di-
vided.

Figure 6 shows all possible divisions of trian-
gle fans that could appear. Dashed lines mark
the borders of the texture tiles.

5.2 Water

The flood simulation software computes water
grid meshes for different points in time. The
increase or the decrease of the water level can
be animated by interpolation over time. The in-
terpolation of the whole grid mesh takes much
computation time. A faster solution is to inter-
polate only the necessary vertices of the water
grid mesh. For the real-time visualization of wa-
ter the algorithm of section 4 is combined with
interpolation. The z-value of a vertex is calcu-
lated when needed for the first time. In the end
only the vertices are interpolated which the al-
gorithm did not delete during the reduction.

For a realistic visualization of the triangle
mesh a water texture is used. This texture is
made transparent with alpha-blending. A trans-
parent texture has the advantage that the user can
see the terrain that is under water. If a map is
used as terrain texture then the user can see di-
rectly which streets, buildings, etc. are affected
by the flood. The geometry of the water must not
be changed for generating waves on the surface.
Because of that the motion of the waves is sim-
ulated by multi-texturing. The same water tex-
ture is used two times. Both textures are rotated
continuously against each other. By adding the
colour values of the two resulting images a new
texture is generated for each frame. With this

6



technique the viewer gets the impression that the
water surface moves but without a certain direc-
tion.

While drawing the scene the depth-buffer of
the graphics card is used to determine which
parts of the terrain are flooded. In general the
depth-values saved in the buffer are rounded.
The size of the arising rounding error depends
on the amount of bits per pixel used by the
depth-buffer and on the depth of the view-
frustum. According to [11] the loss of accuracy
can be described with the following formula:

log2

zfar

znear
(1)

The terms znear and zfar describe the depth
of the near and the far clipping plane of the
view-frustum. Figure 7 shows a screenshot that
was made with a 16 bit depth-buffer. Lines of
water appear over the terrain because of round-
ing errors in the buffer.

Figure 7: Problem with depth-buffer

To reduce the rounding errors which appear
there are two possibilities. Either a graphics card
which provides a bigger depth-buffer is used or
the depth of the view-frustum is reduced.

The depth of the view-frustum depends on the
near and the far clipping plane. To reduce the
depth the clipping planes must move closer to-
gether. The view-frustum is intersected with the
terrain surface. Afterwards the point of intersec-
tion with the minimum depth-value determines
the position of the new near clipping plane. The
new position of the far clipping plane is com-
puted analogous.

5.3 Buildings

In general flood simulation and visualization is
made for inhabited regions. A local habitant will

get a realistic impression more easily if he sees
the three-dimensional buildings in the visualiza-
tion. The data for the buildings are original data
from the local land surveying office. For each
building there are a two dimensional polygon
representing its floor plan and attributes for ad-
ditional information about the building.

The first step is to get a valid z-value for the
polygon of the floor plan. This value can be
computed with the elevation grid mesh of the
terrain. For each vertex of the polygon the z-
value in the terrain is determined by interpola-
tion. The minimum of these values is used as
the z-value of the whole polygon. The height of
a building is estimated depending on its purpose.
For example dwelling houses will be less in size
than churches.

Dependent on the purpose of a building its 3D
shape is automatically generated. This means
that depending on the building’s floor plan dif-
ferent roofs are created for dwelling houses, fac-
tories, churches etc. Factories receive a flat
roof whilst dwelling houses and churches get a
pitched roof. The algorithm for generating the
pitched roofs is based on the work of Oswin
Aichholzer and Franz Aurenhammer [12]. To
achieve an even more realistic impression the
buildings are textured depending on their pur-
pose. Therefore different textures for doors,
walls and windows are used. In figure 8 the
left image shows how a church is constructed
with triangles. The image on the right shows the
same church drawn with textures for its walls,
its windows and its roof.

Whole cities are created upon these buildings.
But instead of creating these city maps procedu-
rally like Yoav I. H. Parish and Pascal Müller
[13] did the cities in this work are reconstructed
based on real data. For each building its geo-
referenced position is given and therefore its ex-
act placement on the terrain is known. This im-
proves the visual impression of the cities and it
is easier for the inhabitants to recognize their
own city.

While the user navigates through a flood
scene he can ask for the additional information
that exists for a building by clicking with the
mouse pointer on it. This information contains
for example the purpose of the building.

7



Figure 8: Model of a building

Figure 9: Cloud-texture with Perlin noise

5.4 Light And Sky

The use of light in a scene is very important to
get a realistic three-dimensional impression. By
using light shading the contour of the terrain sur-
face becomes visible.

For a realistic world a sky is needed in the
flood scene. The sky should have a sun and
clouds. The position of the sun is determined
by the position of the light source. To draw the
sun a plane with a corresponding texture is used.

The visualization tool uses a hemisphere to
draw the sky. This sky dome is constructed
with nearly 1.300 triangles. For the visualiza-
tion the hemisphere is drawn two times. The
first hemisphere is filled out with different blue
tones to simulate the atmospheric effects. For
the second hemisphere a cloud texture is gener-
ated with the Perlin noise technique [14]. The
left image of figure 9 shows an example for a
Perlin noise texture. The two hemispheres are
combined with alpha-blending. The right image
of figure 9 shows the resulting sky dome.

To simulate the motion of the clouds the sky
dome rotates slowly around the z-axis.

6 User Interface

One of the main goals of this work is to develop
a tool that is easy to use. After the user has
loaded a new terrain dataset in the tool it will
be immediately displayed. Now he can navi-
gate freely through the scenario by keyboard and

mouse inputs. Other datasets like texture, water
levels and buildings can be added at any time to
the scenario by loading the desired file.

The tool provides a map functionality for an
easier navigation. Every georeferenced image
of the displayed region can be loaded in an ex-
tra window and can serve as map. The position
of the user is marked in this map. So the user
always gets information about his current posi-
tion. The map can also be used to jump imme-
diately to a special point in the scenario.

After loading buildings the user can get infor-
mation about every single building by clicking
with the mouse on it. If the user has loaded more
than one water data set then he is able to start
an animation of the increasing or decreasing off
water level. So he can watch which buildings,
streets etc. will be affected by the flood.

The visualization tool provides a keyframe
technique. The user can mark several positions
of the camera during his flight through the sce-
nario. The tool computes a control polygon for
the marked points in order to generate a cubic
B-spline for the flight path of the camera. This
flight path is displayed in the map window and
it can be used for an animated flight through the
scenario. A flight path can be modified at any
time by the user and he can save it to use it later
again for example for a presentation. A video
clip can be generated of a flight animation so a
presentation of a flood model is possible an ev-
ery computer. These video clips can be used by
local authorities to inform the inhabitants of a
possible flood.

7 Results

This chapter contains information about the
memory requirements of the developed software
and about its speed. In the end some screenshots
will be presented.

For the measurements of memory require-
ment and speed a flood scene which contains
the following components is used: a terrain grid
mesh of 3108 x 3869 vertices, two water levels
each with a grid mesh of 3108 x 3869 vertices,
a 24 bit terrain texture with 4972 x 6189 pixels
and 10562 buildings.

During the pre-processing the software gen-
erates a temporary file for each tile of the scene.

8



The following table shows the amount of mem-
ory that is needed by these files on the harddisk.
Altogether the temporary files need about 88.32

Terrain Water Terrain
Texture

Buildings

Number of tiles 62 62 203 100

Memory
needed per tile

793KB 538KB 5-40KB 1-139KB

Total memory 48MB 32.5MB 5.3MB 2.52MB

Table 1: Memory requirements of the tempo-
rary files

MB of disk space. The central memory that is
needed for this scene during runtime is about
30 MB. The measurements of speed were made
on a PC with the following components: AMD
Athlon XP 1800+, 512 MB PC-266 DDRAM
and nVidia GeForce3 with 64 MB.

The speed and the number of triangles were
measured at several different points of view in
the flood scene. The resolution was set to 1024
x 768 pixels and the colour depth was 32 bit. All
results are shown in the following diagram.

Figure 10: Measured rendering performance

A longer random flight through the whole
scene was made. The flight went several times
through each tile. To measure the number of tri-
angles and the frames per second the parame-
ters of the continuous level of detail algorithm
were not changed to maintain a certain frame
rate. The maximum number of triangles that was
measured at a point was 45.401. At this point
the algorithm rendered 34 frames per second.
The average number of triangles was 17.259 and
the average frame rate was 67. For a real-time
visualization a rate of 25 frames per second is
needed. So the software has fulfilled the real-
time condition.

Figure 11 shows four screenshots of the de-

veloped visualization tool. Two images were
made with a map as texture and for the other
two an aerial photo was used.

8 Future Work

In future the algorithms for the real-time visu-
alization will be optimized. Furthermore the vi-
sualization should become more realistic. Addi-
tionally to the polygons for buildings there ex-
ist polygons for special areas with information
about their purpose. For example there exist
polygons of forests or industrial areas. These
polygons can be filled with a suitable texture or
with suitable objects (e.g. tree objects for a for-
est area).

Another planned feature is the export of the
geometry and texture data in a file which can be
read by actual 3D software systems.

References

[1] P. Oberle, S. Theobald, and F. Nest-
mann. GIS-gestützte Hochwassermodel-
lierung am Beispiel des Neckars. Wasser-
wirtschaft 90, pages 368–373, 2000.

[2] D. C. Taylor and W. A. Barrett. An al-
gorithm for continuous resolution polyg-
onalizations of a discrete surface. In
Proc. Graphics Interface ’94, pages 33–
42, Banff, Canada, May 1994. Canadian
Inf. Proc. Soc.

[3] S. Roettger, W. Heidrich, Ph. Slusallek,
and H.-P. Seidel. Real-Time Generation
of Continuous Levels of Detail for Height
Fields. In Procceedings of WSCG ’98,
pages 315–322, 1998.

[4] H. Hoppe. Smooth view-dependent level-
of-detail control and its application to ter-
rain rendering. In Proceedings of the con-
ference on Visualization ’98, pages 35–42.
IEEE Computer Society Press, 1998.

[5] P. Lindstrom and V. Pascucci. Visualiza-
tion of large terrains made easy. In Pro-
ceedings of the conference on Visualization
’01, pages 363–371. IEEE Computer Soci-
ety, 2001.

9



Figure 11: Screenshots

[6] P. Lindstrom, D. Koller, W. Ribarsky, L. F.
Hodges, N. Faust, and G. A. Turner. Real-
time, continuous level of detail rendering
of height fields. In Proceedings of the 23rd
annual conference on Computer graph-
ics and interactive techniques, pages 109–
118. ACM Press, 1996.

[7] M. A. Duchaineau, M. Wolinsky, D. E.
Sigeti, M. C. Miller, C. Aldrich, and
M. B. Mineev-Weinstein. ROAMing ter-
rain: real-time optimally adapting meshes.
In IEEE Visualization, pages 81–88, 1997.

[8] J. Fitzke and C. Rinner. Visualisierung von
Hochwasserszenarien mit VRML. In Pro-
ceedings of Workshop Virtual GIS, pages
28–29, 1998.

[9] H. Hoppe. Progressive meshes. Com-
puter Graphics, 30(Annual Conference
Series):99–108, 1996.

[10] H. Hoppe. View-dependent refinement of
progressive meshes. Computer Graph-

ics, 31(Annual Conference Series):189–
198, 1997.

[11] D. Shreiner, editor. OpenGL Reference
Manual: The Official Reference Document
to OpenGL, Version 1.2. Addison-Wesley,
3rd edition, 2000.

[12] O. Aichholzer and F. Aurenhammer.
Straight skeletons for general polygonal
figures in the plane. In Proceedings of the
Second Annual International Conference
on Computing and Combinatorics, pages
117–126. Springer-Verlag, 1996.

[13] Y. I. H. Parish and P. Müller. Procedu-
ral modeling of cities. In Proceedings of
the 28th annual conference on Computer
graphics and interactive techniques, pages
301–308. ACM Press, 2001.

[14] D. S. Ebert, F. K. Musgrave, D. Peachey,
K. Perlin, and S. Worley. Texturing and
Modelling: A Procedural Approach. Aca-
demic Press, 1998.

10


