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1. Gradients of the Volume Constraint
In order to compute the gradients of the volume constraint
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we use the fact that the scalar triple product can be cyclically per-
muted and the fact that the sum of the gradients is 0:
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where x;; = X; — X;.

2. Gradient and Hessian of EApp

To compute the gradient and Hessian of the function Exppwe have
to determine the derivatives of R(®) what can be done component
wise by using the exponential series
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In the first derivative evaluated at @ = 0 there is only one non-
vanishing term that comes from the linear term in the exponential
series and in the second derivative there are only two terms left that
come from the quadratic term.

These derivatives can be used to compute the gradient and Hes-
sian of
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The gradient is determined as
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During the minimization we will evaluate the gradient at R = Ry
which leads to (to simplify notation we will denote Ae; as A; and
Re; asr;):
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Further, we compute the Hessian as
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This results in the elements
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The rest of the elements are determined by the symmetry of the
Hessian. To simplify notation we define the matrix Z with Z;; =

r[TA ;- Combining the results from above yields
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3. Proof of Equivalence of APD and IFE

Here, we will prove that the APD is equivalent to the invertible
finite elements (IFE) approach of Irving et al. [ITF04]. This can be
shown by rewriting the optimization problem as:
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It was shown by Kanatani [Kan94] that the maximum can be
found by computing the SVD F = UZV” from which we can find
the optimal rotation

Rmax =U 1 VTv
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which is exactly the heuristic approach of Irving et al. [ITF04],
where the minimal singular value is chosen to be negative and the
corresponding singular vector gets inverted.
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