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Figure 1: Fluid particles interact with three water wheels. This experiment demonstrates a stable simulation of two million fluid particles
interacting with dynamic rigid bodies using our SPH rigid-fluid coupling approach. The close-up on the right shows the fluid particles.

Abstract
A common way to handle boundaries in SPH fluid simulations is to sample the surface of the boundary geometry using parti-
cles. These boundary particles are assigned the same properties as the fluid particles and are considered in the pressure force
computation to avoid a penetration of the boundary. However, the pressure solver requires a pressure value for each particle.
These are typically not computed for the boundary particles due to the computational overhead. Therefore, several strategies
have been investigated in previous works to obtain boundary pressure values. A popular, simple technique is pressure mirror-
ing, which mirrors the values from the fluid particles. This method is efficient, but may cause visual artifacts. More complex
approaches like pressure extrapolation aim to avoid these artifacts at the cost of computation time.
We introduce a constraint-based derivation of Divergence-Free SPH (DFSPH) — a common state-of-the-art pressure solver.
This derivation gives us new insights on how to integrate boundary particles in the pressure solve without the need of explicitly
computing boundary pressure values. This yields a more elegant formulation of the pressure solver that avoids the aforemen-
tioned problems.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Smoothed Particle Hydrodynamics (SPH) is an established mesh-
less Lagrangian simulation approach. In computer graphics it has
been investigated to simulate various materials like fluids, de-
formable solids, granular materials, or snow. The most important
component of an SPH simulation framework for incompressible

fluids is the pressure solver. It enforces the incompressibility of the
fluid and implements the two-way coupling with rigid boundaries.

In recent years different approaches have been investigated to
represent the boundary in SPH fluid simulations. The most pop-
ular methods are either based on an explicit particle sampling of
the boundary surface or an implicit boundary representation. Both
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concepts virtually extend field quantities of the fluid (e.g., density,
pressure, etc.) into the boundary geometry. When a fluid particle
gets close to the boundary, the virtual density contribution of the
boundary domain then leads to a local compression. This compres-
sion is implicitly resolved by the pressure solver when enforcing
incompressibility and a boundary penetration is avoided. In this
way rigid-fluid coupling is implemented in state-of-the-art pressure
solvers.

The concept of extending the fluid’s field quantities to the bound-
ary domain enables identical handling of fluid and boundary in the
pressure solver. However, this means that state-of-the-art solvers
also require quantities like pressure or pressure acceleration at
the boundary which are costly to compute in each simulation
step. Different approaches have been investigated to approximate
these quantities at the boundary and therefore to avoid a com-
putational overhead. However, simple methods like pressure mir-
roring [AIA∗12, IOS∗14, BKWK19] introduce small visual arti-
facts while more sophisticated methods like pressure extrapola-
tion [AHA12,BGPT18] reduce these artifacts, but are more expen-
sive to compute. Another issue is that it is not completely clear
how to correctly implement this kind of boundary handling since
previous works often use different simplifications of the formula-
tion and therefore already many different variations of the same
boundary handling approach exist. Typical simplifications are: set-
ting the density of particles to the rest density [SP09], ignoring par-
ticle masses [MM13], or assuming that particle masses, densities or
pressure values of neighboring particles are equal [SP09,AIA∗12].

In our paper we present a mathematically consistent derivation
of an implicit pressure solver with boundary handling which solves
these problems. First, we introduce a constraint-based formulation
of a state-of-the-art pressure solver, namely DFSPH, and show that
this yields exactly the same equations as the original formulation.
Then we extend the derivation by defining a density constraint for
each fluid particle which also considers the virtual density contri-
bution of the boundary. However, in contrast to previous works
we clearly distinguish between dynamic fluid particles and static
boundaries and do not handle them in the same way. This means we
only define constraint functions for fluid particles, and static bound-
aries only add a constant contribution to these functions. In this way
the constraint-based derivation automatically considers the differ-
ence between fluid particles and boundaries. In the derivation we
avoid any simplification so that the solver can also be used in more
complex simulations, e.g., with different particle sizes [FFWL∗22].
This yields a pressure solver that does not require an explicit com-
putation of boundary pressure values and accelerations. Therefore,
it avoids the visual artifacts introduced by pressure mirroring, the
computational overhead of pressure extrapolation, and an addi-
tional implementation of such methods. However, we believe that
the main contribution of this paper is to provide a consistent and
mathematically sound derivation of a pressure solver with bound-
ary handling. Finally, we demonstrate the benefits of our solver in
complex simulations (see Figure 1).

2. Related Work

The Smoothed Particle Hydrodynamics formulation was originally
introduced by Gingold and Monaghan [GM77] in the field of as-

trophysics. SPH has also become an important simulation method
in the graphics community and has been used to simulate dif-
ferent kinds of materials, e.g., fluids [ICS∗14, BK17, WKB16,
CBG∗19], sand [LD09, AO11], deformable solids [PGBT18,
KBFF∗21], highly viscous materials [PT16, WKBB18, WJB23],
snow [GHB∗20], and ferrofluids [HHM19]. For an overview of
SPH methods in computer graphics we refer the reader to recent
surveys [IOS∗14, KBST19, KBST22].

Pressure solvers Many SPH simulators integrate the boundary
handling of the fluid into the pressure solver. Current state-of-the-
art solvers determine the pressure-driven acceleration either explic-
itly with an equation of state or implicitly by solving a linear sys-
tem given by the continuity equation and intermediate state val-
ues from the non-pressure forces. The former includes Weakly-
Compressible SPH (WCSPH) [BT07], which employs the Tait
equation to calculate the pressure from the current particle arrange-
ment. In contrast to WCSPH, implicit pressure solvers enforce in-
compressibility via the continuity equation. Prominent examples
include PCISPH [SP09], PBF [MM13], IISPH [ICS∗14] and Pro-
jective Fluids [WKB16]. In particular, we will further investigate
Divergence-Free SPH [BK17,CBG∗19] in this work, which solves
two linear systems for enforcing both the constant density and
divergence-free condition of the continuity equation for incom-
pressible fluids. An extensive overview and further derivations can
be found in the survey of Koschier et al. [KBST22].

Boundary handling One approach to couple SPH fluids with the
boundary is to use separate solvers for both and to explicitly com-
pute forces at the interface between fluid and boundary. This al-
lows for various representations of the boundary domain. Trian-
gle mesh representations are used by Bodin et al. [BLS12] and
Fujisawa and Miura [FM15] for rigid-fluid coupling, and by Hu-
ber et al. [HEW15] to strongly couple fluids and cloth. Harada
et al. [HKK07] employ an implicit surface representation using
signed distance fields (SDF). For particle-based boundaries, Mon-
aghan [Mon94] as well as Becker and Teschner [BT07] compute
penalty forces to simulate rigid-fluid coupling. Moreover, Becker et
al. [BTT09] introduce interaction forces computed by a predictor-
corrector scheme to update both fluid and boundary particles.

An alternative approach that has become popular is to integrate
the boundary handling in the pressure solver instead of computing
interface forces. Akinci et al. [AIA∗12] and Ihmsen et al. [IAGT10]
use a particle-based representation of the boundary and consider
these additional boundary particles in the pressure solver. In con-
trast, Koschier et al. [KB17] and Bender et al. [BKWK19] use im-
plicit boundary representations and precompute the contribution of
the boundary for the density and pressure computations. However,
to consider the boundary in the pressure solver, previous works re-
quire density and pressure values for the boundary. While the den-
sity value is typically set to the rest density of the fluid, there ex-
ist different methods to determine the pressure value like pressure
mirroring [AIA∗12], pressure extrapolation [AHA12,BGPT18], or
pressure boundaries [BGI∗18]. In our work we show that the com-
putation of these boundary pressure values can introduce viusal
artifacts or computational overhead. Therefore, we introduce a
method which does not require the explicit computation of a bound-
ary pressure value.
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3. Method

In the following we first introduce the governing equations for the
simulation of incompressible fluids and the spatial discretization.
Then in Section 3.2 we discuss a common derivation of an im-
plicit divergence-free SPH pressure solver for incompressible flu-
ids. Since our work focuses on boundary handling, the next step
is to extend the pressure solver to consider boundaries (see Sec-
tion 3.3). For reasons of clarity and comprehensibility we first only
consider static boundaries.

One of the most important approaches to handle boundaries in
the pressure solve is to represent the boundary by additional sam-
pling points. The motivation of the approach is to simply add addi-
tional boundary particles to the SPH formulation and handle them
in the same way as the fluid particles. This means that each bound-
ary particle also requires a pressure value in the implicit pressure
solve. However, it is not clear how to choose the pressure values for
the additional particles and there exist different methods to compute
boundary pressures in literature. We discuss some of these methods
at the end of Section 3.3.

In Section 3.4 we introduce our approach which is based on
an alternative derivation of the implicit pressure solver using con-
straints. When considering boundaries, this derivation leads to a
slightly modified pressure solver which does not require additional
pressure values at the boundary sampling points. In this way we
can avoid the above mentioned problems. Finally, we discuss the
handling of dynamic boundaries in Section 3.5.

3.1. Foundations

In this work we focus on the simulation of incompressible fluids.
Therefore, we solve the incompressible Navier-Stokes equations in
Lagrangian coordinates

ρ
Dv
Dt

=−∇p+µ∇2v+ fext (1)

Dρ

Dt
= 0 ⇔ ∇·v = 0, (2)

where ρ,v, t, p,µ and fext denote density, velocity, time, pressure,
dynamic viscosity and external body forces, respectively. Eq. (2)
defines the incompressibility condition of the fluid which is derived
from the continuity equation.

A common way to simplify the solution of Eq. (1) is to apply
the concept of operator splitting [IOS∗14, KBST22]. The core idea
of this concept is to decompose the Navier-Stokes equation into
subproblems, e.g., to solve for the pressure and viscosity forces
sequentially. In this way we can employ an optimized solver for
each subproblem. Since our work focuses on the development of
a pressure solver with boundary handling, in the following we will
combine all non-pressure forces fnp = µ∇2v+fext to improve read-
ability.

In order to solve the Navier-Stokes equations we use the
Smoothed Particle Hydrodynamics (SPH) formulation. This is a
Lagrangian approach which discretizes the spatial domain using
particles that carry the field quantities. Using SPH a quantity Ai
at position xi is approximated by the quantities A j at neighboring

particle positions x j as [Mon92]

Ai ≈ ∑
j

m j

ρ j
A jWi j, (3)

where m j is the mass of particle j and Wi j = W (xi − x j,h) is
a Gaussian-like kernel function with compact support. h is the
smoothing length of the kernel. In our work we use the cubic spline
kernel.

3.2. Divergence-Free SPH Pressure Solver

In SPH simulations boundary handling is often performed by the
pressure solver. Therefore, in the following we will derive the
divergence-free SPH (DFSPH) pressure solver introduced by Ben-
der and Koschier [BK17]. Note that other popular pressure solvers
like PCISPH [SP09] or IISPH [ICS∗14] can be derived in a similar
way as shown in [KBST22]. In this subsection we will derive the
pressure solver without boundary handling and show in the next
subsection how to extend it to consider the boundary.

DFSPH solves two linear systems to enforce a constant density
and a divergence-free velocity field, respectively. In the next para-
graphs we derive the first system in detail and discuss how to solve
it. At the end we show that the second system can be derived and
solved analogously.

Since the pressure solver should only focus on the computation
of pressure accelerations, we perform operator splitting (see Sec-
tion 3.1) and first compute all non-pressure accelerations. These
accelerations are used to determine the predicted velocities for all
particles as

v∗i = vi(t)+∆tanp
i (t) (4)

where anp
i is the sum of all non-pressure accelerations (e.g. gravity,

viscosity) acting on particle i.

In order to enforce a constant density we have to solve the pres-
sure Poisson equation (PPE)

∆t∇2 p =
ρ0 −ρ

∗

∆t
, (5)

where ρ0 is the rest density of the simulated material. The right
hand side of the system is determined by the difference between
the rest density and the predicted density

ρ
∗
i = ρi +∆t

Dρi

Dt
= ρi +∆t ∑

j
m j(v∗i −v∗j ) ·∇Wi j, (6)

where the density is computed by the SPH formulation in Eq. (3)
as

ρi = ∑
j

m jWi j. (7)

By using the predicted density the non-pressure accelerations are
considered in the pressure solve.

In the SPH formulation the PPE defines a linear system which
can be written as

Ap = s, (8)

where p denote the unknown pressure values and s the source
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Algorithm 1 Constant density solver (DFSPH)

1: compute predicted velocities v∗i (Eq. (4))
2: compute predicted densities ρ

∗
i (Eq. (6))

3: determine source terms si =
ρ0−ρ

∗
i

∆t (Eq. (5))
4: compute diagonal elements Aii (Eq. (12))
5: while residuum > tolerance do
6: compute pressure accelerations ap

i (Eq. (9))
7: compute ∆t∇2 pi (Eq. (10))
8: determine p(l+1)

i (Eq. (11))

9: update velocities vi(t +∆t) = v∗i +∆tap
i (t)

term vector with the elements si =
ρ0−ρ

∗
i

∆t . To compute the left
hand side of this system, we have to determine the Laplacian of
p (see Eq. (5)). Therefore, we first compute the pressure accelera-
tions [Mon92]

ap
i =− 1

ρi
∇pi =−∑

j
m j

(
pi

ρ2
i
+

p j

ρ2
j

)
∇Wi j (9)

and then the divergence of ∇pi to obtain the Laplacian of pi as

∇2 pi =∇·∇pi = ∑
j

m j

(
ap

i −ap
j

)
·∇Wi j. (10)

Since now we can compute the left and right hand side of the
linear system in Eq. (5), the next step is to solve the system. SPH
methods often use a parallelized Jacobi solver and clamp negative
pressures in each iteration to avoid artifacts due to the particle defi-
ciency problem at the free surface [KBST22]. In our work we use a
relaxed Jacobi solver which determines the pressure values in each
iteration as

p(l+1)
i = p(l)i +

ω

Aii

(
si −∑

j
Ai j p(l)j

)
, (11)

where ω is a user-defined relaxation factor and ∑ j Ai j p(l)j =

∆t∇2 pi is the left hand side of our linear system in iteration l.
In our experiments we set ω = 0.5 as recommended by Ihmsen
et al. [ICS∗14]. The diagonal element is determined by accumulat-
ing all coefficients of pi after substituting the pressure acceleration
(Eq. (9)) in Eq. (10) (cf. [BGPT18])

Aii =−∆t
ρ2

i

(
∥∑

j
m j∇Wi j∥2 +∑

j
mim j∥∇Wi j∥2

)
. (12)

The implementation of the derived constant density solver is
shown in Algorithm 1. Note that the described solver is equivalent
to the IISPH solver [ICS∗14]. To implement the DFSPH pressure
solver an additional linear system has to be solved in order to en-
force a divergence-free velocity field. This system is defined by the
following PPE

∆t∇2 p = ρ∇·v (13)

which can be solved analogously to Eq. (5).

3.3. Classical Boundary Handling

In this subsection we introduce a common particle-based boundary
handling which is often used in SPH simulations. For reasons of
clarity and comprehensibility here we only consider static bound-
aries and discuss the extension to dynamic boundaries later in Sec-
tion 3.5.

The key idea of particle-based boundary handling is to discretize
the boundary with additional particles [Mon94, IAGT10, AIA∗12,
BKWK20]. These particles represent the boundary in the fluid sim-
ulation and are handled exactly in the same way as the fluid parti-
cles. The motivation for this is that the SPH sum (Eq. (3)) is an ap-
proximation of a volume integral in the spherical domain of the par-
ticle neighborhood. The boundary particles are used as additional
sampling points to compute the integral in the boundary part. For
a static boundary the additional particles can be seen as fluid par-
ticles which can not move. By considering the additional particles
in the density computation, the density and therefore the fluid pres-
sure increases as a fluid particle comes closer to the boundary. As a
consequence, the pressure solver will push fluid particles out of the
boundary since the boundary particles can not move.

Considering boundary particles in the density computation
yields

ρi = ∑
j

m jWi j +∑
k

m̃kWik, (14)

where j and k denote the fluid and boundary neighbors of particle
i, respectively. To compute the mass of the boundary particles m̃k
we assume that they have the same rest density ρ0 as the fluid since
we treat these particles as static fluid particles. The mass is then
determined by the volume the boundary particle represents times
the rest density m̃k =

ρ0
∑l Wkl

, where l are the indices of the boundary
neighbors of particle k [AIA∗12].

The additional particles must also be considered in the other
equations of the pressure solver (see Section 3.2). For a static
boundary this concerns Eqs. (9), (10) and (12). The computation
of the diagonal matrix elements in Eq. (12) can be easily extended
by the additional particles since only their positions are required:

Aii =−∆t
ρ2

i

(
∥∑

j
m j∇Wi j +∑

k
m̃k∇Wik∥2

+∑
j

mim j∥∇Wi j∥2 +∑
k

mim̃k∥∇Wik∥2

)
.

(15)

However, the extended pressure acceleration (cf. Eq. (9)) requires
a pressure value pk for each boundary particle k [BKWK20]

ap
i =−∑

j
m j

(
pi

ρ2
i
+

p j

ρ2
j

)
∇Wi j −∑

k
m̃k

(
pi

ρ2
i
+

pk

ρ2
0

)
∇Wik.

(16)
Finally, the extended equation to compute the Laplacian of the pres-
sure (cf. Eq. (10)) contains an additional term with the pressure
acceleration ap

k at the boundary particle k

∇2 pi = ∑
j

m j

(
ap

i −ap
j

)
·∇Wi j +∑

k
m̃k
(
ap

i −ap
k

)
·∇Wik. (17)

In previous works different strategies have been investigated to
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determine this unknown boundary pressure pk and pressure accel-
eration ap

k . In the following we discuss the most important ones:

Pressure mirroring [AIA∗12, BKWK20] is a popular approach
that is simple to implement. When computing the pressure accel-
eration for particle i we simply "mirror" its pressure value on each
neighboring boundary particle by setting pk = pi. However, this
approach leads to inconsistent pressure values since one bound-
ary particle has different pressure values for different fluid particles
which can cause visual artifacts [BGI∗18, BGPT18]. The pressure
accelerations at the boundary are typically neglected, i.e. ap

k = 0,
since their computation is more involved [BGI∗18].

Pressure boundaries [BGI∗18] improve the robustness of the
boundary handling by extending the PPE in Eq. (5) and comput-
ing the unknown boundary pressure values pk in the same way as
the fluid pressures. The method also explicitly computes pressure
accelerations ap

k for the boundary particles. However, this requires
the solution of a larger linear system and therefore requires more
memory and computation time [BGPT18].

Pressure extrapolation [AHA12, BGPT18] determines the un-
known pressure values pk by extrapolating the fluid pressures onto
the boundary. The approach typically sets the pressure accelera-
tions to zero, similar to pressure mirroring.

Finally, note that implicit boundary representations [KB17,
BKWK19] also require pressure values on the boundary and
therefore have the same problem as the discussed particle-based
method.

3.4. Our Approach

In the following we introduce an alternative way to derive the im-
plicit pressure solver of Section 3.2. For the derivation we use a
constraint-based formulation and show that this leads to exactly the
same solver. However, the constraint-based formulation gives us
some insights on how to include the additional boundary particles
in a consistent way. This is discussed in detail in the second part of
this section.

3.4.1. Constraint-Based Pressure Solver

In order to enforce a constant density in the fluid we define a non-
linear density constraint for each fluid particle i as

Ci = ρ0 −ρi = ρ0 −∑
j

m jWi j, (18)

where ρ0 is the rest density and ρi is determined using the SPH
formulation in Eq. (7).

Similar to the impulse-based dynamic simulation ap-
proach [Mir96, BS06, BET14] we compute a Lagrange multiplier
λi for each constraint by solving

1
ρi

(∥∥∥∥∂Ci

∂xi

∥∥∥∥2

+∑
j

∥∥∥∥ ∂Ci

∂x j

∥∥∥∥2
)

λi =−C∗∗i
∆t2 . (19)

This equation is solved iteratively by a predictor-corrector method
where in each iteration the constraint value C∗∗i at the end of the
time step is predicted by considering pressure and non-pressure
accelerations to compute a solution of the non-linear problem.

Note that this formulation is also similar to the position-based flu-
ids (PBF) approach of Macklin and Müller [MM13]. However, in
our derivation we compute the constraint gradients using the cur-
rent positions which corresponds to state-of-the-art solvers like
IISPH [ICS∗14] or DFSPH [BK17]. In contrast PBF updates the
gradients in each iteration which has been shown to be less effi-
cient [BK17]. Moreover, we solve on acceleration-level instead of
using a position-based approach.

We need the constraint gradients to determine the left hand side
of Eq. (19) which are determined as

∂Ci

∂xi
=−∑

j
m j∇iWi j (20)

∂Ci

∂x j
= m j∇iWi j. (21)

If we substitute these gradients in Eq. (19), we can rewrite the sys-
tem using the value Aii of Eq. (12)

ρiAiiλi =
C∗∗i
∆t

. (22)

Note that due to our definition of the linear system in Eq. (19) the
Lagrange multiplier represents the quotient of the pressure and the
density, i.e. λi = pi/ρi. In this way we can already see the similarity
to the linear system of the original derivation (Eq. (8)). However, on
the left hand side only the diagonal matrix elements are considered
and on the right hand side we also consider pressure accelerations.
Now we show that this is equivalent to Eq. (8).

To determine the predicted constraint value C∗∗i we first have
to compute the pressure forces. For a constraint Ci the force on a
particle j is determined by

fp
j←i =

mi

ρi

∂Ci

∂x j
λi. (23)

The volume of the particle is required since due to our formulation,
the product of the constraint gradient and the Lagrange multiplier
gives us a force per unit volume. If we sum up all pressure forces
for particle i we get

fp
i =

mi

ρi

∂Ci

∂xi
λi +∑

j

m j

ρ j

∂C j

∂xi
λ j =−mi ∑

j
m j

(
λi

ρi
+

λ j

ρ j

)
∇Wi j.

(24)

The corresponding pressure acceleration ap
i = fp

i /mi is equivalent
to the acceleration in the original derivation (cf. Eq. (9)).

In the next step we use the pressure and non-pressure accelera-
tions to determine the predicted particle velocities

v∗∗i = vi(t)+∆t
(
anp

i (t)+ap
i (t)
)
. (25)

Analogous to Eq. (6) we now determine the right hand side of the
linear system (22) as

C∗∗i
∆t

=
1
∆t

(
ρ0 −ρi −∆t ∑

j
m j(v∗∗i −v∗∗j ) ·∇Wi j

)

=
ρ0 −ρ

∗
i

∆t
−∆t ∑

j
m j

(
ap

i −ap
j

)
·∇Wi j.

(26)
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Solving the linear system using the relaxed Jacobi method yields
the following update rule for the Lagrange multiplier

λ
(l+1)
i = λ

(l)
i +

ω

ρiAii

C∗∗i
∆t

(27)

= λ
(l)
i +

ω

ρiAii

(
si −∑

j
Ai j p(l)j

)
(28)

which is equivalent to the iteration update of the original formula-
tion in Eq. (11).

The definition of a constraint to enforce a divergence-free veloc-
ity field and the derivation of a corresponding solver can be done
analogously.

In summary, this demonstrates that our constraint-based deriva-
tion leads to exactly the same result as the original derivation. How-
ever, we find that our formulation is more intuitive when adding
boundary handling to the system. In the next part of this section we
will see the benefit of this as it helps us to avoid the computation of
unnecessary pressure values at the boundary.

3.4.2. Boundary Handling

Now we extend the density constraint of Eq. (18) to consider the
boundary. We still assume that the boundary is static and will dis-
cuss dynamic boundaries in the next subsection. The constraint
function is extended analogously to the classical boundary handling
approach (cf. Eq. (14))

Ci = ρ0 −ρi = ρ0 −∑
j

m jWi j −∑
k

m̃kWik. (29)

However, in contrast to the classical approach we do not handle
the boundary particles in the same way as dynamic fluid particles.
Since we assume a static boundary, the constraint function only
depends on the positions of the fluid particle i and its fluid neigh-
bors j. It does not depend on xk since these values are constant.
Moreover, we only define constraints for fluid particles since static
boundary particles can not move.

Therefore, the gradient of Ci with respect to the position of a
boundary particle xk is zero. The remaining gradients of the ex-
tended constraint function are determined as

∂Ci

∂xi
=−∑

j
m j∇Wi j −∑

k
m̃k∇Wik (30)

∂Ci

∂x j
= m j∇Wi j. (31)

Substituting these gradients in Eq. (19) yields a modified defini-
tion of Aii which is required to solve Eq. (22):

Aii =−∆t
ρ2

i

(
∥∑

j
m j∇Wi j +∑

k
m̃k∇Wik∥2 +∑

j
∥m j∇Wi j∥2

)
.

(32)

In the next step we compute the extended pressure accelerations
as (cf. Eq. (24))

ap
i =−∑

j
m j

(
λi

ρi
+

λ j

ρ j

)
∇Wi j −∑

k
m̃k

λi

ρi
∇Wik. (33)

Note that in contrast to previous approaches (see Section 3.3) this
equation does not contain any boundary pressure value pk (or in
our case λk) since density constraints are only defined for dynamic
fluid particles, but not for static boundary particles.

Finally, we extend the right hand side of the PPE (see Eq. (26))
in order to consider the boundary:

C∗∗i
∆t

=
ρ0 −ρ

∗
i

∆t
−∆t ∑

j
m j

(
ap

i −ap
j

)
·∇Wi j −∆t ∑

k
m̃kap

i ·∇Wik.

(34)

This extension of our constraint-based derivation yields a solver
which can handle static boundaries without the need of explicitly
computing boundary pressure values.

3.5. Dynamics Boundaries

So far we assumed that we only have static boundaries in the
simulation. Now we discuss how two-way coupling with dynamic
boundaries can be simulated.

We follow the approach of Akinci et al. [AIA∗12] and compute
the pressure force that acts from a fluid particle i on a boundary
particle k as

fp
k←i = mim̃k

(
pi

ρ2
i

)
∇Wik. (35)

The resulting force is applied to the rigid body at the position of the
boundary particle k to update the motion of the body. This approach
is quite common and has been used in several research works to
handle dynamic boundaries with weak (e.g., [ICS∗14, KB17]) and
strong two-way coupling (e.g. [GPB∗19]). Interestingly in this ap-
proach the pressure force does not depend on the boundary pressure
value pk. Therefore, this force perfectly fits to our formulation and
can also directly be derived from Eq. (33).

4. Results

For the experiments in this section we implemented our approach
in the open-source framework SPlisHSPlasH [B∗23] using an
OpenMP parallelization. We used the surface reconstruction of
Böttcher et al. [BLJB23] for visualization. Timings were measured
on an Intel Core i9-9900K processor with 8 physical cores at 3.60
GHz.

Comparison In the first experiment we compare our approach
with pressure mirroring [KBST22] and the MLS pressure extrap-
olation method of Band et al. [BGPT18]. Since the latter method is
based on a particle-based boundary representation, we use such a
representation [AIA∗12] in this experiment.

For the comparison we drop a cube of fluid particles in a sphere
and wait until the fluid comes to rest. Figure 2 shows the fluid par-
ticles on the bottom of the sphere at the end of the simulation for
all three methods. The color-coding of the particles represents the
pressure in the fluid.

As expected pressure mirroring (see Figure 2a) causes small vi-
sual artifacts which can be seen in the noisy pressure and particle

© 2023 The Authors.
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(a) Pressure mirroring (b) Pressure extrapolation (c) Our method

Figure 2: Fluid particles at the bottom of a sphere with color-coded pressure values. (a) Pressure mirroring causes artifacts which leads to
a noisy pressure and particle distribution. (b) Pressure extrapolation solves this problem at additional computational cost. (c) Our method
also solves the problem without any computational overhead.

distribution. Pressure extrapolation and our method solve this prob-
lem (see Figures 2b and 2c) and show a typical SPH particle dis-
tribution and a smooth pressure field. However, in contrast to our
approach, the MLS pressure extrapolation method has to determine
and invert an MLS matrix for each particle in each simulation step.
In the experiment the extrapolation pressure solver required about
6.5% more computation time than our method.

In large-scale simulations the small visual artifacts of pressure
mirroring and also the computational overhead of pressure extrap-
olation might not be substantial. However, the implementation of
our approach is not more complex than pressure mirroring but it
avoids the artifacts. And the implementation is definitely simpler
than MLS pressure extrapolation which requires the computation
and inversion of a potentially singular MLS matrix. So our ap-
proach provides a clear benefit at no extra cost.

Complex simulations To demonstrate that our approach can han-
dle complex scenarios with static and dynamic boundaries, we per-
form two simulations with large particle numbers. In contrast to
the previous experiment we use an implicit boundary represen-
tation [BKWK20] to show that our approach is not restricted to
particle-based boundaries. We compute vorticity [BKKW19] and
drag forces [GBP∗17] to get more realistic motion.

The first simulation (see Figure 3) shows that our solver can han-
dle the rigid-fluid coupling with complex static boundary geome-
tries. In the experiment three Armadillo models are sampled by 1.4
million fluid particles and interact with three static dragon models.

In the second simulation 2 million fluid particles are emitted and
interact with dynamic water wheels (see Figure 1). The wheels are
simulated as rigid bodies using a position-based method [DCB14].
This experiment demonstrates that our method can simulate a stable
interaction with dynamic boundaries.

Figure 3: Six fluid armadillos interact with three static dragon
models using our boundary handling approach

5. Conclusion

SPH approximates a volume integral over a spherical domain using
a particle discretization. However, if a boundary lies in this do-
main, there are not enough sampling points. Therefore, a common
way to handle rigid-fluid coupling in SPH simulations is to sample
the boundary geometry by additional particles. To solve the inte-
gral these particles are handled in the same way as the dynamic
fluid particles. This requires a virtual extension of the fluid’s field
quantities into the boundary. However, methods to compute these
quantities for boundary particles either introduce a computational
overhead or lead to visual artifacts. In this work we introduced a
constraint-based derivation of DFSPH which does not require an
explicit computation of the quantities and therefore avoids these
problems. Finally, note that our boundary handling can be derived
for other pressure solvers like PCISPH, IISPH or PBF analogously.

© 2023 The Authors.
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