
  

 

Abstract—Physical simulation is an indispensable component 

of robotics simulation platforms that serves as the basis for a 

plethora of research directions. Looking strictly at robotics, the 

common characteristic of the most popular physics engines, such 

as ODE, DART, MuJoCo, bullet, SimBody, PhysX or RaiSim, is 

that they focus on the solution of articulated rigid bodies with 

collisions and contacts problems, while paying less attention to 

other physical phenomena. This restriction limits the range of 

addressable simulation problems, rendering applications such as 

soft robotics, cloth simulation, simulation of viscoelastic 

materials, and fluid dynamics, especially surface swimming, 

infeasible. In this work, we present Gazebo Fluids, an open-

source extension of the popular Gazebo robotics simulator that 

enables the interaction of articulated rigid body dynamics with 

particle-based fluid and deformable solid simulation. We 

implement fluid dynamics and highly viscous and elastic 

material simulation capabilities based on the Smoothed Particle 

Hydrodynamics method. We demonstrate the practical impact 

of this extension for previously infeasible application scenarios 

in a series of experiments, showcasing one of the first self-

propelled robot swimming simulations with SPH in a robotics 

simulator.  

I. INTRODUCTION 

Physics-based simulation lies at the core of many different 
technologies and research directions, covering a wide range of 
applications from video games over Reinforcement Learning 
(RL) to robotics. Currently no single does-it-all solution that 
encompasses all the different requirements for different 
workflows exists. The vast landscape of general purpose 
robotics simulation solutions, such as MuJoCo [1], bullet, 
RaiSim [2], PhysX, and Webots [3], offers a wide range of 
physics models capturing realistic dynamics.  A somewhat 
crude categorization of physical simulators could differentiate 
between those that focus on rendering and physical 
appearance, e.g., physics for game engines prioritizing visual 
fidelity, and on the other side simulators for which physical 
accuracy is crucial. The latter is particularly important for 
robotics workflows, typically found in simulators such as 
Gazebo [4], CoppeliaSim / V-Rep [5]. A physics engine that 
behaves as close to reality as possible, is crucial to reduce the 
sim2real gap, turning such simulators into valuable tools in the 
hands of the robotics community.  

Historically many different approaches to the problem of 
physical simulation have been taken. Approaches stemming 
from continuum mechanics, e.g., Finite Element Method 
(FEM), Finite Volume Method (FVM), and Finite Difference 
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Method (FDM), follow an energy-based derivation of the 
equations of solid and fluid dynamics. In contrast, robotics 
simulators and their underlying physics engines typically rely 
on the simplified treatment of moving bodies as fully rigid, i.e. 
there is no deformation of the materials, and rely on the 
solution of the equations of motion starting from a constraint-
based formulation. Due to the distinct nature of the two 
approaches, it is often not feasible to couple them into a unified 
solution. This is in fact an active field of research [6]–[8]  

The limiting factor of most continuum mechanics-based 
approaches that keeps them from wide adoption in the robotics 
community is that they are generally more computationally 
intensive compared to rigid body dynamics solvers. Most 
modern physics engines used in robotic simulation, such as 
ODE, DART [9], MuJoCo, bullet, SimBody [10], PhysX or  
RaiSim, instead formulate the problem of articulated rigid 
body dynamics via a constraint-based formulation, and use 
simple geometrical shapes for the computation of forces 
(contacts, collisions etc.). This usually limits the range of 
problems that they solve to a category of problems that ignores 
other physical phenomena. This makes them unsuitable for 
applications such as soft robotics, cloth simulation, simulation 
of viscoelastic materials, or fluid dynamics. For such use-cases 
the norm is to augment an existing simulator with custom-built 
physics, albeit with the loss of general applicability. One 
problem, difficult to tackle with current solvers, is open-world 
simulation, where freely moving bodies interact with their 
environment but are not spatially limited to a predefined 
computational domain. Such cases can exhibit complex 
dynamics with a wide range of temporal and spatial features 
e.g. a robot transitioning between different media, from 
ground to water. The current approaches assume the analysis 
of these dynamics for the extraction of physically important 
features or modes [11]. Yet, machine learning and data-driven 
approaches have lately offered new methods to tackle such 
problems in a flexible way and at scale [12], [13].   

In this work, we open up a new world of simulating rigid 
body with SPH-based fluids and solids interactions in robotics. 
Starting with the community standard Gazebo simulator, by 
integrating into it a Smoothed Particle Hydrodynamics (SPH)-
based framework that enables the interaction of articulated 
rigid body dynamics with particle-based fluid and deformable 
solid dynamics1. This tool supports simulating many different 
categories of robotics problems, such as robots that manipulate 
fluids with their end effectors, swimming robots, robots that 
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come in contact with fluids and need to learn a locomotor 
policy through RL in simulation, robots used in 3D printing  
that emit highly viscous materials [14], medical robots, search 
and rescue operation robots, cloth simulation etc.   

The advantage of building such an open-source tool on top 
of Gazebo is that it leverages its rich ecosystem (i.e. ROS 
support, sensors, and multiple physics engines backends). 
Furthermore, this initial implementation can serve as the 
template for the development of similar tools based on other 
simulators. In our implementation and evaluation, we used the 
open-source SPlisHSPlasH [15] solver for the fluid dynamics 
simulation. This framework supports multiple SPH 
algorithms, different boundary handling methods, as well as 
highly viscous and elastic materials. 

The core of the tool is an efficient data exchange engine 

that ensures a minimal set of quantities transfer between the 

rigid body and the fluid simulation. Additionally, it enforces 

the synchronization between the two simulators.  More 

precisely, only the positions, orientations and velocities of the 

rigid bodies are required at the fluid simulation level, and only 

the forces and torques that are applied on the rigid bodies as a 

result of the fluid pressure on the rigid body dynamics world 

are considered (Fig. 1).  

It is worth mentioning here that there exists an initial 

implementation of SPH in Gazebo through the Fluidix library 

which was not completed and remained closed source. In the 

Fluidix implementation a single SPH method and a single box 

collision shape were provided, as well as a collision-based 

force and torque boundary handling method. This work has 

two main contributions: 

• An open-source SPH-based Gazebo plugin that enables 

the simulation of rigid bodies with fluids 

• One of the first of its kind simulation of self-propelled 
robot swimming with SPH methods, capturing complex 
behaviors such as forward swimming and turning 

II. RELATED WORKS 

Recently, an overview of the features of the most widely 

used robotics simulators, where the lack of accurate fluids 

dynamics simulation is made evident was published [16]. 

According to their finds most of the robotics simulators either 

completely lack or minimally support fluid simulation. What 

is specifically missing is the simulation of fluids based on the 

Navier-Stokes equations. Popular methods for the simulation 

of solid bodies with fluids can be roughly divided into 

FEM/FVM/FDM grid-based and SPH particle-based 

methods. Existing efforts to couple FEM methods with 

 

Figure 1: The Gazebo / SPlisHSPlasH plugin architecture. In the beginning of the simulation, the world file (SDF/URDF supported) is parsed, and each 

simulator creates its own representation of the world in their respective format. In each physical simulation step the Fluid Simulation Plugin triggers a data 
exchange consisting of a Force/Torque pair that expresses the fluid forces applied on every rigid body, and the poses and velocities of the rigid bodies so 

that the fluid simulation can localize them it its own world. The Fluid Simulation Plugin also manages the update of the boundaries representation, most 

commonly by updating the positions of boundary particles attached on the rigid bodies. Each simulator is performing its own computations without 
knowledge of the existence of the other, leading to a loose coupling between the two. This architecture means that the ROS ecosystem around Gazebo / 

other potential simulators can be reused without the need for further modifications. Optionally, the particles’ positions can be streamed via Gazebo topics 

and visualized in gzclient (the standalone GUI of Gazebo), gzweb (the web-renderer of Gazebo) or other renderers (e.g. Blender, Paraview, OpenGL). 

 



  

particle-based fluid dynamics can be found in the SOFA 

framework [17]. Simulation of rigid bodies with FLIP-based 

[18] fluids has been implemented in Blender with Mantaflow 

[19], though it should be noted that FLIP is a method that 

requires both an Eulerian grid as well as particles. Fluid 

simulation with the Position Based Fluids (PBF) [20] method 

has been implemented in the PhysX framework through the 

Flex library. As it is shown in [21], PBF comes with its own 

limitations, and is generally slower compared to other 

methods such as Divergence Free SPH (DFSPH) [21]. 

Perhaps the most closely related prior work to our approach 

is found in Project Chrono, where they couple rigid bodies 

with the DualSPHysics [22] Weakly Compressible SPH 

(WCSPH) [23] solver. One limitation of this approach is that 

WCSPH is only conditionally stable and depends strongly on 

the correct choice of the stiffness parameter of the solver that 

is difficult to tune. The lack of ROS support and sensor 

support in Project Chrono make the support of generic robotic 

workflows more complex than in Gazebo.  

Some of the widely used robotics simulators, i.e. Webots, 

Gazebo, CopelliaSim, support basic fluids simulation albeit 

based on simple hydrodynamics. In Gazebo a plugin has been 

implemented that simulates fluid forces based on the relative 

velocity between the fluid and the robot bodies2, as well as a 

plugin that simulates buoyancy and lift/drag forces3. The 

same principle of fluid forces proportional to the relative 

velocity between the fluid and the rigid bodies is also applied 

in Webots4. That can indeed be useful for applications where 

a crude approximation of the fluid forces is enough. 
SPH simulation is particularly useful for the simulation of 

bodies swimming on the surface of fluids, a use-case that grid-
based methods cannot easily cope with. Self-propelled 
swimming with SPH has been showcased before, first by 

 
2 Link to open-source repository. The README contains installation 

instructions 

Kajtar and Monaghan where they show three linked ellipses 
moving within a fluid surface [24]. In 2008, Hieber et al. [25], 
presented an Immersed Boundary Method within SPH and 
showcased self-propelled fish-like anguilliform  swimming 
with it. More recently, Sun et al [26] presented a self-propelled 
fish-like swimming simulation with the δ+-SPH variant. To 
our knowledge, there have not been publications showcasing 
self-propelled robots with SPH. 

With this work a rich ecosystem of robot models, sensors, 
actuators is made available to the robotics community. We 
believe that this will open the way for new categories of 
simulations of interest to different robotics communities, e.g. 
for the simulation of amphibious robots.  

III. METHOD 

A. Summary of the interaction framework 

The implementation of the Fluid Simulation Plugin is 
based on the generic world plugin mechanism of Gazebo, that 
allows the dynamically linking of C++ libraries. During the 
initialization phase, all the physical properties of the models, 
i.e. viscosity parameters, density, inertial tensors, collision 
shapes are loaded, and the particles’ positions are initialized 
(Alg. 1). In every physical simulation step, the updated 
particles positions are computed, as well as the forces and 
torques that are applied on each rigid body, leading to a loose 
coupling between the two simulators. As part of the 
synchronization method, each simulator can be run freely with 
its own timestep, preventing unnecessary waiting times, 
exchanging information at prescribed intervals. It is important 
to note that in the fluid simulation world the rigid body surface 
is sampled with particles that serve as boundary particles (Fig. 
2), according to the method of Akinci et al. [27]. For every 
rigid body the torques and forces are computed in the 
appropriate frame and applied along with the rest of the 
simulated forces (e.g. contact, collision, gravity forces). The 
simulation of different phenomena, i.e. highly viscous and 
elastic materials is feasible through the definition of different 
material properties. The option of streaming the particles’ 
positions through Gazebo topics and visualizing them in 

3 https://gazebosim.org/tutorials?tut=hydrodynamics&cat=physics 
4 https://cyberbotics.com/doc/reference/fluid 

  

 
Figure 2: Example surface particle discretization of an Anymal C robot  [42]. 

These particles are moving with the rigid body, while pressure and viscous 

forces are computed on them. This results to a force/torque pair that is 

applied on the rigid body. It is worth noting, that as is the norm in robotics 

simulation, the particles are sampled on top of the collision shapes’ surfaces, 

not on the visual shapes. The framework of interaction ensures the 
synchronization between the two simulators, by constantly updating the 

locations and velocities of the boundary particles and applying the resulting 

fluids forces on the rigid bodies. The particles have been intentionally 
undersampled in order to better visualize the robot. In reality, the whole 

robot surface has been sampled with particles. Visualization in gzclient. 

 



  

gzclient or gzweb is available for prototyping. For offline 
rendering, the particles’ positions are stored into log files at 
each simulation step for later visualization. The file formats 
that are supported are .vtk files and .partio files that can then 
be visualized in OpenGL, Paraview, or Blender. 

B. The Smoothed Particle Hydrodynamics method 

Even though a full treatise on the SPH method goes beyond 

the scope of this article, we summarize the main points and 

the simulation methods that we used in our examples. A 

minimal theoretical treatment is addressed and supported 

through our framework. For a more detailed explanation we 

refer the reader to [28]–[30]. It is worth noting that SPH was 

first formulated for the simulation of astrophysics 

phenomena, but soon became a general simulation method for 

the solution of fluid dynamics problems, later expanding into 

the simulation of solid dynamics [31]. It is a mesh-free 

Lagrangian method, which is an excellent candidate for the 

solution of problems with moving boundaries, such as the 

simulation of robots or other rigid bodies swimming on the 

surface of fluids, as well as deformable solids.  

In SPH fluids are sampled with freely moving particles, 

that carry with them physical quantities, e.g. density, pressure 

etc. The interaction between particles relies on the 

mathematical construct of a weighted kernel (Fig. 3). The 

kernel weights the contribution of each particle to the 

computation of a physical quantity based on its distance to a 

particle under consideration. In order to compute a physical 

quantity of a particle, the weighted contributions of the 

quantities of the neighboring particles are summed. Even 

though it is useful to conceptualize particles as physical 

particles, it should be noted that in strict mathematical terms 

the particles are function sampling points.  

More formally, the SPH discretization starts from the Dirac 

δ-identity, that states that the convolution of a continuous 

compactly supported  function A(x) with the Dirac δ-

distribution is identical to A(x) itself [15] 

 

𝐴(𝒙) = (𝐴 ∗ δ) =∫ 𝐴(𝒙′)δ(𝒙 − 𝒙′)𝑑𝒙′
Ω

 ,(1) 

 

where 𝑑𝑥′ denotes the volume integration variable over 

domain Ω and 𝒙 is a vector in 3D space. We can substitute the 

Dirac function with an approximation kernel 𝑊(𝒓, ℎ), e.g. 

Gaussian or Cubic Spline that depends on the distance 𝒓 =

𝒙 − 𝒙′ and the variable ℎ that denotes the smoothing length. 

The smoothing length determines how much the value of 𝐴 is 

affected by the function values in its proximity. This leads to 

the approximation of a field quantity with the smoothing 

kernel 

 

𝐴(𝒙)  ≈ (𝐴 ∗W) = ∫𝐴(𝒙′)W(𝒙 − 𝒙′, ℎ )𝑑𝒙′. (2) 

 

The next step in the SPH formalization is to discretize this 

integral from analytical to its approximation by summing 

over discrete sampling points  

 

A(x) ≈  ∫
𝐴(𝒙′)

𝜌(𝒙′)
𝑊(𝒙 − 𝒙′, ℎ) 𝜌(𝒙′)𝑑𝑣′⏟    

𝑑𝑚′

  (3) 

A(x) ≈  ∑ 𝐴𝑗
𝑚𝑗

𝜌𝑗
W(𝒙 − 𝒙′𝑗 , ℎ ), (4) 

where 𝑗 denotes the 𝑗th sampling point/particle. The main 

advantage of SPH starts being obvious upon discretization of 

differential operators that reduce to differentiations of the – 

by definition differentiable – kernel functions. E.g., the 

gradient of a function can be approximated as the sum 

 

∇𝐴𝑖 ≈  ∑ 𝐴𝑗
𝑚𝑗

𝜌𝑗
∇W(𝒙𝒊 − 𝒙𝒋𝑗 , ℎ ),  (5) 

 

where 𝑖 denotes the sampling point in consideration and 𝑗 the 

neighboring sampling points. However, this simple 

approximation can lead to unstable simulations [32]. 

Therefore, in practice improved formulations are preferred to 

get a more accurate approximation or to conserve linear and 

angular momentum, e.g., the difference formula or the 

symmetric formula [15]. Finally, without going into detail, the 

incompressible Navier-Stokes equations 

 

ρ
𝐷𝑣

𝐷𝑡
= − ∇p +  µ∇2𝑣 + 𝑓𝑒𝑥𝑡 ,   ∇𝑣 =  0  (6) 

 

for 3D fluid flow can be solved using the SPH 

approximations, and a time integration scheme, e.g. semi-

implicit Euler. The original SPH formulation of Gingold and 

Monaghan [29] has been further enhanced, with most 

formulations focusing on the solution of pressure.  

C. Current advances in SPH 

In the last two decades SPH has become a popular approach 

for the simulation of fluids and deformable solids and an 

important topic of ongoing research. One major challenge is 

the development of efficient and stable pressure solvers for 

incompressible fluids. In this field first explicit solvers for 

almost incompressible fluids were investigated, e.g., the 

Weakly-Compressible SPH solver [23]. However, these 

solvers are only conditionally stable and require parameter 

tuning. To solve these problems more stable implicit pressure 

solvers were developed which enforce a constant density in 

the fluid. Recent research in this field further improved the 

stability and efficiency of the pressure solvers and methods 

were introduced that enforce both a constant density and a 

divergence-free velocity field [21]. 

In recent years also SPH formulations for other complex 

materials were investigated. For example implicit solvers for 

 
Figure 3: The smoothing kernel of SPH visualized. Here a Gaussian 

kernel with a support radius is shown. The value of the function f(x) at 
the location of the concerning particle α is computed as the sum of the 

values of the neighboring particles, weighted by the Gaussian kernel. The 

further away a particle is, the smaller the value of the Gaussian, hence the 

less the particle contributes to the computation. Adapted from [41]. 

 



  

the simulation of highly viscous fluids and deformable solids 

were developed [33], [34]. Moreover, a wide range of 

physical effects were implemented like surface tension, 

vorticity, or air drag. 

The open-source framework SPlisHSPlasH, which is used 

in our Gazebo plugin, implements most recent solvers for 

incompressible and compressible fluids, highly viscous 

materials, deformable solids, as well as several physical 

effects. Therefore, our plugin enables the simulation of a 

robot interacting with all these material types while 

considering complex physical effects. 

D. Boundary handling 

At the core of the interaction framework lies the application 

of the fluid forces/torques on the rigid bodies. In SPH the 

treatment of boundaries is most commonly handled with 

boundary particles, sampled on the surfaces of rigid bodies 

that move along with the bodies. Akinci et al. [27] proposed 

a method that supports irregular sampling of the boundary 

surfaces. Other researchers treat boundaries with density [35] 

or volume maps [36] that are computed in the beginning of 

the simulation. These implicit boundary methods allow a 

better representation of smooth surfaces. Another approach is 

the direct numerical simulation via the immersed boundary 

projection method [11] or machine learning [37]. 

From the coupling perspective, it is important to maintain a 

data structure that maps these rigid bodies / boundary models 

in the fluid world to rigid bodies in the robotic simulation 

world and update them accordingly (Alg. 1). In each 

simulation step the poses of the rigid bodies are extracted 

from the robot simulation and used to recompute the positions 

and velocities of the boundary particles (Fig. 2). This ensures 

synchronization between the two simulators and an efficient 

exchange of data. At the same time, the pressure and viscous 

forces that are applied on the boundary particles are integrated 

and passed as a force/torque pair to each rigid body and 

applied as external forces. 

E. Rendering 

Depending on the number of particles simulated, it might 

be feasible to visualize them while the simulation runs or 

offline. For prototype applications with a small number of 

particles, a visualizer plugin for gzclient and an enhancement 

of gzweb for web-based visualization is provided. For larger-

scale applications that support more sophisticated shaders and 

other 3D rendering functionality, .vtk and .partio files 

containing the particles’ positions can be saved through the 

plugin and used for offline rendering.  

F. Parallelization and performance considerations 

SPH simulations are very good candidates for 

parallelization on the CPU/GPU [38], as the computational 

complexity of SPH increases with the number of particles. 

This is because in principle the interactions between all 

particles must be computed. In practice, neighborhood search 

techniques that maintain a list of the particles that are in 

proximity to the particle under consideration are used. This 

speeds up the computation significantly and facilitates the 

GPU and CPU parallelization. Our code specifically executes 

the neighborhood search both on the CPU and on the GPU. 

IV. EXPERIMENTS  

We setup two experiments, one to verify the simulation, and 

one to showcase complex robot behaviors such as forward 

swimming and turning. In our setup both simulators are 

running on multiple CPU cores. The fluid simulation is 

parallelized with OpenMP and vectorized using AVX. 

However, the order of execution of each simulator must be 

kept sequential. Depending on the desirable accuracy, each 

simulator step can be run with multiple iterations, offering a 

tradeoff between accuracy and execution time. It is common 

in practice to let the fluid simulator run with larger timesteps 

and perform multiple iterations of the robot simulator, e.g. 

with a 1/10 ratio. One consideration that must be taken into 

account is the Courant-Friedrichs-Lewy (CFL) condition. It 

states that the fluid simulation timestep must be small enough 

to ensure that the distance that a particle with the max velocity 

can travel, is smaller than the particle size. Intuitively this 

means that particle should not travel more than the particle 

diameter per timestep. 

For small prototype applications, as long as the particles 

number is kept small, e.g. 10.000, the simulation can be run 

close to real-time, e.g. with a 0.5-0.8 simulation to real-time 

ratio. For larger applications where mathematical accuracy is 

important, a higher number of particles in the order of 

100.000-1.000.000 particles might be necessary to achieve 

the desirable accuracy. In such scenarios real-time 

visualization adds significant overhead and leads to a drop to 

1-2 FPS, so offline visualization is preferred. These 

simulations take about 1-2 hours for 10 seconds of simulation 

time. All the simulations were performed on a laptop with i7-

11800H CPU, 32 GB RAM and GeForce RTX 3060 graphics 

card. 

A. Passive rigid body with dam break 

To verify the correctness of boundary handling, the update 

of the rigid bodies' position and the handling of force/torque 

exchange, we conduct an experiment simulating a column of 

 
Figure 4: Consecutive timesteps of a moving box under the effect of fluid 
forces. In the beginning (top left) of the simulation a column of water 

collapses under the effect of gravity forces. Upon contact (top right), the 

water particles apply viscous and pressure forces on the rigid box, and it 
starts to move. The box subsequently collides with the rigid wall and 

collision forces are applied (bottom left). The effect of the collision force 

along with the fluid forces leads to a reverse of the box velocity towards the 
center of the environment. Visualization in gzclient. 

 



  

water collapsing under the effect of gravity and its dynamic 

interaction with a floating box (Fig. 4). This test verifies that 

the boundary handling, the update of the rigid bodies’ position 

and the force/torque exchange is handled properly. From the 

point of view of the robotics simulation, the fluid forces are 

just another type of external force applied to the rigid body, 

meaning that they are seamlessly applied along with collision 

and gravity forces.  

While no ground truth is available to verify the correctness 

of the simulation results -- a well-known problem of fluid-

simulation -- the simulation yields believable results, attesting 

to the correct implementation of above-mentioned conditions. 

B. Self-propelled swimming simulation 

A more complex scenario, showcasing the interaction 

between an actuated robot and the fluid dynamics simulation 

can be seen in Fig. 5-6. In these scenarios an amphibot robot 

actuated with a sinusoid travelling wave controller swims  

forward (Fig. 5) and turns right (Fig. 6) under the effect of the 

fluid forces. Such simulations are usually performed with 

simplified drag models that fail to capture the complexity of 

the interaction between the rigid body and fluid dynamics. 

The force/torque pair applied on the rigid bodies can be 

extracted and used as the substrate for RL / optimization-

based control methods.   

This simple sinusoidal pattern, inspired by the travelling 

waves produced by the spinal cord of lamprey fish, can be 

replaced with more complex control models such as Central 

Pattern Generators (CPG), such as the one already 

implemented on the amphibot robot [39]. These types of SPH-

based simulations can shed light to the complex locomotor 

mechanisms behind animal swimming, as already shown in 

[24]–[26] but also serve as a testbed for the development of 

robotics controllers.  
One challenge that we plan to address in the future is the 

comparison of the simulation results with experimental data. 
Even though this is a general challenge in robotics simulation, 
as the sim2real gap is almost always present, it would 
strengthen the argumentation in favor of using SPH as a 
simulation method for robotics. It should be noted here that the 
maturity of SPH when it comes to engineering applications is 
already very high [28]. Nevertheless, which physical 
phenomena can be accurately captured, and how much 
physical accuracy is necessary for robotics applications is still 
an open question. 

 
Figure 5: Simulation of an amphibot robot [40] swimming forward with a travelling wave pattern. Ordering is from left to right and from top to 

bottom. It is well-established that this robot locomotor policy leads to self-propelled swimming, similar to lamprey fish in the animal kingdom. 

The fluid simulation can capture complex phenomena, such as the formation of vortices in the posterior side of the robot. Such simulations can 

shed light on complex phenomena that were previously neglected in robot simulations and lead to more robust control methods. Visualization in 

Paraview. 

 
Figure 6: The interaction framework can capture more complex locomotor patterns, such as robot turning. This is achieved with a slight 
modification of the control method, that adds some bias into the sinusoidal generator. By modifying the control parameters, many different patterns, 

such as fast and abrupt change of direction, reverse swimming, swimming at different speeds can be simulated to validate and improve robot 

control methods 

 



  

CONCLUSION  

This work introduces the first comprehensive SPH-based 
open-source fluid dynamics simulator integrated with the 
Gazebo robotics simulator via SPlisHSPlasH. We compare our 
work with prior approaches, focusing particularly on the 
ecosystem support of Gazebo and on the richness of the SPH 
methods that can be explored with our implementation. We 
discuss important practical considerations, e.g. boundary 
handling, synchronization, rendering and the computational 
workload of the simulation. We demonstrate the performance 
of our extension in two separate experiments. First, we 
highlight the correct handling of boundary conditions, 
fluid/solid interaction and demonstrate the performance 
characteristics of the combined simulation. Second, we 
showcase self-propelled forward swimming and turning on the 
water surface, a category of robotics simulation previously 
infeasible to simulate within the Open Robotics ecosystem. 

By implementing this open-source tool that couples 
Gazebo with particle-based SPH simulation, we 
simultaneously propose a new category of robotics 
simulations. Some robotics work flows that we envision 
include the simulation of soft robots, robots interacting with 
deformable solids or highly viscous and elastic materials, 
freely swimming robots or robots manipulating fluids with 
their end effectors. Large-scale simulations such as flood 
scenarios where search and rescue robots are simulated are a 
particular area of interest.  

We believe that the next evolution step of the tool is to 
incorporate learning capabilities to support the reconstruction 
of fluid flow dynamics and interactions. This will enable a 
more realistic reconstruction due to the fact that data-driven 
approaches already outperform traditional approximation 
techniques commonly used for flow reconstruction..  
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