

Abstract—Physical simulation is an indispensable component

of robotics simulation platforms that serves as the basis for a

plethora of research directions. Looking strictly at robotics, the

common characteristic of the most popular physics engines, such

as ODE, DART, MuJoCo, bullet, SimBody, PhysX or RaiSim, is

that they focus on the solution of articulated rigid bodies with

collisions and contacts problems, while paying less attention to

other physical phenomena. This restriction limits the range of

addressable simulation problems, rendering applications such as

soft robotics, cloth simulation, simulation of viscoelastic

materials, and fluid dynamics, especially surface swimming,

infeasible. In this work, we present Gazebo Fluids, an open-

source extension of the popular Gazebo robotics simulator that

enables the interaction of articulated rigid body dynamics with

particle-based fluid and deformable solid simulation. We

implement fluid dynamics and highly viscous and elastic

material simulation capabilities based on the Smoothed Particle

Hydrodynamics method. We demonstrate the practical impact

of this extension for previously infeasible application scenarios

in a series of experiments, showcasing one of the first self-

propelled robot swimming simulations with SPH in a robotics

simulator.

I. INTRODUCTION

Physics-based simulation lies at the core of many different
technologies and research directions, covering a wide range of
applications from video games over Reinforcement Learning
(RL) to robotics. Currently no single does-it-all solution that
encompasses all the different requirements for different
workflows exists. The vast landscape of general purpose
robotics simulation solutions, such as MuJoCo [1], bullet,
RaiSim [2], PhysX, and Webots [3], offers a wide range of
physics models capturing realistic dynamics. A somewhat
crude categorization of physical simulators could differentiate
between those that focus on rendering and physical
appearance, e.g., physics for game engines prioritizing visual
fidelity, and on the other side simulators for which physical
accuracy is crucial. The latter is particularly important for
robotics workflows, typically found in simulators such as
Gazebo [4], CoppeliaSim / V-Rep [5]. A physics engine that
behaves as close to reality as possible, is crucial to reduce the
sim2real gap, turning such simulators into valuable tools in the
hands of the robotics community.

Historically many different approaches to the problem of
physical simulation have been taken. Approaches stemming
from continuum mechanics, e.g., Finite Element Method
(FEM), Finite Volume Method (FVM), and Finite Difference

E. Angelidis was with foritss GmbH, Munich, Germany. He is now with

the Huawei Technologies Munich Research Center, Munich Germany,
corresponding author (e-mail: manosagelidis@gmail.com)

 J. Bender is with RWTH Aachen University, Aachen, Germany (e-mail:

bender@cs.rwth-aachen.de)
J. Arreguit and A. Ijspeert are with the École Polytechnique Fédérale

de Lausanne, Lausanne, Switzerland

Method (FDM), follow an energy-based derivation of the
equations of solid and fluid dynamics. In contrast, robotics
simulators and their underlying physics engines typically rely
on the simplified treatment of moving bodies as fully rigid, i.e.
there is no deformation of the materials, and rely on the
solution of the equations of motion starting from a constraint-
based formulation. Due to the distinct nature of the two
approaches, it is often not feasible to couple them into a unified
solution. This is in fact an active field of research [6]–[8]

The limiting factor of most continuum mechanics-based
approaches that keeps them from wide adoption in the robotics
community is that they are generally more computationally
intensive compared to rigid body dynamics solvers. Most
modern physics engines used in robotic simulation, such as
ODE, DART [9], MuJoCo, bullet, SimBody [10], PhysX or
RaiSim, instead formulate the problem of articulated rigid
body dynamics via a constraint-based formulation, and use
simple geometrical shapes for the computation of forces
(contacts, collisions etc.). This usually limits the range of
problems that they solve to a category of problems that ignores
other physical phenomena. This makes them unsuitable for
applications such as soft robotics, cloth simulation, simulation
of viscoelastic materials, or fluid dynamics. For such use-cases
the norm is to augment an existing simulator with custom-built
physics, albeit with the loss of general applicability. One
problem, difficult to tackle with current solvers, is open-world
simulation, where freely moving bodies interact with their
environment but are not spatially limited to a predefined
computational domain. Such cases can exhibit complex
dynamics with a wide range of temporal and spatial features
e.g. a robot transitioning between different media, from
ground to water. The current approaches assume the analysis
of these dynamics for the extraction of physically important
features or modes [11]. Yet, machine learning and data-driven
approaches have lately offered new methods to tackle such
problems in a flexible way and at scale [12], [13].

In this work, we open up a new world of simulating rigid
body with SPH-based fluids and solids interactions in robotics.
Starting with the community standard Gazebo simulator, by
integrating into it a Smoothed Particle Hydrodynamics (SPH)-
based framework that enables the interaction of articulated
rigid body dynamics with particle-based fluid and deformable
solid dynamics1. This tool supports simulating many different
categories of robotics problems, such as robots that manipulate
fluids with their end effectors, swimming robots, robots that

L. Gleim, C. Axenie and W.Wang are with Huawei Technologies Munich
Research Center, Munich, Germany

A. Knoll is with the Technical University of Munich, Munich, Germany
1https://bitbucket.org/hbpneurorobotics/splishsplash/src/master/GazeboFl

uidSimulator/

Emmanouil Angelidis, Jan Bender, Jonathan Arreguit, Lars Gleim, Wei Wang, Cristian Axenie, Alois

Knoll, Auke Ijspeert

Gazebo Fluids: SPH-based simulation of fluid interaction with

articulated rigid body dynamics

come in contact with fluids and need to learn a locomotor
policy through RL in simulation, robots used in 3D printing
that emit highly viscous materials [14], medical robots, search
and rescue operation robots, cloth simulation etc.

The advantage of building such an open-source tool on top
of Gazebo is that it leverages its rich ecosystem (i.e. ROS
support, sensors, and multiple physics engines backends).
Furthermore, this initial implementation can serve as the
template for the development of similar tools based on other
simulators. In our implementation and evaluation, we used the
open-source SPlisHSPlasH [15] solver for the fluid dynamics
simulation. This framework supports multiple SPH
algorithms, different boundary handling methods, as well as
highly viscous and elastic materials.

The core of the tool is an efficient data exchange engine

that ensures a minimal set of quantities transfer between the

rigid body and the fluid simulation. Additionally, it enforces

the synchronization between the two simulators. More

precisely, only the positions, orientations and velocities of the

rigid bodies are required at the fluid simulation level, and only

the forces and torques that are applied on the rigid bodies as a

result of the fluid pressure on the rigid body dynamics world

are considered (Fig. 1).

It is worth mentioning here that there exists an initial

implementation of SPH in Gazebo through the Fluidix library

which was not completed and remained closed source. In the

Fluidix implementation a single SPH method and a single box

collision shape were provided, as well as a collision-based

force and torque boundary handling method. This work has

two main contributions:

• An open-source SPH-based Gazebo plugin that enables

the simulation of rigid bodies with fluids

• One of the first of its kind simulation of self-propelled
robot swimming with SPH methods, capturing complex
behaviors such as forward swimming and turning

II. RELATED WORKS

Recently, an overview of the features of the most widely

used robotics simulators, where the lack of accurate fluids

dynamics simulation is made evident was published [16].

According to their finds most of the robotics simulators either

completely lack or minimally support fluid simulation. What

is specifically missing is the simulation of fluids based on the

Navier-Stokes equations. Popular methods for the simulation

of solid bodies with fluids can be roughly divided into

FEM/FVM/FDM grid-based and SPH particle-based

methods. Existing efforts to couple FEM methods with

Figure 1: The Gazebo / SPlisHSPlasH plugin architecture. In the beginning of the simulation, the world file (SDF/URDF supported) is parsed, and each

simulator creates its own representation of the world in their respective format. In each physical simulation step the Fluid Simulation Plugin triggers a data
exchange consisting of a Force/Torque pair that expresses the fluid forces applied on every rigid body, and the poses and velocities of the rigid bodies so

that the fluid simulation can localize them it its own world. The Fluid Simulation Plugin also manages the update of the boundaries representation, most

commonly by updating the positions of boundary particles attached on the rigid bodies. Each simulator is performing its own computations without
knowledge of the existence of the other, leading to a loose coupling between the two. This architecture means that the ROS ecosystem around Gazebo /

other potential simulators can be reused without the need for further modifications. Optionally, the particles’ positions can be streamed via Gazebo topics

and visualized in gzclient (the standalone GUI of Gazebo), gzweb (the web-renderer of Gazebo) or other renderers (e.g. Blender, Paraview, OpenGL).

particle-based fluid dynamics can be found in the SOFA

framework [17]. Simulation of rigid bodies with FLIP-based

[18] fluids has been implemented in Blender with Mantaflow

[19], though it should be noted that FLIP is a method that

requires both an Eulerian grid as well as particles. Fluid

simulation with the Position Based Fluids (PBF) [20] method

has been implemented in the PhysX framework through the

Flex library. As it is shown in [21], PBF comes with its own

limitations, and is generally slower compared to other

methods such as Divergence Free SPH (DFSPH) [21].

Perhaps the most closely related prior work to our approach

is found in Project Chrono, where they couple rigid bodies

with the DualSPHysics [22] Weakly Compressible SPH

(WCSPH) [23] solver. One limitation of this approach is that

WCSPH is only conditionally stable and depends strongly on

the correct choice of the stiffness parameter of the solver that

is difficult to tune. The lack of ROS support and sensor

support in Project Chrono make the support of generic robotic

workflows more complex than in Gazebo.

Some of the widely used robotics simulators, i.e. Webots,

Gazebo, CopelliaSim, support basic fluids simulation albeit

based on simple hydrodynamics. In Gazebo a plugin has been

implemented that simulates fluid forces based on the relative

velocity between the fluid and the robot bodies2, as well as a

plugin that simulates buoyancy and lift/drag forces3. The

same principle of fluid forces proportional to the relative

velocity between the fluid and the rigid bodies is also applied

in Webots4. That can indeed be useful for applications where

a crude approximation of the fluid forces is enough.
SPH simulation is particularly useful for the simulation of

bodies swimming on the surface of fluids, a use-case that grid-
based methods cannot easily cope with. Self-propelled
swimming with SPH has been showcased before, first by

2 Link to open-source repository. The README contains installation

instructions

Kajtar and Monaghan where they show three linked ellipses
moving within a fluid surface [24]. In 2008, Hieber et al. [25],
presented an Immersed Boundary Method within SPH and
showcased self-propelled fish-like anguilliform swimming
with it. More recently, Sun et al [26] presented a self-propelled
fish-like swimming simulation with the δ+-SPH variant. To
our knowledge, there have not been publications showcasing
self-propelled robots with SPH.

With this work a rich ecosystem of robot models, sensors,
actuators is made available to the robotics community. We
believe that this will open the way for new categories of
simulations of interest to different robotics communities, e.g.
for the simulation of amphibious robots.

III. METHOD

A. Summary of the interaction framework

The implementation of the Fluid Simulation Plugin is
based on the generic world plugin mechanism of Gazebo, that
allows the dynamically linking of C++ libraries. During the
initialization phase, all the physical properties of the models,
i.e. viscosity parameters, density, inertial tensors, collision
shapes are loaded, and the particles’ positions are initialized
(Alg. 1). In every physical simulation step, the updated
particles positions are computed, as well as the forces and
torques that are applied on each rigid body, leading to a loose
coupling between the two simulators. As part of the
synchronization method, each simulator can be run freely with
its own timestep, preventing unnecessary waiting times,
exchanging information at prescribed intervals. It is important
to note that in the fluid simulation world the rigid body surface
is sampled with particles that serve as boundary particles (Fig.
2), according to the method of Akinci et al. [27]. For every
rigid body the torques and forces are computed in the
appropriate frame and applied along with the rest of the
simulated forces (e.g. contact, collision, gravity forces). The
simulation of different phenomena, i.e. highly viscous and
elastic materials is feasible through the definition of different
material properties. The option of streaming the particles’
positions through Gazebo topics and visualizing them in

3 https://gazebosim.org/tutorials?tut=hydrodynamics&cat=physics
4 https://cyberbotics.com/doc/reference/fluid

Figure 2: Example surface particle discretization of an Anymal C robot [42].

These particles are moving with the rigid body, while pressure and viscous

forces are computed on them. This results to a force/torque pair that is

applied on the rigid body. It is worth noting, that as is the norm in robotics

simulation, the particles are sampled on top of the collision shapes’ surfaces,

not on the visual shapes. The framework of interaction ensures the
synchronization between the two simulators, by constantly updating the

locations and velocities of the boundary particles and applying the resulting

fluids forces on the rigid bodies. The particles have been intentionally
undersampled in order to better visualize the robot. In reality, the whole

robot surface has been sampled with particles. Visualization in gzclient.

gzclient or gzweb is available for prototyping. For offline
rendering, the particles’ positions are stored into log files at
each simulation step for later visualization. The file formats
that are supported are .vtk files and .partio files that can then
be visualized in OpenGL, Paraview, or Blender.

B. The Smoothed Particle Hydrodynamics method

Even though a full treatise on the SPH method goes beyond

the scope of this article, we summarize the main points and

the simulation methods that we used in our examples. A

minimal theoretical treatment is addressed and supported

through our framework. For a more detailed explanation we

refer the reader to [28]–[30]. It is worth noting that SPH was

first formulated for the simulation of astrophysics

phenomena, but soon became a general simulation method for

the solution of fluid dynamics problems, later expanding into

the simulation of solid dynamics [31]. It is a mesh-free

Lagrangian method, which is an excellent candidate for the

solution of problems with moving boundaries, such as the

simulation of robots or other rigid bodies swimming on the

surface of fluids, as well as deformable solids.

In SPH fluids are sampled with freely moving particles,

that carry with them physical quantities, e.g. density, pressure

etc. The interaction between particles relies on the

mathematical construct of a weighted kernel (Fig. 3). The

kernel weights the contribution of each particle to the

computation of a physical quantity based on its distance to a

particle under consideration. In order to compute a physical

quantity of a particle, the weighted contributions of the

quantities of the neighboring particles are summed. Even

though it is useful to conceptualize particles as physical

particles, it should be noted that in strict mathematical terms

the particles are function sampling points.

More formally, the SPH discretization starts from the Dirac

δ-identity, that states that the convolution of a continuous

compactly supported function A(x) with the Dirac δ-

distribution is identical to A(x) itself [15]

𝐴(𝒙) = (𝐴 ∗ δ) =∫ 𝐴(𝒙′)δ(𝒙 − 𝒙′)𝑑𝒙′
Ω

 ,(1)

where 𝑑𝑥′ denotes the volume integration variable over

domain Ω and 𝒙 is a vector in 3D space. We can substitute the

Dirac function with an approximation kernel 𝑊(𝒓, ℎ), e.g.

Gaussian or Cubic Spline that depends on the distance 𝒓 =

𝒙 − 𝒙′ and the variable ℎ that denotes the smoothing length.

The smoothing length determines how much the value of 𝐴 is

affected by the function values in its proximity. This leads to

the approximation of a field quantity with the smoothing

kernel

𝐴(𝒙) ≈ (𝐴 ∗W) = ∫𝐴(𝒙′)W(𝒙 − 𝒙′, ℎ)𝑑𝒙′. (2)

The next step in the SPH formalization is to discretize this

integral from analytical to its approximation by summing

over discrete sampling points

A(x) ≈ ∫
𝐴(𝒙′)

𝜌(𝒙′)
𝑊(𝒙 − 𝒙′, ℎ) 𝜌(𝒙′)𝑑𝑣′⏟

𝑑𝑚′

 (3)

A(x) ≈ ∑ 𝐴𝑗
𝑚𝑗

𝜌𝑗
W(𝒙 − 𝒙′𝑗 , ℎ), (4)

where 𝑗 denotes the 𝑗th sampling point/particle. The main

advantage of SPH starts being obvious upon discretization of

differential operators that reduce to differentiations of the –

by definition differentiable – kernel functions. E.g., the

gradient of a function can be approximated as the sum

∇𝐴𝑖 ≈ ∑ 𝐴𝑗
𝑚𝑗

𝜌𝑗
∇W(𝒙𝒊 − 𝒙𝒋𝑗 , ℎ), (5)

where 𝑖 denotes the sampling point in consideration and 𝑗 the

neighboring sampling points. However, this simple

approximation can lead to unstable simulations [32].

Therefore, in practice improved formulations are preferred to

get a more accurate approximation or to conserve linear and

angular momentum, e.g., the difference formula or the

symmetric formula [15]. Finally, without going into detail, the

incompressible Navier-Stokes equations

ρ
𝐷𝑣

𝐷𝑡
= − ∇p + µ∇2𝑣 + 𝑓𝑒𝑥𝑡 , ∇𝑣 = 0 (6)

for 3D fluid flow can be solved using the SPH

approximations, and a time integration scheme, e.g. semi-

implicit Euler. The original SPH formulation of Gingold and

Monaghan [29] has been further enhanced, with most

formulations focusing on the solution of pressure.

C. Current advances in SPH

In the last two decades SPH has become a popular approach

for the simulation of fluids and deformable solids and an

important topic of ongoing research. One major challenge is

the development of efficient and stable pressure solvers for

incompressible fluids. In this field first explicit solvers for

almost incompressible fluids were investigated, e.g., the

Weakly-Compressible SPH solver [23]. However, these

solvers are only conditionally stable and require parameter

tuning. To solve these problems more stable implicit pressure

solvers were developed which enforce a constant density in

the fluid. Recent research in this field further improved the

stability and efficiency of the pressure solvers and methods

were introduced that enforce both a constant density and a

divergence-free velocity field [21].

In recent years also SPH formulations for other complex

materials were investigated. For example implicit solvers for

Figure 3: The smoothing kernel of SPH visualized. Here a Gaussian

kernel with a support radius is shown. The value of the function f(x) at
the location of the concerning particle α is computed as the sum of the

values of the neighboring particles, weighted by the Gaussian kernel. The

further away a particle is, the smaller the value of the Gaussian, hence the

less the particle contributes to the computation. Adapted from [41].

the simulation of highly viscous fluids and deformable solids

were developed [33], [34]. Moreover, a wide range of

physical effects were implemented like surface tension,

vorticity, or air drag.

The open-source framework SPlisHSPlasH, which is used

in our Gazebo plugin, implements most recent solvers for

incompressible and compressible fluids, highly viscous

materials, deformable solids, as well as several physical

effects. Therefore, our plugin enables the simulation of a

robot interacting with all these material types while

considering complex physical effects.

D. Boundary handling

At the core of the interaction framework lies the application

of the fluid forces/torques on the rigid bodies. In SPH the

treatment of boundaries is most commonly handled with

boundary particles, sampled on the surfaces of rigid bodies

that move along with the bodies. Akinci et al. [27] proposed

a method that supports irregular sampling of the boundary

surfaces. Other researchers treat boundaries with density [35]

or volume maps [36] that are computed in the beginning of

the simulation. These implicit boundary methods allow a

better representation of smooth surfaces. Another approach is

the direct numerical simulation via the immersed boundary

projection method [11] or machine learning [37].

From the coupling perspective, it is important to maintain a

data structure that maps these rigid bodies / boundary models

in the fluid world to rigid bodies in the robotic simulation

world and update them accordingly (Alg. 1). In each

simulation step the poses of the rigid bodies are extracted

from the robot simulation and used to recompute the positions

and velocities of the boundary particles (Fig. 2). This ensures

synchronization between the two simulators and an efficient

exchange of data. At the same time, the pressure and viscous

forces that are applied on the boundary particles are integrated

and passed as a force/torque pair to each rigid body and

applied as external forces.

E. Rendering

Depending on the number of particles simulated, it might

be feasible to visualize them while the simulation runs or

offline. For prototype applications with a small number of

particles, a visualizer plugin for gzclient and an enhancement

of gzweb for web-based visualization is provided. For larger-

scale applications that support more sophisticated shaders and

other 3D rendering functionality, .vtk and .partio files

containing the particles’ positions can be saved through the

plugin and used for offline rendering.

F. Parallelization and performance considerations

SPH simulations are very good candidates for

parallelization on the CPU/GPU [38], as the computational

complexity of SPH increases with the number of particles.

This is because in principle the interactions between all

particles must be computed. In practice, neighborhood search

techniques that maintain a list of the particles that are in

proximity to the particle under consideration are used. This

speeds up the computation significantly and facilitates the

GPU and CPU parallelization. Our code specifically executes

the neighborhood search both on the CPU and on the GPU.

IV. EXPERIMENTS

We setup two experiments, one to verify the simulation, and

one to showcase complex robot behaviors such as forward

swimming and turning. In our setup both simulators are

running on multiple CPU cores. The fluid simulation is

parallelized with OpenMP and vectorized using AVX.

However, the order of execution of each simulator must be

kept sequential. Depending on the desirable accuracy, each

simulator step can be run with multiple iterations, offering a

tradeoff between accuracy and execution time. It is common

in practice to let the fluid simulator run with larger timesteps

and perform multiple iterations of the robot simulator, e.g.

with a 1/10 ratio. One consideration that must be taken into

account is the Courant-Friedrichs-Lewy (CFL) condition. It

states that the fluid simulation timestep must be small enough

to ensure that the distance that a particle with the max velocity

can travel, is smaller than the particle size. Intuitively this

means that particle should not travel more than the particle

diameter per timestep.

For small prototype applications, as long as the particles

number is kept small, e.g. 10.000, the simulation can be run

close to real-time, e.g. with a 0.5-0.8 simulation to real-time

ratio. For larger applications where mathematical accuracy is

important, a higher number of particles in the order of

100.000-1.000.000 particles might be necessary to achieve

the desirable accuracy. In such scenarios real-time

visualization adds significant overhead and leads to a drop to

1-2 FPS, so offline visualization is preferred. These

simulations take about 1-2 hours for 10 seconds of simulation

time. All the simulations were performed on a laptop with i7-

11800H CPU, 32 GB RAM and GeForce RTX 3060 graphics

card.

A. Passive rigid body with dam break

To verify the correctness of boundary handling, the update

of the rigid bodies' position and the handling of force/torque

exchange, we conduct an experiment simulating a column of

Figure 4: Consecutive timesteps of a moving box under the effect of fluid
forces. In the beginning (top left) of the simulation a column of water

collapses under the effect of gravity forces. Upon contact (top right), the

water particles apply viscous and pressure forces on the rigid box, and it
starts to move. The box subsequently collides with the rigid wall and

collision forces are applied (bottom left). The effect of the collision force

along with the fluid forces leads to a reverse of the box velocity towards the
center of the environment. Visualization in gzclient.

water collapsing under the effect of gravity and its dynamic

interaction with a floating box (Fig. 4). This test verifies that

the boundary handling, the update of the rigid bodies’ position

and the force/torque exchange is handled properly. From the

point of view of the robotics simulation, the fluid forces are

just another type of external force applied to the rigid body,

meaning that they are seamlessly applied along with collision

and gravity forces.

While no ground truth is available to verify the correctness

of the simulation results -- a well-known problem of fluid-

simulation -- the simulation yields believable results, attesting

to the correct implementation of above-mentioned conditions.

B. Self-propelled swimming simulation

A more complex scenario, showcasing the interaction

between an actuated robot and the fluid dynamics simulation

can be seen in Fig. 5-6. In these scenarios an amphibot robot

actuated with a sinusoid travelling wave controller swims

forward (Fig. 5) and turns right (Fig. 6) under the effect of the

fluid forces. Such simulations are usually performed with

simplified drag models that fail to capture the complexity of

the interaction between the rigid body and fluid dynamics.

The force/torque pair applied on the rigid bodies can be

extracted and used as the substrate for RL / optimization-

based control methods.

This simple sinusoidal pattern, inspired by the travelling

waves produced by the spinal cord of lamprey fish, can be

replaced with more complex control models such as Central

Pattern Generators (CPG), such as the one already

implemented on the amphibot robot [39]. These types of SPH-

based simulations can shed light to the complex locomotor

mechanisms behind animal swimming, as already shown in

[24]–[26] but also serve as a testbed for the development of

robotics controllers.
One challenge that we plan to address in the future is the

comparison of the simulation results with experimental data.
Even though this is a general challenge in robotics simulation,
as the sim2real gap is almost always present, it would
strengthen the argumentation in favor of using SPH as a
simulation method for robotics. It should be noted here that the
maturity of SPH when it comes to engineering applications is
already very high [28]. Nevertheless, which physical
phenomena can be accurately captured, and how much
physical accuracy is necessary for robotics applications is still
an open question.

Figure 5: Simulation of an amphibot robot [40] swimming forward with a travelling wave pattern. Ordering is from left to right and from top to

bottom. It is well-established that this robot locomotor policy leads to self-propelled swimming, similar to lamprey fish in the animal kingdom.

The fluid simulation can capture complex phenomena, such as the formation of vortices in the posterior side of the robot. Such simulations can

shed light on complex phenomena that were previously neglected in robot simulations and lead to more robust control methods. Visualization in

Paraview.

Figure 6: The interaction framework can capture more complex locomotor patterns, such as robot turning. This is achieved with a slight
modification of the control method, that adds some bias into the sinusoidal generator. By modifying the control parameters, many different patterns,

such as fast and abrupt change of direction, reverse swimming, swimming at different speeds can be simulated to validate and improve robot

control methods

CONCLUSION

This work introduces the first comprehensive SPH-based
open-source fluid dynamics simulator integrated with the
Gazebo robotics simulator via SPlisHSPlasH. We compare our
work with prior approaches, focusing particularly on the
ecosystem support of Gazebo and on the richness of the SPH
methods that can be explored with our implementation. We
discuss important practical considerations, e.g. boundary
handling, synchronization, rendering and the computational
workload of the simulation. We demonstrate the performance
of our extension in two separate experiments. First, we
highlight the correct handling of boundary conditions,
fluid/solid interaction and demonstrate the performance
characteristics of the combined simulation. Second, we
showcase self-propelled forward swimming and turning on the
water surface, a category of robotics simulation previously
infeasible to simulate within the Open Robotics ecosystem.

By implementing this open-source tool that couples
Gazebo with particle-based SPH simulation, we
simultaneously propose a new category of robotics
simulations. Some robotics work flows that we envision
include the simulation of soft robots, robots interacting with
deformable solids or highly viscous and elastic materials,
freely swimming robots or robots manipulating fluids with
their end effectors. Large-scale simulations such as flood
scenarios where search and rescue robots are simulated are a
particular area of interest.

We believe that the next evolution step of the tool is to
incorporate learning capabilities to support the reconstruction
of fluid flow dynamics and interactions. This will enable a
more realistic reconstruction due to the fact that data-driven
approaches already outperform traditional approximation
techniques commonly used for flow reconstruction..

ACKNOWLEDGMENTS

This research is supported by European Union’s Horizon
2020 research and innovation programme under grant
agreement No. 945539 (SGA3) Human Brain Project.

REFERENCES

[1] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A

physics engine for model-based control,” in 2012

IEEE/RSJ International Conference on Intelligent

Robots and Systems, Oct. 2012, pp. 5026–5033. doi:

10.1109/IROS.2012.6386109.

[2] J. Hwangbo, J. Lee, and M. Hutter, “Per-Contact

Iteration Method for Solving Contact Dynamics,” IEEE

Robot. Autom. Lett., vol. 3, no. 2, pp. 895–902, Apr.

2018, doi: 10.1109/LRA.2018.2792536.

[3] O. Michel, “WebotsTM: Professional Mobile Robot

Simulation,” Int. J. Adv. Robot. Syst., vol. 1, Mar. 2004,

doi: 10.5772/5618.

[4] N. Koenig and A. Howard, “Design and use paradigms

for Gazebo, an open-source multi-robot simulator,” in

2004 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (IEEE Cat.

No.04CH37566), Sep. 2004, vol. 3, pp. 2149–2154

vol.3. doi: 10.1109/IROS.2004.1389727.

[5] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A

versatile and scalable robot simulation framework,” in

2013 IEEE/RSJ International Conference on Intelligent

Robots and Systems, Nov. 2013, pp. 1321–1326. doi:

10.1109/IROS.2013.6696520.

[6] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim,

“Unified particle physics for real-time applications,”

ACM Trans. Graph. TOG, vol. 33, no. 4, pp. 1–12,

2014.

[7] M. Müller, M. Macklin, N. Chentanez, S. Jeschke, and

T.-Y. Kim, “Detailed Rigid Body Simulation with

Extended Position Based Dynamics,” Comput. Graph.

Forum, vol. 39, no. 8, pp. 101–112, 2020, doi:

10.1111/cgf.14105.

[8] C. Gissler, A. Peer, S. Band, J. Bender, and M.

Teschner, “Interlinked SPH Pressure Solvers for Strong

Fluid-Rigid Coupling,” ACM Trans. Graph., vol. 38,

no. 1, p. 5:1-5:13, Jan. 2019, doi: 10.1145/3284980.

[9] J. Lee et al., “DART: Dynamic Animation and Robotics

Toolkit,” J. Open Source Softw., vol. 3, p. 500, Feb.

2018, doi: 10.21105/joss.00500.

[10] M. Sherman, A. Seth, and S. Delp, “Simbody:

Multibody dynamics for biomedical research,”

Procedia IUTAM, vol. 2, pp. 241–261, Dec. 2011, doi:

10.1016/j.piutam.2011.04.023.

[11] T. Colonius and K. Taira, “A fast immersed boundary

method using a nullspace approach and multi-domain

far-field boundary conditions,” Comput. Methods Appl.

Mech. Eng., vol. 197, pp. 2131–2146, Apr. 2008, doi:

10.1016/j.cma.2007.08.014.

[12] M. P. Brenner, J. D. Eldredge, and J. B. Freund,

“Perspective on machine learning for advancing fluid

mechanics,” Phys. Rev. Fluids, vol. 4, no. 10, p.

100501, Oct. 2019, doi:

10.1103/PhysRevFluids.4.100501.

[13] S. L. Brunton, B. R. Noack, and P. Koumoutsakos,

“Machine Learning for Fluid Mechanics,” Annu. Rev.

Fluid Mech., vol. 52, no. 1, pp. 477–508, 2020, doi:

10.1146/annurev-fluid-010719-060214.

[14] U. Berdica, Y. Fu, Y. Liu, E. Angelidis, and C. Feng,

“Mobile 3D Printing Robot Simulation with

Viscoelastic Fluids,” in 2021 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),

Sep. 2021, pp. 7557–7563. doi:

10.1109/IROS51168.2021.9636114.

[15] D. Koschier, J. Bender, B. Solenthaler, and M.

Teschner, “Smoothed Particle Hydrodynamics

Techniques for the Physics Based Simulation of Fluids

and Solids,” presented at the Eurographics 2019

Tutorials, 2019. doi: 10.2312/egt.20191035.

[16] J. Collins, S. Chand, A. Vanderkop, and D. Howard, “A

Review of Physics Simulators for Robotic

Applications,” IEEE Access, vol. 9, pp. 51416–51431,

2021, doi: 10.1109/ACCESS.2021.3068769.

[17] J. Allard, H. Courtecuisse, and F. Faure, “Implicit FEM

and fluid coupling on GPU for interactive multiphysics

simulation,” in ACM SIGGRAPH 2011 Talks, New

York, NY, USA, Aug. 2011, p. 1. doi:

10.1145/2037826.2037895.

[18] J. U. Brackbill and H. M. Ruppel, “FLIP: A method for

adaptively zoned, particle-in-cell calculations of fluid

flows in two dimensions,” J. Comput. Phys., vol. 65,

no. 2, pp. 314–343, Aug. 1986, doi: 10.1016/0021-

9991(86)90211-1.

[19] Nils Thuerey and Tobias Pfaff, Mantaflow. 2018.

[Online]. Available: http://mantaflow.com

[20] M. Macklin and M. Müller, “Position Based Fluids,”

ACM Trans. Graph., vol. 32, p. 104:1, Jul. 2013, doi:

10.1145/2461912.2461984.

[21] J. Bender and D. Koschier, “Divergence-free smoothed

particle hydrodynamics,” in Proceedings of the 14th

ACM SIGGRAPH / Eurographics Symposium on

Computer Animation, New York, NY, USA, Aug. 2015,

pp. 147–155. doi: 10.1145/2786784.2786796.

[22] J. M. Domínguez et al., “State-of-the-art SPH solver

DualSPHysics: from fluid dynamics to multiphysics

problems,” Comput. Part. Mech., Mar. 2021, doi:

10.1007/s40571-021-00404-2.

[23] M. Becker and M. Teschner, “Weakly Compressible

SPH for Free Surface Flows,” in Proceedings of the

2007 ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, Jan. 2007, vol. 9, p. 217. doi:

10.1145/1272690.1272719.

[24] J. Kajtar and J. J. Monaghan, “SPH simulations of

swimming linked bodies,” J. Comput. Phys., vol. 227,

no. 19, pp. 8568–8587, Oct. 2008, doi:

10.1016/j.jcp.2008.06.004.

[25] S. E. Hieber and P. Koumoutsakos, “An immersed

boundary method for smoothed particle hydrodynamics

of self-propelled swimmers,” J. Comput. Phys., vol.

227, no. 19, pp. 8636–8654, Oct. 2008, doi:

10.1016/j.jcp.2008.06.017.

[26] P.-N. Sun, A. Colagrossi, and A.-M. Zhang, “Numerical

simulation of the self-propulsive motion of a fishlike

swimming foil using the δ+-SPH model,” Theor. Appl.

Mech. Lett., vol. 8, no. 2, pp. 115–125, Mar. 2018, doi:

10.1016/j.taml.2018.02.007.

[27] N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler, and

M. Teschner, “Versatile rigid-fluid coupling for

incompressible SPH,” ACM Trans. Graph., vol. 31, no.

4, p. 62:1-62:8, Jul. 2012, doi:

10.1145/2185520.2185558.

[28] S. J. Lind, B. D. Rogers, and P. K. Stansby, “Review of

smoothed particle hydrodynamics: towards converged

Lagrangian flow modelling,” Proc. R. Soc. Math. Phys.

Eng. Sci., vol. 476, no. 2241, p. 20190801, Sep. 2020,

doi: 10.1098/rspa.2019.0801.

[29] R. A. Gingold and J. J. Monaghan, “Smoothed particle

hydrodynamics: theory and application to non-spherical

stars,” Mon. Not. R. Astron. Soc., vol. 181, no. 3, pp.

375–389, Dec. 1977, doi: 10.1093/mnras/181.3.375.

[30] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and

M. Teschner, “SPH Fluids in Computer Graphics,”

2014.

[31] J. P. Gray, J. J. Monaghan, and R. P. Swift, “SPH

elastic dynamics,” Comput. Methods Appl. Mech. Eng.,

vol. 190, no. 49, pp. 6641–6662, Oct. 2001, doi:

10.1016/S0045-7825(01)00254-7.

[32] D. J. Price, “Smoothed Particle Hydrodynamics and

Magnetohydrodynamics,” J. Comput. Phys., vol. 231,

no. 3, pp. 759–794, Feb. 2012, doi:

10.1016/j.jcp.2010.12.011.

[33] M. Weiler, D. Koschier, M. Brand, and J. Bender, “A

Physically Consistent Implicit Viscosity Solver for SPH

Fluids,” Comput Graph Forum, 2018, doi:

10.1111/cgf.13349.

[34] A. Peer, C. Gissler, S. Band, and M. Teschner, “An

Implicit SPH Formulation for Incompressible Linearly

Elastic Solids: Implicit Elastic SPH Solids,” Comput.

Graph. Forum, vol. 37, Dec. 2017, doi:

10.1111/cgf.13317.

[35] D. Koschier and J. Bender, “Density maps for improved

SPH boundary handling,” in Proceedings of the ACM

SIGGRAPH / Eurographics Symposium on Computer

Animation, New York, NY, USA, Jul. 2017, pp. 1–10.

doi: 10.1145/3099564.3099565.

[36] J. Bender, T. Kugelstadt, M. Weiler, and D. Koschier,

“Volume Maps: An Implicit Boundary Representation

for SPH,” in Motion, Interaction and Games on - MIG

’19, Newcastle upon Tyne, United Kingdom, 2019, pp.

1–10. doi: 10.1145/3359566.3360077.

[37] N. Erichson, L. Mathelin, Z. Yao, S. Brunton, M.

Mahoney, and J. Kutz, “Shallow neural networks for

fluid flow reconstruction with limited sensors,” Proc. R.

Soc. Math. Phys. Eng. Sci., vol. 476, p. 20200097, Jun.

2020, doi: 10.1098/rspa.2020.0097.

[38] M. Ihmsen, N. Akinci, M. Becker, and M. Teschner, “A

parallel SPH implementation on multi-core CPUs,”

Comput Graph Forum, vol. 30, pp. 99–112, Mar. 2011,

doi: 10.1111/j.1467-8659.2010.01832.x.

[39] A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M.

Cabelguen, “From Swimming to Walking with a

Salamander Robot Driven by a Spinal Cord Model,”

Science, vol. 315, no. 5817, pp. 1416–1420, Mar. 2007,

doi: 10.1126/science.1138353.

[40] A. Crespi and A. J. Ijspeert, “AmphiBot II: An

Amphibious Snake Robot that Crawls and Swims using

a Central Pattern Generator,” Proc. 9th Int. Conf.

Climbing Walk. Robots CLAWAR 2006, Jan. 2006.

[41] Z. Dai, F. Wang, Y. Huang, K. Song, and A. Iio, “SPH-

based numerical modeling for the post-failure behavior

of the landslides triggered by the 2016 Kumamoto

earthquake,” Geoenvironmental Disasters, 2016, doi:

10.1186/s40677-016-0058-5.

[42] M. Hutter et al., “ANYmal - a highly mobile and

dynamic quadrupedal robot,” 2016 IEEERSJ Int. Conf.

Intell. Robots Syst. IROS, 2016, doi:

10.1109/IROS.2016.7758092.

