
EUROGRAPHICS 2022
D. Meneveaux and G. Patanè
(Guest Editors)

Volume 41 (2022), Number 2
STAR – State of The Art Report

A Survey on SPH Methods in Computer Graphics

Dan Koschier1 , Jan Bender2 , Barbara Solenthaler3, and Matthias Teschner4

1Unaffiliated
2RWTH Aachen University, Germany

3ETH Zurich, Switzerland
4University of Freiburg, Germany

Abstract
Throughout the past decades, the graphics community has spent major resources on the research and development of physics
simulators on the mission to computer-generate behaviors achieving outstanding visual effects or to make the virtual world
indistinguishable from reality. The variety and impact of recent research based on Smoothed Particle Hydrodynamics (SPH)
demonstrates the concept’s importance as one of the most versatile tools for the simulation of fluids and solids. With this
survey, we offer an overview of the developments and still-active research on physics simulation methodologies based on SPH
that has not been addressed in previous SPH surveys. Following an introduction about typical SPH discretization techniques,
we provide an overview over the most used incompressibility solvers and present novel insights regarding their relation and
conditional equivalence. The survey further covers recent advances in implicit and particle-based boundary handling and
sampling techniques. While SPH is best known in the context of fluid simulation we discuss modern concepts to augment the
range of simulatable physical characteristics including turbulence, highly viscous matter, deformable solids, as well as rigid
body contact handling. Besides the purely numerical approaches, simulation techniques aided by machine learning are on the
rise. Thus, the survey discusses recent data-driven approaches and the impact of differentiable solvers on artist control. Finally,
we provide context for discussion by outlining existing problems and opportunities to open up new research directions.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

An increasing number of emerging technologies, e.g., computer
games engines, special-effects creator tools for the film industry,
virtual reality or even engineering applications, rely on realistic
virtual worlds. The goal of bringing these virtual environments to
life, has been a driving force for the research and development of
physics-based simulators. Within this research topic, the concept
of Smoothed Particle Hydrodynamics (SPH) has become a popu-
lar tool for the simulation of fluids and solids and the major re-
search advances in the past decade highlight its relevance. Due to
the Lagrangian nature of SPH-based approaches, there are many
examples where they naturally handle complex scenarios where tra-
ditional Eulerian grid-based approaches struggle. A favorable ex-
ample is a free-surface fluid with geometrically complex and dy-
namic solid boundaries. Such settings are especially relevant for
special effects productions in industry. The scenario, however, has
the same relevance in engineering, e.g., for the analysis of vehicles
in water passages, for the prediction of rain water evacuation on
a vehicle with moving wipers or for the design of mechanical as-
semblies with optimized lubrication. Thus, we expect this research
direction to be further pursued; not only by the computer graphics

community but also to advance the state-of-the-art in engineering
or physics applications.

Since the last survey on SPH methods of Ihmsen et al. [IOS∗14],
almost a decade has passed and a forest of new research has been
published. As incompressibility solvers have been a core part of
their survey, we would like to stress the fact that new solvers have
been proposed and that new insights regarding their similarities and
conditional equivalence have been gained as presented in our new
survey. It should also be mentioned that their work was purely fo-
cused on low-viscous fluid simulation with particle-based bound-
ary handling while a large body of work outside that core topic has
emerged. Since then, a multitude of new approaches for the sim-
ulation of a wider variety of materials, e.g., highly-viscous fluids
or deformable solids, new coupling techniques between those or
new concepts to preserve turbulence has been published and even a
whole new research direction has been opened up with data-driven
and machine-learning aided techniques. Nevertheless, Ihmsen et
al.’s work covers a few topics peripheral to core modeling and sim-
ulation techniques which are not captured in this survey. Therefore,
we would like to refer the reader to their work for an overview

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-2376-9475
https://orcid.org/0000-0002-1908-4027

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

over neighborhood search algorithms, surface reconstruction and
rendering.

This survey is a general overview over recent research advancing
the state-of-the-art of SPH simulators. To provide a comprehensive
overview, we have structured this work as follows. In Section 2 we
give an introduction to the fundamentals of the SPH formalism as a
spatial discretization technique for field quantities and differential
operators, describe a general form of the governing equations for
fluid and solid simulation, discuss the core idea of operator splitting
and typical time integration schemes. Section 3 gives an overview
over techniques to enforce incompressibility and discusses their
formal relation and conditional equivalence. Boundary handling
approaches, including particle-based and implicit boundary repre-
sentations as well as boundary pressure computation methods, are
presented in Section 4. We further discuss approaches to simulate
various materials specific to either solids or fluids as well as cou-
pling between both, i.e., viscosity solvers, deformable solids and re-
spective stability improvements, rigid body coupling and handling
multiple phases, in Section 5. Methods to improve turbulence and
maintain vorticity are presented in Section 6. Section 7 discusses
data-driven and machine-learning aided SPH simulation techniques
as a newly emerged research field which received increased atten-
tion in recent years. Finally, we conclude this survey with a discus-
sion by outlining remaining problems and opportunities to open up
new research directions.

2. Foundations

In this section, we introduce the fundamental concept of SPH for
the phenomenological simulation of fluids and solids. The sec-
tion is primarily based on the works of Price [Pri12] and Mon-
aghan [Mon05] and includes important insights that have been
gained over the years.

We first show how the SPH formalism discretizes spatial quan-
tities using a set of particles equipped with a kernel function. Sec-
ondly, we discuss the approximation quality that can be expected in
relation to physics-based simulations targeting computer graphics
applications. Thirdly, we show how 1st- and 2nd-order differential
operators are discretized and present specialized variants of the dis-
crete operators tailored to specific circumstances. Finally, we give a
brief introduction of the conservation law of linear momentum and
the concept of stress in order to derive the governing equations for
fluids and elastic solids.

2.1. SPH Discretization

The concept of SPH can be generally understood as a method for
the discretization of spatial field quantities and spatial differential
operators, e.g., gradient, divergence, curl, etc. To outline the basic
idea, we first introduce the Dirac-δ distribution and the correspond-
ing Dirac-δ identity. δ is a generalized function defined as

δ(r) =

∞ if r = 0

0 otherwise
(1)

and satisfies
∫

δ(r)dv = 1. The Dirac-δ identity states that the con-
volution of a continuous compactly supported function A(x) with

the Dirac-δ distribution is identical to A itself, i.e.,

A(x) = (A∗δ)(x) =
∫

A
(
x′
)
δ
(
x−x′

)
dv′ , (2)

where dv′ denotes the (volume) integration variable corresponding
to x′.

2.2. Continuous Approximation

Due to the fact that δ(r) is a distribution and therefore can not be di-
rectly discretized, a continuous approximation to the Dirac-δ distri-
bution is made as a preparation to the discrete approximation of the
integral. A natural choice to approximate δ is to use a normalized
Gaussian since δ is equal to the normal distribution with zero vari-
ance. Consequently, convolving a field quantity A with a Gaussian
effectively smoothes A. The Gaussian is, however, not an optimal
choice due to its non-compact support domain and we will there-
fore consider more general smoothing functions W : Rd ×R+ →R
which we will refer to as kernel functions or smoothing kernels.
Formally the continuous approximation to A(x) with W(r,h) is

A(x)≈ (A∗W)(x) =
∫

A
(
x′
)
W
(
x−x′,h

)
dv′ , (3)

where h denotes the kernel’s smoothing length. The smoothing
length controls the amount of smoothing and consequently how
strongly the value of A at position x is influenced by the values
in its close proximity. This means the smoothing effect increases
with growing smoothing lengths. The following properties are fur-
thermore desired:∫

Rd
W
(
r′,h

)
dv′ = 1 (normalization condition)

lim
h′→0

W
(
r,h′

)
= δ(r) (Dirac-δ condition)

W(r,h)≥ 0 (positivity condition)

W(r,h) =W(−r,h) (symmetry condition)

W(r,h) = 0 for ∥r∥ ≥ ℏ, (compact support condition)

∀ r ∈ Rd ,h ∈ R+, where d denotes the spatial dimension and ℏ the
support radius of the kernel function. Moreover, the kernel should
be at least twice continuously differentiable to enable a consistent
discretization of 2nd-order partial differential equations (PDEs). It
is essential to use a kernel that satisfies the first two conditions (nor-
malization and Dirac-δ), in order to ensure that the approximation
in Eq. (3) remains valid. The positivity condition is not strongly
required (there are also kernels that do not have this property).
However, in the context of physical simulations kernels that take
negative values may lead to physically inconsistent estimates of
field quantities, e.g., negative mass density estimates, and should
therefore be avoided. The symmetry condition ensures 1st-order
consistency of the continuous approximation. Finally, ensuring that
the kernel is compactly supported is a purely practical considera-
tion to make equation systems arising in the discretization sparse
such that only particles that are supported at a point of field eval-
uation need to be considered which significantly improves the per-
formance of simulators. In order to find those supported neighbor-
ing particles, algorithms for so-called neighborhood searches are

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

employed. Please, see the report of Ihmsen et al. [IOS∗14] for a
detailed discussion on those.

For the sake of brevity, we refrain from discussing how to con-
struct SPH kernels and would like to refer the reader to the review
of Liu and Liu [LL10] for a discussion on kernel construction and
an overview over a range of smoothing kernels suitable for SPH.

2.3. Discretization

The remaining step to complete the SPH discretization is to replace
the analytic integral in Eq. (3) by a sum over discrete sampling
points as follows:

(A∗W)(xi)=
∫

A
(
x′
)
W
(
xi −x′,h

)
dv′≈ ∑

j∈F
A j

m j

ρ j
W
(
xi −x j,h

)
,

(4)
where m is the mass, ρ is the density, and F is the set contain-
ing all point samples and where all field quantities indexed us-
ing a subscript denote the field evaluated at the respective posi-
tion, i.e., A j = A

(
x j
)
. For improved readability, we will drop the

second argument of the kernel function and use the abbreviation
Wi j = W

(
xi −x j,h

)
in the remainder of this report. The physical

interpretation of this is that we keep track of a number of points
that "carry" field quantities. In this particular case, each point j
has a certain location x j and carries a mass sample m j and a field
sample A j. It is not mandatory that the particle keeps track of its
density ρ j as this field can be reconstructed from its location and
mass as explained later. Due to the analogy to physical particles
the term smoothed particle has been coined in the pioneering work
of Gingold and Monaghan [GM77]. Nevertheless, we would like
to stress the fact that a set of SPH particles must not be misunder-
stood as discrete physical particles but simply as a spatial function
discretization.

In general the discretization is not guaranteed to be 0th-order
consistent. However, 0th-order consistency can be easily restored
by normalizing the SPH approximation with ∑ j

m j
ρ j

Wi j . Even 1st-
order consistency can be restored by the cost of a small matrix in-
version (see [Pri12]). Besides those mitigations, we would also like
to assure the reader that even without further considerations to re-
cover the consistency order, SPH based approaches are able to pro-
duce robust and highly-realistic results as demonstrated in count-
less publications that have been published within recent decades.

2.4. Mass Density Estimation

As previously mentioned, it is not required that the particles "carry"
the mass density field as it can be reconstructed. Evaluating the
density field at position xi using the SPH discretization in Eq. (4)
results in

ρi = ∑
j

m jWi j (5)

and is therefore solely dependent on the sample position and the
mass field. Alternatively, the density can be tracked by discretizing
the mass density field using the SPH sampling and by numerical
integration of the continuity equation which describes the density
evolution, i.e., ρ̇ =−ρ(∇·v). However, as also discussed by Ran-
dles and Libersky [RL96], this approach is less robust and leads

to accumulating errors in the density field due to the errors of the
underlying numerical integration of the continuity equation.

Note that the density can be reconstructed at any position by
Eq. (5) but the reconstructed density is typically underestimated at
the free surface due to particle deficiency. This must be considered
when implementing a pressure solver as discussed in Section 3.

2.5. Discretization of Differential Operators

Besides the discretization of field quantities, it is usually neces-
sary to discretize spatial differential operators in order to numer-
ically solve physical conservation laws. In the remainder of this
document, we will assume that the smoothing length h is constant
in space (and time). Based on the discrete SPH approximation in
Eq. (4) the gradient of the underlying field can be approximated
straightforwardly using

∇Ai ≈ ∑
j

A j
m j

ρ j
∇iWi j. (6)

In order to improve readability, we will drop the differentiation in-
dex for differential operators in the remainder of this report. We
will use the convention that the spatial operators always differenti-
ate with respect to the variable according to the first index such that
e.g., ∇iWi j ≡∇Wi j.

Given discrete representations of higher-dimensional functions,
e.g., A : Rd → Rn, even more complex first-order spatial differen-
tial operators can be directly discretized, e.g.,

∇Ai ≈ ∑
j

m j

ρ j
A j ⊗∇Wi j (7)

∇·Ai ≈ ∑
j

m j

ρ j
A j ·∇Wi j (8)

∇×Ai ≈−∑
j

m j

ρ j
A j ×∇Wi j , (9)

where a⊗b= abT denotes the dyadic product. Unfortunately, these
"direct" derivatives lead to a poor approximation quality and unsta-
ble simulations [Pri12]. For this reason many discrete differential
operators have emerged over time.

In this report, we will cover the two most widely used formula-
tions for first-order derivatives, i.e., the difference formula and the
symmetric formula.

Difference Formula As the direct derivative of the discretization
is not guaranteed to be 0th-order consistent, the idea of the differ-
ence formula is to subtract the first error term of the Taylor series
recovering consistency, i.e.

∇Ai ≈ ∑
j

m j

ρ j
(A j −Ai)∇Wi j . (10)

The same formula can be straightforwardly applied to the higher-
dimensional first-order differential operators presented in Eqs. (7)
to (9). This gradient estimate finally results in a more accurate dis-
cretization but keep in mind that we still expect a linear error. How-
ever, linear accuracy is sometimes required and can be restored at

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

the cost of solving a small linear equation system per evaluation as
described in [Pri12], i.e.,

∇Ai ≈ Li

(
∑

j

m j

ρ j
(A j −Ai)∇Wi j

)

Li =

(
∑

j

m j

ρ j
∇Wi j ⊗ (x j −xi)

)−1

.

(11)

Symmetric Formula Motivated from classical mechanics for
hydrodynamical systems, a discrete formula for the pressure
force/gradient, starting from the discrete Lagrangian and the den-
sity estimate, can be derived. This results in the following approxi-
mation

∇Ai ≈ ρi ∑
j

m j

(
Ai

ρ2
i
+

A j

ρ2
j

)
∇Wi j, (12)

which is not designed to recover a certain order of consistency.
However, the advantage of this is that discrete physical forces using
this particular gradient estimate exactly conserve linear and angular
momentum which is an essential criterion for the discretization of
certain physical quantities, e.g., forces or impulses.

2.5.1. Discretization of the Laplace Operator

Similar to the direct 1st-order derivatives (Eqs. (7)-(9)) the Laplace
operator can be directly discretized, i.e.,

∇2Ai ≈ ∑
j

m j

ρ j
A j∇2

i Wi j . (13)

As discussed by Brookshaw [Bro85], this leads again to a very poor
estimate of the 2nd-order differential and, thus, they presented an
improved discrete operator for the Laplacian:

∇2Ai ≈−∑
j

m j

ρ j
Ai j

2∥∇Wi j∥
∥ri j∥

. (14)

The main idea leading to this particular formulation is to solely
use a 1st-order derivative of the kernel function and to formulate
the second derivative using a finite-difference-like operation, i.e.,
dividing by the particle distance.

2nd-order derivatives of vectorial field quantities are formulated
analogously resulting in

∇2Ai =−∑
j

m j

ρ j
Ai j

2∥∇Wi j∥
∥ri j∥

(15)

∇(∇·Ai) = ∑
j

m j

ρ j

[
(d +2)(Ai j · r̃i j)r̃i j −Ai j

] ∥∇Wi j∥
∥ri j∥

, (16)

where d and r̃ =
ri j

∥ri j∥ denote the spatial dimension and the nor-
malized distance vector between particles i and j, respectively. A
problem of the discrete Laplace operator defined in Eq. (15) in the
context of physics simulations is that forces derived using this op-
erator, e.g., viscosity forces, are not momentum conserving. Fortu-
nately, in the case of divergence-free vector fields, i.e., ∇·A = 0,
the Laplace operator can be discretized by adding together and
transforming Eqs. (15) and (16) resulting in

∇2Ai ≈ 2(d +2)∑
j

m j

ρ j

Ai j · ri j

∥ri j∥2 +0.01h2 ∇Wi j , (17)

where a regularization term 0.01h2 is introduced in the denomi-
nator. Thus, derived forces consist of terms that solely act along
the "line of sight" between two interacting particles i and j such
that momentum conservation is recovered (see [Pri12]). Therefore,
we recommend to use Eq. (17) as discrete Laplace operator for
divergence-free vector fields.

2.6. Governing Equations for Fluids and Solids

In this section, we will summarize the most important lo-
cal conservation laws required for the numerical simulation of
(in)compressible fluids and deformable solids.

Continuity Equation The continuity equation describes the evo-
lution of an object’s mass density ρ over time, i.e.,

Dρ

Dt
=−ρ(∇·v) , (18)

where D(·)
Dt denotes the material derivative. This relation is espe-

cially important when incompressible materials are modeled. In
this particular case the constraint

Dρ

Dt
= 0 ⇔ ∇·v = 0 (19)

has to be fulfilled at every material point and at all times within the
described matter.

Please note that the material derivative describes the time rate
of change of a field quantity at a material point. It is important to
understand that the explicit form of the material derivative is de-
pendent on the type of coordinates that are used to the describe
the system. While the derivative expressed in Eulerian coordinates
contains the convection term v ·∇x(·), the term vanishes when us-
ing Lagrangian coordinates. For a detailed explanation we would
like to refer the reader to the work of Bridson [Bri15]. In the re-
mainder of this report, we will exclusively describe quantities using
Lagrangian coordinates.

2.6.1. Conservation Law of Linear Momentum and the
Navier-Stokes Equation

The conservation law of linear momentum can be interpreted as a
generalization of Newton’s second law of motion for continua and
is also often called the equation of motion. It states that the rate of
change of momentum of a material particle is equal to the sum of
all internal and external volume forces acting on the particle, i.e.,

ρ
D2x
Dt2 =∇·T+ fext , (20)

where T denotes the stress tensor and fext body forces – we un-
derstand a body force as a force per unit volume. This equation is
independent of the material of the underlying matter as the mate-
rial’s behavior is "encoded" in the stress tensor and described using
so-called constitutive laws.

A typical constitutive relation for incompressible flow is

T =−p1+µ(∇v+∇vT) , (21)

where p and µ denote the pressure and dynamic viscosity of the
fluid. If the incompressibility is intended to be strongly enforced,

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

the pressure p can be interpreted as a Lagrange multiplier that has
to be chosen such that the Eq. (19) is fulfilled. Plugging Eq. (21)
into Eq. (20) yields the incompressible Navier-Stokes equation

ρ
Dv
Dt

=−∇p+µ∇2v+ fext . (22)

For modeling deformable solids constitutive relations that typi-
cally model the stress tensor as a function of strain (and strain-rate
for visco-elasticity) are required. Sec. 5.2 discusses the definition
of such constitutive models in more detail.

2.7. Mixed Initial-Boundary Value Problem

The previously introduced linear momentum conservation law
(Eq. (20)) in combination with a constitutive relation, e.g., Eq. (21),
is a PDE in time and space that describes the motion of any object
composed of the material modeled by the constitutive law. In order
to model a specific problem and to ensure a unique solution, initial
conditions, i.e., the initial shape and velocity of the object at every
point, and boundary conditions constraining the position and/or ve-
locity field have to be specified. As there is, in general, no known
analytic solution to the mixed initial-boundary value problem in ar-
bitrary scenarios, numerical solving is inevitable and requires dis-
cretization of the associated differential operators. In the previous
sections, we have seen several discrete differential operators based
on the SPH formalism that can be employed to discretize the spa-
tial differential operators. After spatial discretization, we are left
with a system of ordinary differential equations (this methodology
is often called method of lines) that is typically discretized using
standard time integration schemes such as the implicit or explicit
Euler method, Runge-Kutta schemes, etc.

2.8. Operator Splitting

The basic idea of operator splitting is to decompose the underly-
ing PDE, e.g., the Navier-Stokes equation, into several sequential
subproblems and to employ individual techniques for solving each
subproblem. This simplifies the complexity of the overall problem
and sometimes also decouples field variables such as velocity and
pressure in the numerical solver. It moreover allows us to use stable
implicit updates for stiff subproblems while cheap explicit updates
for the remaining terms can be used. For a more detailed discussion
on operator splitting, we would like to refer the reader to works of
Bridson [Bri15] and Ihmsen et al. [IOS∗14].

2.9. Time Integration

As previously described, an SPH discretization of the underlying
PDE leaves us with a system of ordinary differential equations
(ODEs) in time following the method of lines. This, of course,
requires us to discretize the ODE in time. Due the operator split-
ting approach, as introduced in the previous section, each indi-
vidual subproblem has to be numerically integrated in time. The-
oretically, a different time integration scheme can be employed
for each individual step. In, practice most methods mainly rely on
simple and efficient explicit time integration schemes. The, by far,
most frequently used scheme is the semi-implicit Euler scheme,

as e.g., employed in [IAAT12, SB12, ICS∗14, BK17]. The integra-
tion scheme is often also referred to as symplectic Euler or Euler-
Cromer scheme. Sometimes it is useful to solve some of the indi-
vidual substeps using implicit time integration schemes to ensure
stability in the case of "stiff" forces. A typical example where this
strategy is employed is in the case of simulating highly viscous flu-
ids. Here, the viscosity force is often integrated implicitly using the
implicit Euler scheme as discussed in Section 5.1.

Naturally, we aim for the best performance of our simulator and,
therefore, try to use a very large time step width. However, we also
understand that choosing an overly large time step width results in
decreased accuracy of the numerical approximation and may lead
to a less stable simulation which might ultimately result in a break-
down of the simulation. In order to find a "good" time step width
∆t that is as large as possible to achieve high performance but suf-
ficiently small to maintain stability, the vast majority of approaches
adaptively estimate the time step using a heuristic based on the
Courant-Friedrichs-Lewy (CFL) condition. The CFL condition is
a necessary condition for the convergence of numerical solvers for
differential equations and, as a result, provides an upper bound for
the time step width, i.e., ∆t ≤ λ

h̃
∥vmax∥ , where h̃, vmax, and λ denote

the particle diameter, the velocity at which the fastest particle trav-
els and a user-defined scaling parameter, respectively. The intuition
behind this condition is that all particles are only allowed to move
less than the particle diameter per time step for λ = 1. As this is
only a necessary but no generally sufficient condition, the scaling
parameter is heuristically chosen to keep the simulation stable, i.e.,
λ ≈ 0.4 [Mon92]. This can not strongly guarantee stability but ex-
perience from practice has shown that the condition typically leads
to stable simulations [SP09, ICS∗14, BK17].

3. Incompressibility

Most fluids we encounter in the real world are nearly incompress-
ible, e.g., water. Besides this fact, incompressibility in fluids is fa-
cilitating the occurrence of interesting visual phenomena such as
the formation of waves and ripples on a fluid surface and therefore
contributes to the realism of fluid simulations. To model a mate-
rial which withstands compression, a constitutive relation T=−p1
(cf., Eq. (21)) is introduced which applies hydrostatic pressure p in
order to withstand compression. The scalar pressure is typically de-
termined using one of the following two approaches.

In the first approach, incompressibility is weakly enforced by
penalizing volume deviations dependent on changes in the mass
density, i.e., p = p(ρ). A typical choice is the linear relation p =
k(ρ−ρ

0), where k denotes a stiffness constant. Finally, the specific
pressure acceleration field is defined by ap =− 1

ρ
∇p (cf., Eq. (22)).

In the second approach the incompressibility constraint in
Eq. (19) is strongly enforced by solving an equation system to
compute the pressure field that leads to accelerations satisfying
the constraint. Most solvers of the second type follow a predictor-
corrector scheme. They predict a velocity v∗ = v+∆tg+∆tν∇2v=
v+∆tanonp for each particle after applying only non-pressure ac-
celerations anonp. Then, pressure accelerations ap are computed to
adapt the predicted velocities using v = v∗+∆tap such that all par-
ticles are advected into a state that minimizes volume deviations

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

and therefore enforces incompressibility. As the pressure acceler-
ations are functions of the pressure, i.e., ap = − 1

ρ
∇p, this results

in a linear equation system in the unknown pressure values to fi-
nally derive the incompressibility-enforcing pressure acceleration
field ap.

The first of the two introduced concepts computes particle
pressure locally and independently at each individual particle.
Such variants can be referred to as local pressure solvers, e.g.,
[HLL∗12,BGPT18]. In contrast, variants of the second option con-
ceptually solve a system in the pressure computation. Therefore,
such implementations can be referred to as global pressure solvers,
e.g., [HLL∗12, BGI∗18]. In the following, we start with a discus-
sion of how to quantify the compression of a particle and then we
continue with local and global pressure solvers.

3.1. Measuring Compression

A compression measure is an integral part of all pressure solvers
as it indicates the error in the incompressibility constraint. Typical
choices to quantify compression are to measure the difference be-
tween either the particle’s current volume and uncompressed rest
volume or current density ρ and rest density ρ

0. There is no practi-
cal or conceptual difference between the two options. Nevertheless,
the vast majority of particle fluid solvers employs the density for-
mulation. A rare case, where the volume formulation is used instead
is the work of Band et al. [BGI∗18]. As an alternative to volumes or
densities, compression can also be quantified using the time deriva-
tive of the density or volume. Starting from an uncompressed state
with ρ = ρ

0, incompressibility can be preserved over time, if the
time rate of change in the density vanishes, i.e., Dρ

Dt = 0. Hence,
the derivative can be directly used to quantify the rate of compres-
sion. Analogously, we can use the continuity equation (Eq. (18)) to
instead express the rate of compression with ∇·v = 0. To summa-
rize, the compression (rate) can be quantified with either ρ− ρ

0,
Dρ

Dt or ∇· v. If any of the terms is not zero, the incompressibility
constraint is violated.

Generally, all three terms can be used in combination with all
pressure solvers. However, the terms have different effects on the
average density error of the discretized fluid, which is generally
not independent from the pressure solver. If the density deviation
ρ − ρ

0 is used, then the density oscillates about the rest density.
This oscillation is often visible at the free fluid surface when lo-
cal solvers are used. When using global solvers, the oscillations are
significantly reduced and typically imperceptible, but still occur.
When Dρ

Dt or the velocity divergence ∇ · v is used, then the parti-
cle density drifts and typically grows over time. Even when a per-
fect divergence-free velocity field is maintained, particle advection
due to numerical time integration still introduces a density devia-
tion. Unfortunately, these deviations stay undetected, when using
the velocity divergence as the sole compression measure. Hence,
dependent on the compression measure, the goal is to either min-
imize density/volume oscillations or to minimize density/volume
drift over time.

Dependent on the formulation of a fluid solver, it can be easier or
more involved or more or less accurate to work with a certain com-
pression measure. Grid fluid solvers, e.g., often do not have an ex-
plicit notion of the density in a grid cell. It would also be involved to

explicitly compute volume changes of a fluid portion in a static cell
with constant volume. Therefore, grid approaches quite generally
use the velocity divergence to quantify compression. In contrast,
particle approaches are more flexible. In an SPH discretization the
density deviation can be approximated by ρi −ρ

0 = ∑ j m jWi j −ρ
0

and the velocity divergence or the derivative of the density can be
approximated by ∇·vi =− 1

ρi

Dρ

Dt =− 1
ρ ∑ j m j(vi −v j)∇W i j. It is

also interesting to note that grid approaches often state the incom-
pressibility constraint as ∇· v = 0, while particle approaches typi-
cally assume ρ−ρ

0 = 0.

3.2. Local Pressure Solvers

Positive pressure is generally proportional to the compression at a
particle and the so-called pressure acceleration a = − 1

ρ
∇p accel-

erates particles into the direction of the negative pressure gradient,
i.e., from regions with higher to regions with lower pressure. Local
pressure solvers typically use a state-equation to compute the pres-
sure at a particle which is solely dependent on their immediately
neighboring particles making the computation local, e.g., [BT07].
Therefore, the computation for the pressure acceleration can be per-
formed independently for all particles without the requirement to
solve an equation system.

Local pressure solvers are commonly referred to as compress-
ible or weakly compressible approaches, e.g., [CR99,BT07], while
global pressure solvers are generally referred to as incompressible,
e.g., . [CR99, ICS∗14]. The differences between these approaches,
however, are not as clear as the terms suggest. As discussed in, e.g.,
[BT07], local pressure formulations result in dynamically changing
densities that oscillate around the rest density. This property, how-
ever, also applies to a lesser extend to global pressure solvers that
take the density deviation to quantify compression as discussed in,
e.g., [ICS∗14]. The main benefit of global pressure formulations
lies in the stable handling of challenging scenarios with impercep-
tible density deviations.

3.3. Global Pressure Solvers

This section covers four popular solver variants, namely IISPH,
PCISPH, PBF, and DFSPH. We discuss the governing concepts
and we further show the interesting fact that the implementations
of the four solvers can be transformed into each other. We there-
fore start with a discussion of the pressure Poisson equation (PPE)
and its discretization, followed by IISPH which solves a discretized
PPE with relaxed Jacobi. Then, we show that the implementation
of PCISPH is equivalent to IISPH. After that, we show the equiv-
alence of PBF and PCISPH and finally, we show that each of the
two solvers in DFSPH is also equivalent to PCISPH. So, IISPH,
PCISPH, PBF and DFSPH are Jacobi PPE solvers. The section con-
cludes with a discussion of implementation details of each solver
and further aspects that might be responsible for the significant per-
formance differences presented in the original publications.

Governing equation: As outlined in the introduction, global
pressure solvers first determine a predicted velocity v∗ = v +
∆tanonp, where all accelerations except the pressure acceleration
have been applied. If a particle would be advected with this veloc-
ity, its predicted density would be ρ

∗ = ρ−∆tρ∇ · v∗. Now, the

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

goal of a global pressure solver is the computation of a pressure p
that causes a pressure acceleration ap =− 1

ρ
∇p which corresponds

to a velocity change −∆t 1
ρ
∇p whose divergence −∇ · (∆t 1

ρ
∇p)

is equal to a density change per time −ρ∇· (∆t 1
ρ
∇p) that cancels

the predicted density deviation per time ρ
0−ρ

∗

∆t , i.e., ρ
0−ρ

∗

∆t −ρ∇·
(∆t 1

ρ
∇p) = 0. This is one form of a PPE, typically written as

∆t∇2 p =
ρ

0 −ρ
∗

∆t
. (23)

The predicted density ρ
∗ can be estimated in various ways, e.g.,

using predicted particle positions x∗ or the divergence of the pre-
dicted velocity can be used:

∆t∇2 p =
ρ

0 − (ρ−∆tρ∇·v∗)
∆t

. (24)

Alternatively, just the divergence of the predicted velocity can be
used

∆t∇2 p = ρ∇·v∗. (25)

All three forms are used in particle simulations and they mainly
differ in the behavior of the density error over time as already dis-
cussed for local pressure solvers (see e.g., [CBG∗18]). Eqs. (23)
and (24) cause density oscillations, while Eq. (25) causes a density
drift. Grid approaches are often limited to Eq. (25) as they often
cannot explicitly compute the density ρ or the predicted density
ρ
∗.

Linear system: A PPE is considered for each particle. The terms
on the right-hand side are either known, e.g., ρ

0 and ∆t, or they can
be computed with SPH approximations, e.g., ρ, ρ

∗, v∗ and ∇· v∗.
For a particle i, the respective SPH implementation is referred to
as source term si and the set of all source terms is referred to as
source vector s. The pressure Laplacian on the left-hand side ∇2 p
is also expressed with SPH approximations and the set of all these
discretizations can be written as a matrix-vector product Ap, where
A is referred to as the discretized Laplacian operator and p is the
solution vector that consists of all unknown pressure values pi. So,
any continuous form of the PPE, e.g., Eqs. (23), (24) or (25), con-
sidered at all particles can be approximately represented as a linear
system Ap = s with unknown pressure values p. The system matrix
A and the source vector s are constructed from SPH approximations
of the respective terms. There do not only exist different forms of
the PPE, but each form can also be discretized with different SPH
formulations.

Relaxed Jacobi: Relaxed Jacobi is a popular alternative to solve
PPEs. There exist various ways to denote a solver iteration with
relaxed Jacobi, but

pl+1
i = pl

i +αi
si − (Apl)i

aii
(26)

is the form that is closest to a typical implementation of a PPE
solver. The solver iteration is indicated with l, αi is a user-defined
relaxation factor and aii denotes a diagonal element of A.

Various pressure solvers clamp negative pressures. This indicates
a close relation to linear complementary problems and it is certainly
one reason, why more efficient solvers, e.g., the conjugate gradient
method, are rarely considered in the context of PPEs.

IISPH background: IISPH [ICS∗14] is a global pressure solver
that works with a transformed version of Eq. (24):

∆t2∇2 pi = ρ
0 − (ρi −∆tρi∇·v∗i). (27)

The equations are discretized with SPH and the resulting system
Ap = s is solved with relaxed Jacobi. IISPH does not explicitly
generate the matrix A, as this matrix is not required in the Jacobi
solver. Instead, the Jacobi update requires the product Apl and this
vector is computed in each solver iteration l with two loops over
particles i. A first loop computes pressure accelerations

(ap
i)

l =− 1
ρi
∇pl

i =−∑
j

m j

(
pl

i
ρ2

i
+

pl
j

ρ2
j

)
∇W i j (28)

while the second loop computes the density change within ∆t that
results from the divergence of the velocity change ∆t(ap

i)
l :

(∆ρ
II,p
i)l def

= ∆t ∑
j

m j(∆t(ap
i)

l −∆t(ap
j)

l)∇W i j. (29)

Here, superscript II,p denotes the IISPH form of the predicted den-
sity change due to the pressure accelerations (ap

i)
l . This density

change is the discretized form of

−∆tρi∇· (∆t(ap
i)

l) =−∆tρi∇· (−∆t
ρi

∇pl
i) = ∆t2∇2 pl

i = (Apl)i,

(30)

which is required in the Jacobi solver. While Eq. (29) is the SPH ap-
proximation of the left-hand side of the PPE in Eq. (27), the source
term on the right-hand side of Eq. (27) is implemented with

∆ρ
II,error
i

def
= ρ

0 −ρi −∆t ∑
j

m j(v∗i −v∗j)∇W i j. (31)

This term is the estimated density deviation at particle i at the next
time step. Here superscript II,error denotes the IISPH form of the
predicted density error.

IISPH implementation: The solver starts with current velocities
vi(t) and computes velocities vi(t +∆t) at the next timestep. First,
the current density ρi is computed and non-pressure accelerations
are applied to compute the predicted velocity v∗i = vi(t)+∆tanonp.
Then, the source term is computed with si = ∆ρ

II,error
i . In each

solver iteration, IISPH computes (ap
i)

l and (∆ρ
II,p
i)l = (Apl)i and

updates the pressure with

pl+1
i = pl

i + kII
i (∆ρ

II,error
i − (∆ρ

II,p
i)l). (32)

The coefficient kII
i is equal to the IISPH standard relaxation factor

αi =
1
2 divided by the diagonal element aii, which gives

kII
i =

−1

2∆t2 m2
i

(ρ0)2

(
∑ j(∇W T

i j)∇W i j +∑ j(∑ j ∇W T
i j)∇W i j

) (33)

for mi = m j. Finally, the predicted velocity is updated with the re-
sult from the last solver iteration: vi(t +∆t) = v∗i +∆t(ap

i)
l .

Equivalence of IISPH and PCISPH: PCISPH [SP09] and IISPH
are derived in different ways, but the PCISPH implementation is
equivalent to IISPH. To see this, we first note that the final velocity

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

update in IISPH can be rewritten as

vi(t +∆t) = v∗i +∆t(ap
i)

l = v∗i +∑
l

∆t
(
(ap

i)
l − (ap

i)
l−1
)
. (34)

Instead of updating the predicted velocity once in IISPH, PCISPH
updates the velocity v∗i in each solver iteration l with

(v∗i)
l+1 = (v∗i)

l +∆t
(
(ap

i)
l+1 − (ap

i)
l
)
. (35)

Then, the final velocity is equal to the predicted velocity from the
last solver iteration: vi(t +∆t) = (v∗i)

l+1. The term

(∆ap
i)

l+1 = (ap
i)

l+1 − (ap
i)

l

=−∑
j

m j

(
pl+1

i − pl
i

ρ2
i

+
pl+1

j − pl
j

ρ2
j

)
∇W i j (36)

depends on the pressure differences between two iterations and
PCISPH computes these pressure differences in each solver iter-
ation. So, instead of the IISPH update

pl+1
i = pl

i + kII
i (∆ρ

II,error
i − (∆ρ

II,p
i)l), (37)

PCISPH computes a pressure difference – referred to as p̃ in the
original paper – in each iteration with

pl+1
i − pl

i = kPCI
i (∆ρ

PCI,error
i)l . (38)

Each PCISPH iteration l computes pl+1
i − pl

i which is used to com-
pute (ap

i)
l+1 − (ap

i)
l with Eq. (36) which is used to update (v∗i)

l+1

with Eq. (35). Now, if the pressure updates in Eqs. (37) and (38) are
equivalent, i.e., kPCI

i (∆ρ
PCI,error
i)l = kII

i (∆ρ
II,error
i − (∆ρ

II,p
i)l), then

PCISPH and IISPH are equivalent. The coefficient kPCI
i is given as

kPCI
i =

(ρ0)2

2∆t2m2
i

(
∑ j(∇W T

i j)∇W i j +∑ j(∑ j ∇W T
i j)∇W i j

) (39)

which means that kPCI
i = −kII

i and the question is whether
(∆ρ

PCI,error
i)l = (∆ρ

II,p
i)l −∆ρ

II,error
i . PCISPH defines

(∆ρ
PCI,error
i)l def

= (ρ∗
i)

l −ρ
0, (40)

where the density (ρ∗
i)

l is computed in each solver iteration for pre-
dicted particle positions (x∗i)

l = xi +∆t(v∗i)
l . This predicted den-

sity can alternatively be expressed using the divergence of (v∗i)
l :

(∆ρ
PCI,error
i)l = ρi +∆t ∑

j
m j

(
(v∗i)

l − (v∗j)
l
)
∇W i j −ρ

0. (41)

Using Eq. (34) and Eq. (35), this can be written as

(∆ρ
PCI,error
i)l =−ρ

0 +ρi +∆t ∑
j

m j
(
v∗i −v∗j

)
∇W i j

+∆t ∑
j

m j(∆t(ap
i)

l −∆t(ap
j)

l)∇W i j. (42)

From the definitions in Eqs. (29) and (31), we see that
(∆ρ

PCI,error
i)l = (∆ρ

II,p
i)l − ∆ρ

II,error
i which means that the IISPH

and PCISPH updates in Eq. (37) and Eq. (38) are equivalent.

PBF derivation: PBF [MM13] is derived in an alternative way
compared to PCISPH and IISPH, but its implementation is equiv-
alent to PCISPH and IISPH. Before showing the equivalence of
PBF with PCISPH, we discuss the derivation of a PBF variant.

While [MM13] assumes particle masses of one in some compu-
tations and omits the respective terms, we keep the mass terms to
simplify the equivalence discussion.

PBF considers a vector of n constraints C(x) that depend on n
particle positions x and it computes n displacements ∆x such that
C(x + ∆x) = 0. The displacements are modeled as ∆x = J(x)T

λ

with J being the Jacobian and λ being a vector of scalar coef-
ficients. Now, PBF uses the Taylor approximation C(x + ∆x) ≈
C(x)+ J(x)JT(x)λ = 0, computes λ = −(J(x)JT(x))−1C(x) and
the respective displacements ∆x = JT(x)λ. PBF ignores all off-
diagonal elements of (J(x)JT(x))−1 and assumes exactly one con-
straint per particle which results in λi = − 1

∇Ci∇CT
i

Ci. The respec-

tive particle displacements are computed with ∆xi = λi∇iCi. The
term ∇Ci denotes row i from J, ∇CT

i denotes column i from J and
∇iCi is a column vector of the partial derivatives of Ci with respect
to the components of position xi. In terms of the constraint Ci, PBF
considers the density deviation Ci =

ρ
∗
i

ρ0 − 1, and SPH is used for
the density: ρ

∗
i = mi ∑ j Wi j. PBF also uses SPH to approximate

∇iCi ≈ ∑ j C jV j∇W i j =
mi
ρ0 ∑ j ∇W i j and ∇ jCi ≈ −mi

ρ0 ∇W i j. The
vector ∇iCi is computed with a standard SPH formulation, while
the vector ∇ jCi is only roughly approximated. It ignores all neigh-
bors of j except particle i. The coefficient λi is then

λi =− 1
m2

i
(ρ0)2

(
∑ j(∇W T

i j)∇W i j +∑ j(∑ j ∇W T
i j)∇W i j

) (ρ
∗
i

ρ0 −1)

(43)

and the respective symmetrized displacement is

∆xi = λi∇iCi = 2λi
mi

2ρ0 ∑
j
∇W i j ≈

mi

2ρ0 ∑
j
(λi +λ j)∇W i j. (44)

PBF iteratively refines the result. Each PBF solver iteration l com-
putes (λ)l

i and (∆xi)
l and updates predicted densities (ρ∗

i)
l and pre-

dicted positions and kernel gradients (∇W i j)
l .

Equivalence of PCISPH and PBF: PBF performs the same com-
putations as PCISPH, but reformulates everything in terms of in-
termediate positions (x∗i)

l instead of intermediate velocities (v∗i)
l .

Therefore, the relation (x∗i)
l = xi +∆t(v∗i)

l is used and Eq. (35)
from PCISPH is rewritten as

(x∗i)
l+1 = (x∗i)

l +∆t2
(
(ap

i)
l+1 − (ap

i)
l
)
. (45)

PBF computes the distance (∆xi)
l = ∆t2

(
(ap

i)
l+1 − (ap

i)
l
)

in each
iteration and updates the positions instead of the velocities. In or-
der to compute the predicted distance, Eq. (36) from PCISPH is
multiplied with ∆t2:

∆t2(∆ap
i)

l = (∆xi)
l =−∆t2

∑
j

m j

(
pl+1

i − pl
i

ρ2
i

+
pl+1

j − pl
j

ρ2
j

)
∇W i j.

(46)

Now, we use Eq. (38) from PCISPH and assume that all particles
have equal mass and rest density. Then, we can rewrite the PBF
displacement from Eq. (46) as

(∆xi)
l =

mi

2ρ0 ∑
j

(
(λi)

l +(λ j)
l
)
∇W i j (47)

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

with (λi)
l =

−2∆t2kPCI
i (∆ρ

PCI,error
i)l

ρ0 (48)

which is equivalent to the PBF formulations in Eqs. (43) and (44).
PBF computes (λi)

l in each iteration and updates (∆xi)
l accord-

ingly which is equivalent to PCISPH. While PCISPH computes
accelerations (∆ap

i)
l with Eq. (36), PBF computes the respective

distances ∆t2(∆ap
i)

l with Eq. (46). PCISPH updates velocities and
positions, while PBF directly updates the positions.

DFSPH concept: DFSPH [BK15] solves two PPEs. It first solves

−∆t2∇2 pDI = ρ
∗−ρ

0

∆t , applies the respective pressure accelera-
tion with v∗∗ = v∗ +∆taDI and advects the particles with xDI =
x+∆tv∗∗. Superscript DI stands for density invariance. It indicates
that the respective quantities are related to a PPE with density in-
variance as source term. As the first PPE solve only addresses the
density deviation, a second step solves −∆t∇2 pVD = −ρ∇ · v∗∗

to account for a potentially remaining divergence in the velocity
field v∗∗. The respective pressure acceleration aVD is applied with
vVD = v∗∗ +∆taVD and xDI and vVD are the final positions and
velocities. Superscript VD stands for velocity divergence, indicat-
ing the formulation of the source term in the respective PPE. It is
remarkable that DFSPH computes two pressure values per particle.
DFSPH is one option to combine two PPEs with different source
terms. Alternative combinations are, e.g., discussed in [CBG∗18].

Equivalence of PCISPH and DFSPH: In both PPE solvers, DF-
SPH updates predicted velocities and pressure differences in the
same way as PCISPH. PCISPH updates
(v∗i)

l+1 = (v∗i)
l +∆t

(
(ap

i)
l+1 − (ap

i)
l
)

with

(ap
i)

l+1 − (ap
i)

l =−∑
j

m j

(
pl+1

i − pl
i

ρ2
i

+
pl+1

j − pl
j

ρ2
j

)
∇W i j

(49)

and pl+1
i − pl

i = kPCI
i (∆ρ

PCI,error
i)l . These equations can be written

as

(v∗i)
l+1 =(v∗i)

l −∆t ∑
j

m j

(
kPCI

i (∆ρ
PCI,error
i)l

ρ2
i

+
kPCI

j (∆ρ
PCI,error
j)l

ρ2
j

)
∇W i j.

The original DFSPH notation for this update reads

(v∗i)
l+1 = (v∗i)

l −∆t ∑
j

m j

(
κi

ρi
+

κ j

ρ j

)
∇W i j (50)

and we have to check whether κi =
kPCI

i (∆ρ
PCI,error
i)l

ρi
. Using (ρ0)2

ρi
≈ ρi,

we get

kPCI
i (∆ρ

PCI,error
i)l

ρi
=

1
2

1
∆t

((ρ∗
i)

l −ρ
0)

∆t
ρi

m2
i

(
∑ j ∇W T

i j∇W i j +∑ j(∑ j ∇W T
i j)∇W i j

)
which is equal to the definition of κi for the constant density solver
in [BK17] up to the scalar factor 1

2 . The second PPE solver in DF-

SPH works exactly as the first one, but replaces ((ρ∗
i)

l−ρ
0)

∆t with

Algorithm 1 IISPH implementation

1: for all particle i do
2: v∗i = vi(t)+∆tanonp

3: compute ∆ρ
II,error
i using Eq. (31)

4: init residuum r0
i =−∆ρ

II,error
i

5: p0
i = 0

6: l = 0
7: while |rl

avg| > tolerance do
8: for all particle i do
9: compute pressure accelerations (ap

i)
l using Eq. (28)

10: for all particle i do
11: compute density change (∆ρ

II,p
i)l using Eq. (29)

12: update residuum rl+1
i = (∆ρ

II,p
i)l −∆ρ

II,error
i

13: update pressure pl+1
i using Eq. (32)

14: clamp negative pressure pl+1
i = max(pl+1

i ,0)
15: l = l +1
16: for all particle i do
17: vi(t +∆t) = v∗i +∆t(ap

i)
l

−ρi∇· (v∗i)l in the previous equation. So, the solver implementa-
tions of PCISPH and DFSPH are equivalent.

Discussion: This section has shown that the implementations of
PCISPH, IISPH, PBF and DFSPH can be converted into each other
with simple transformations. Algorithm 1 shows the implementa-
tion of IISPH as an example. Nevertheless, the solvers differ in
terms of implementation details. E.g., PCISPH uses the same coef-
ficient kPCI

i for all particles in the solver update, which is in con-
trast to all other discussed solvers. The computation is efficient, but
negatively affects the convergence and also the stability. IISPH and
DFSPH use individual computations of this term, but work with the
same kernel gradients in all iterations. This is in contrast to PBF,
where the kernel gradients are updated per iteration. This probably
improves the convergence, but is also expensive to compute. DF-
SPH solves two systems. This sounds expensive, but various terms
can be reused in both solvers. Also, the second solver has a positive
effect on the convergence of the first solver, which means that the
overall iteration number of both solvers is typically smaller com-
pared to the other solvers. Last, but not least, all original solver
implementations have used different boundary handlings. The re-
cently very active research in SPH boundary handling indicates that
the combination of pressure solver and boundary handling signifi-
cantly influences the stability and the solver performance.

4. Boundary Handling

Most SPH approaches handle boundary conditions by virtually ex-
tending field quantities (e.g., density or pressure) into the domain
of the boundary. In SPH the fluid domain is represented by par-
ticles (see Figure 1). To extend a field a suitable representation
of the boundary is required and field quantities must be deter-
mined for the boundary domain. In recent years, several approaches
have been introduced to represent boundary geometries and to en-
force boundary conditions, e.g., [AIA∗12, FM15, KB17, BGPT18,
BGI∗18,GPB∗19,BKWK19,BKWK20]. In this section we first in-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

Figure 1: In an SPH simulation the fluid domain F (blue) is dis-
cretized by particles. Each particle x has a support domain N (x)
(green) which is defined by the support radius ℏ of the compact
kernel function. The boundary domain B is shown in gray.

troduce approaches to represent a boundary and then discuss how
to compute pressure values at the boundary for the pressure solver.

4.1. Boundary Representation

A common way to resolve boundary penetrations is to extend the
density field into the boundary. If a fluid particle comes close to the
boundary, the resulting density contribution leads to local compres-
sion that violates the incompressibility constraint (Eq. (19)) and the
corresponding pressure force prevents a penetration.

By substituting the density function ρ(x) in the continuous ap-
proximation in Eq. (3), we get an integral to approximate the den-
sity at position x:

ρ(x)≈
∫
N (x)

ρ
(
x′
)

W
(
∥x−x′∥,h

)
dx′. (51)

We can split this integral in a fluid and boundary part (see Figure 1)

ρ(x)≈
∫
N (x)∩F

ρ
(
x′
)

W
(
∥x−x′∥,h

)
dx′+∫

N (x)∩B
ρ
(
x′
)

W
(
∥x−x′∥,h

)
dx′

=ρF (x)+ρB(x),

(52)

where F and B denote the fluid and boundary domain, respectively.
Now it is possible to solve the fluid and the boundary integral with
different methods. In this section we focus on the boundary integral
and assume that the fluid integral is computed by using the SPH
discretization introduced in Eq. (5). To solve the boundary integral
a discretization is required. In the following we will discuss explicit
particle-based discretizations and implicit ones.

Note that there exist also mesh-based approaches for boundary
handling. For example, Bodin et al. [BLS12] avoid a penetration of
fluid particles and a triangle mesh by adding unilateral constraints
to the simulation. Huber et al. [HEW15] use a continuous collision
detection in combination with correction impulses to couple fluids
and cloth models. However, such approaches are typically signif-
icantly slower than particle-based or implicit methods, especially
for complex boundary geometries [FM15]. Therefore, these meth-
ods are not discussed in detail in this report.

Particle-based boundary representation A popular approach to
solve the boundary integral in Eq. (52) is to use an additional
particle discretization for the boundary, e.g., [IAGT10, AIA∗12,
BGPT18, BGI∗18, GPB∗19]. The boundary particles serve as ad-
ditional sampling points and typically have the same radius as the
fluid particles. In this way the boundary integral can be solved anal-
ogously to the fluid integral

ρi = ρF (xi)+ρB(xi)≈ ∑
j

m jWi j +∑
k

m̃kWik, (53)

where j and k are the fluid and boundary neighbors of particle i,
respectively. The mass m̃k is used to extend the fluid density field
into the boundary and does not represent the material properties
of the boundary object. This means that a boundary particle has the
same rest density ρ

0 as a fluid particle. Therefore, m̃k is often called
a pseudo mass. The boundary particles are also considered when
computing pressure values and pressure forces for fluid particles
close to the boundary.

There exist different strategies to sample the boundary. We can
use multiple layers of boundary particles or just a single layer.
Moreover, there exist uniform or non-uniform sampling strategies.
Using multiple layers typically requires more memory and com-
putation time. Moreover, it can be difficult to find a good repre-
sentation for arbitrary geometries when using a uniform sampling.
Therefore, one of the most popular strategies is to use a single layer
non-uniform sampling. Such a sampling was proposed by Akinci
et al. [AIA∗12]. This approach determines the pseudo mass of a
boundary particle as

Vk =
1

∑l Wkl
, m̃k =Vkρ

0, (54)

where l denotes the boundary neighbors of particle k and Vk is the
volume represented by particle k. Note that the volume Vk gets
larger for sparsely sampled regions and smaller for densely sam-
pled regions. In this way the non-uniform sampling is considered
in the computation.

An advantage of this particle-based sampling is that it is sim-
ple to generate the boundary particles. Moreover, it is straightfor-
ward to integrate these particles in the SPH computation. How-
ever, even simple geometries require a large number of boundary
particles which must be considered in the neighborhood search
and in the computation of field quantities (e.g., density). Further-
more, when sampling a smooth geometry by particles, this leads
to a somehow bumpy representation of the surfaces which can re-
duce the accuracy of the force computation and cause artificial fric-
tion [KB17,BKWK20]. Note that this problem can be solved by an
extended pressure force computation at the boundary [BGPT18] or
by using an implicit boundary representation as discussed below.

Implicit boundary representation In contrast to explicit surface
representations, implicit approaches typically represent the bound-
ary by a function which returns the signed distance to the boundary,
the density contribution of the boundary or the boundary volume in
the support domain [HKK07a,HKK07b,BLS12,KB17,BKWK20].
Such methods have the advantage that the particle size is decoupled
from the boundary representation. This is especially important in
adaptive simulations [WAK20]. Moreover, this enables the usage of

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

flexible data structures, like adaptive octrees with higher-order ap-
proximations [KDBB17], to represent the boundary in a memory-
efficient and accurate way. Another advantage is that the problems
of a bumpy surface representation (see above) are avoided.

Harada et al. [HKK07a, HKK07b] represent the boundary using
a signed distance field (SDF). In their approach the density contri-
bution of a planar surface is sampled depending on the distance to
a prototype fluid particle. However, the approach does not provide
correct density values for curved geometries. To solve this problem
Koschier and Bender [KB17] precompute the boundary integral in
Eq. (52) for the nodes of a regular spatial grid, which they call den-
sity map. The integral is determined using adaptive Gauss-Kronrod
quadrature. However, the density function in Eq. (52) is a discon-
tinuous, piecewise constant function which returns zero outside and
ρ0 inside the boundary. Integrating such a function using a fixed
pattern quadrature scheme leads to staircase artifacts [BKWK20].
Therefore, the authors propose a modification of the integral

ρB(x) =
∫
N (x)∩B

γ(Φ(x′))W
(
∥x−x′∥,h

)
dx′ (55)

using a linear increasing density function γ instead of the discon-
tinuous, piecewise constant function, where

γ(x) =

ρ0
(
1− x

r
)

if x < r

0 otherwise.
(56)

In Eq. (55) the new function γ depends on the signed distance which
is defined as

Φ(x) =

− infx̃∈∂B ∥x− x̃∥ if x ∈ B

infx̃∈∂B ∥x− x̃∥ otherwise.
(57)

Finally, the boundary density contribution for a fluid particle can be
efficiently queried during runtime by interpolating the precomputed
values of the grid cell which contains the particle. Higher-order
polynomials are used for the interpolation to improve the accuracy.
Moreover, the memory consumption is reduced by storing only the
density map in a narrow band around the boundary surface.

Bender et al. [BKWK20] improve this concept by precomputing
the volume VB of the boundary part N (x)∩B instead of the density.
The boundary volume is determined by solving an integral

VB(x) =
∫
N (x)∩B

γ
∗(Φ(x′))dx′ (58)

using Gauss-Legendre quadrature. This approach uses a cubic func-
tion to avoid staircase artifacts:

γ
∗ =

C(x)
C(0) if 0 < x < r

1 if x ≤ 0

0 otherwise,

(59)

where C is the cubic spline kernel [Mon05]. In comparison to the
linear function γ, the cubic function γ

∗ has a smooth transition at
distance x = r. Similar to the density maps approach, Bender et
al. store the values VB(x) in a narrow band grid and approximate
the required values at runtime by interpolation with cubic shape
functions. Moreover, they define a sampling point x∗ at the closest
position to x on the boundary to represent the boundary volume

VB. In this way the boundary density value can be approximated as
ρB ≈VB(x)ρ0W(x−x∗,h).

In the pressure solver typically the density gradient is required.
When using a density map, the gradient is determined by dif-
ferentiating the shape functions of the map. However, since the
smoothness at cell interfaces is not guaranteed [KDBB17], a high-
resolution map is required to avoid artifacts. In contrast the implicit
boundary volume computation uses a classical SPH formulation to
compute the gradient and therefore solves this problem.

Implicit boundary approaches avoid the problems of a bumpy
surface representation and are fast at runtime. However, when us-
ing high-resolution grids, the precomputation can take a significant
amount of time. Moreover, the implementation and the integra-
tion in existing SPH codes is more complex than for particle-based
methods.

4.2. Boundary Pressure Computation

SPH pressure solvers typically use the symmetric formula in
Eq. (12) to compute the pressure acceleration (cf. Eq. (28)). At the
boundary the sum is split in a fluid part and a boundary part:

ap
i =−∑

j
m j

(
pi

ρ2
i
+

p j

ρ2
j

)
∇W i j −∑

k
m̃k

(
pi

ρ2
i
+

pk
(ρ0)2

)
∇W ik .

(60)
As discussed above different boundary representations can be used
to compute the term m̃k∇W ik. Moreover, the density of the bound-
ary is typically set to the rest density of the fluid ρ

0. However, the
pressure value at the boundary pk is still unknown. In the following
we introduce two methods to determine this value.

Pressure mirroring A simple way to determine the boundary
pressure is to mirror the pressure value from the corresponding
fluid particle in Eq. (60), i.e., pk = pi. In this way the pressure
at the boundary particle is similar to the pressure in its neighbor-
hood. This approach is quite popular due to its simplicity and ef-
ficiency. However, it leads to inconsistent pressure values at the
boundary since a boundary particle can represent different pressure
values for different adjacent fluid particles. Another problem is that
all boundary neighbors of a fluid particle have the same pressure
value in the computation. Both problems can lead to visual arti-
facts [BGI∗18, BGPT18].

Pressure extrapolation An alternative approach that solves the
problem of inconsistent boundary pressure values is pressure ex-
trapolation. The core idea is to extrapolate the fluid pressure to the
boundary. Adami et al. [AHA12] use an SPH formulation to com-
pute the extrapolated pressure for a boundary particle k as

pk =
∑l plWkl +g ·∑l ρl(xk −xl)Wkl

∑l Wkl
, (61)

where l denote the fluid neighbors of boundary particle k and g
is the gravity vector. The approach requires an additional loop over
all boundary particles, their fluid neighbors must be determined and
the pressure at the boundary must be stored. The advantage of this
computation is that it provides consistent pressure values. How-
ever, the method suffers from the particle deficiency problem at the
boundary which reduces the accuracy.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

Band et al. [BGPT18] solve this problem by performing the ex-
trapolation using MLS instead of SPH. In a first step they translate
the positions of the boundary particle x̄k = xk − ck and its fluid
neighbors x̄l = xl − ck, where ck is the center of the neighboring
fluid particles ck = ∑l xlVlWkl

∑l VlWkl
. Then they define a linear pressure

function for each boundary particle pk(x) = αk + βkx+ γky+ δkz
and determine the unknown coefficients by computing the best fit
of pk(x) in the least-squares sense to the known pressure values pl
at the fluid neighbors of k. This yields the following coefficients

αk =
∑l plVlWkl

∑l VlWkl
(62)

(βk,γk,δk)
T =

(
∑
l

x̄l x̄
T
l VlWkl

)−1

·∑
l

x̄l plVlWkl . (63)

Finally, the boundary pressure in Eq. (60) is determined by pk =
pk(x̄k).

5. Materials

In recent years SPH methods have been introduced to simulate
different types of materials like highly viscous fluids, deformable
solids or rigid bodies. Since all these methods are based on SPH,
the materials can be easily combined in a unified solver. In the fol-
lowing we introduce SPH methods for different material types and
discuss how to compute the pressure forces at their interfaces.

5.1. Viscous Fluids

Viscosity is an important phenomenon which is responsible for var-
ious visually appealing effects like coiling and buckling as well as
for the general energy dissipation. Therefore, in this section differ-
ent methods for the simulation of low viscous fluids like water and
highly viscous fluids like mud, honey, and dough (see Fig. 2) are
introduced.

5.1.1. Viscous Force

The viscous force in the Navier-Stokes equations (see Eq. (22)) for
incompressible fluids

fvisco = µ∇2v (64)

is derived by substituting the stress tensor of a Newtonian fluid

T =−p1+2µE (65)

in the conservation law of linear momentum (see Eq. (20)) and con-
sidering the incompressibility constraint ∇·v = 0. The material pa-
rameter µ is also known as the dynamic viscosity and E defines the
strain rate tensor

E =
1
2
(∇v+(∇v)T). (66)

Recent viscosity solvers either compute the Laplacian of the ve-
locity field using an SPH formulation or use a strain rate based
formulation. The first approach considers the incompressibility
constraint by definition. However, when using a strain rate based
method, a divergence-free velocity field has to be enforced to avoid
undesired bulk viscosity [Lau11, PICT15].

5.1.2. Explicit Viscosity

The viscous force for a particle i can be approximated by using the
standard SPH discretization of the Laplacian of the velocity field

∇2vi = ∑
j

m j

ρ j
v j∇2W i j. (67)

However, this formulation is sensitive to particle disorder [Mon05]
and problems could occur since the second derivative of the kernel
changes sign inside the kernel domain and can even be discontinu-
ous (e.g., cubic spline kernel) [Pri12].

One way to avoid these issues is to compute the second deriva-
tive by taking two first SPH derivatives [FMH∗94, WBF∗96,
TDF∗15]. However, this approach introduces additional smooth-
ing, requires more memory and increases the computational costs.
Another way is to combine an SPH derivative with finite dif-
ferences [Bro85]. This approach became very popular and was
applied for scalar [Mon92, CM99, IOS∗14] and vector quanti-
ties [ER03, JSD04, Mon05, Pri12, WKBB18]. Following this idea
the Laplacian of the velocity can be approximated as [Mon05]:

∇2vi = 2(d +2)∑
j

m j

ρ j

vi j ·xi j

∥xi j∥2 +0.01h2 ∇W i j, (68)

where xi j = xi−x j, vi j = vi−v j, d is the number of spatial dimen-
sions and the term 0.01h2 is introduced in the denominator to avoid
singularities. This formulation has several advantages [Mon92]: it
conserves linear and angular momentum, is Galilean invariant and
vanishes for rigid body rotation.

For low viscous fluids with a small dynamic viscosity coefficient
µ the resulting force (see Eq. (64)) can be directly used in the ex-
plicit time integration step. Simulation methods for highly viscous
materials are discussed in the following section.

5.1.3. Implicit Viscosity

In recent years the simulation of highly viscous fluids has become
popular in computer graphics. Since such materials have a large vis-
cosity coefficient, implicit methods are required for a stable simu-
lation. In the following we introduce different strain rate based for-
mulations [TDF∗15, PICT15, PT16, BK17] and an approach using
directly the Laplacian of the velocity field [WKBB18].

Implicit strain rate based solver Takahashi et al. [TDF∗15] take
two first SPH derivatives to first compute the strain rate tensor
(Eq. (66)) and then the divergence of the corresponding stress ten-
sor (Eq. (65)). This yields the following viscosity force:

fvisco =∇· (2µE) = 2µ∑
j

m j

(
Ei

ρ2
i
+

E j

ρ2
j

)
∇W i j. (69)

An implicit Euler integration is applied to compute new particle
velocities by solving

v(t +∆t) = v∗+ ∆t
ρ

fvisco(t +∆t), (70)

where v∗ is a predicted velocity which considers all non-pressure
forces except viscosity. The implicit integration scheme enables a
stable simulation of highly viscous fluids while the viscosity force
is independent of the spatial and temporal resolution. However,

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

Figure 2: Simulation of highly viscous behavior. Left: buckling effects [WKBB18], center: viscous dough interacting with fast moving
solid [PICT15], right: melting effects (the model is courtesy of Pranav Panchal) [PT16].

the solution of the linear system (70) is computationally expensive
since the formulation of Takahashi et al. considers the second-ring
neighbors of all particles which leads to a large number of non-zero
elements in the system matrix.

Velocity gradient decomposition An alternative implicit formu-
lation for the simulation of highly viscous fluids was presented by
Peer et al. [PICT15,PT16]. The core idea of this approach is to first
decompose the velocity gradient as

∇v =
1
2
(∇v− (∇v)T)︸ ︷︷ ︸

R

+
1
3
(∇·v)1︸ ︷︷ ︸

V

+(E− 1
3
(∇·v)1)︸ ︷︷ ︸
S

, (71)

where R is the spin rate tensor, V the expansion rate tensor and
S the traceless shear rate tensor. Then the shear rate tensor can
be reduced by a user-defined factor 0 ≤ ξ ≤ 1 without influenc-
ing the other components in order to obtain a target velocity gradi-
ent ∇vtarget = R+V+ ξS. The final particle velocities are recon-
structed from the target gradient by a first-order Taylor approxima-
tion

vi(t +∆t) =
1
ρi

∑
j

m j

(
v j(t +∆t)+

∇vtarget
i +∇vtarget

j

2
xi j

)
Wi j.

(72)
The resulting linear system for the velocities is solved for the x-, y-
and z-component separately using the conjugate gradient method.

This approach was later extended by vorticity diffusion to im-
prove the rotational motion [PT16]. The diffusion process is de-
scribed by Dω

Dt = ν∇2
ω, where the vorticity ω can be extracted

from the spin rate tensor R. To consider this diffusion in the sim-
ulation the system ∇2

ω
target
i = ξ∇2

ω. is solved to obtain ω
target
i .

This target vorticity is used to construct a target spin rate ten-
sor Rtarget which yields a new target velocity gradient ∇vtarget =
Rtarget

i +V+ξS from which the final velocities can be reconstructed
using Eq. (72).

While being efficient and stable, these methods also have some
drawbacks. The linearization in Eq. (72) introduces a significant
damping. Therefore, the approach is not recommended to simulate
low viscous flow. Moreover, the reconstruction of the velocity field
can be problematic when using SPH [BGFAO17]. Finally, the pa-
rameter ξ is not physically meaningful and depends on the temporal
and spatial resolution.

Strain rate constraint formulation Bender and Koschier [BK17]
define a velocity constraint Ci(v) = Ei − γEi for each particle i to

reduce the strain rate Ei by a user-defined coefficient 0 ≤ γ ≤ 1.
Due to the symmetry of the strain rate tensor the constraint can be
defined as six-dimensional function containing the upper triangular
part of the tensor. To enforce the constraint the following linear
system for the Lagrange multiplier λ is solved by Jacobi iterations:(

1
ρi

∂Ei

∂vi

(
∂Ei

∂vi

)T

+∑
j

1
ρi

∂Ei

∂v j

(
∂Ei

∂v j

)T
)

λi = Ei − γEi. (73)

The final velocities are computed as

vi(t +∆t) = v∗i +
1
mi

(
mi

ρi

(
∂Ei

∂vi

)T

λi +∑
j

m j

ρ j

(
∂E j

∂vi

)T

λ j

)
.

(74)

While the approach is computationally more expensive than the
method of Peer et al., it can also simulate low viscous fluids. Apart
from that it has the same drawback that the viscosity parameter is
not physically meaningful and depends on the temporal and spatial
resolution.

Implicit Laplacian based solver In contrast to the previous ap-
proaches, Weiler et al. [WKBB18] introduce an implicit viscosity
solver based on the Laplacian of the velocity field instead of using
the strain rate. To compute the viscosity acceleration they substitute
Eq. (68) in Eq. (64) and make the resulting term symmetric:

avisco =
µ
ρi
∇2vi = 2(d +2)∑

j

µmi j

ρiρ j

vi j ·xi j

∥xi j∥2 +0.01h2 ∇W i j, (75)

where mi j = 0.5(mi +m j) is the average mass. This yields a sym-
metric linear system for the new velocities when applying the im-
plicit Euler integration scheme

v(t +∆t) = v∗+∆tavisco(t +∆t). (76)

This system can be solved efficiently by a matrix-free precondi-
tioned conjugate gradient method.

Comparison All implicit viscosity solvers discussed above except
the implicit Laplacian based solver use a strain rate based formu-
lation where the tensor E (Eq. (66)) is determined by the SPH dis-
cretization of the velocity gradient (see Section 2.5):

∇vi =
1
ρi

∑
j

m j(v j −vi)∇W T
i j. (77)

However, this discretization suffers from particle deficiency at the
free surface of a fluid. Weiler et al. [WKBB18] showed that for a ro-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

0.0

3.9

2ms

1
s

Figure 3: The velocity field of a rotational motion (left) should
lead to a zero strain rate tensor. However, the SPH discretization
in Eq. (77) causes errors at the surface due to particle deficiency as
the Frobenius norm of the tensors shows (right) [WKBB18].

Figure 4: Left: The particle deficiency at the free surface leads to
a wrong approximation of the strain rate tensor and therefore to
artifacts. Right: Using the formulation of Weiler et al. [WKBB18]
based on the Laplacian of the velocity field solves this problem.

tational motion, Eq. (77) leads to a significant error at the boundary
(see Fig. 3). The strain rate based viscosity solvers counteract this
erroneous strain rate at the boundary by computing forces which
however cause visual artifacts (see Fig. 4, left) and a loss of angu-
lar momentum.

Weiler et al. use a formulation based on the Laplacian of the
velocity field since the approximation of the Laplacian in Eq. (75)
vanishes for rigid body rotations and conserves linear and angular
momentum [Mon92]. In this way they avoid the issues of strain rate
based methods (see Fig. 4, right).

While the methods of Takahashi et al. [TDF∗15] and Weiler et
al. [WKBB18] use a physically meaningful viscosity coefficient,
the coefficients used in the other formulations are not physically
motivated and depend on the temporal and spatial resolution.

In a performance comparison the solver of Peer et al. [PICT15]
was the fastest method followed by the approach of Weiler et al.
The other methods were significantly slower since they either use
a Jacobi solver [BK17] or have to consider the second-ring neigh-
bors [TDF∗15].

5.2. Deformable Solids

In computer graphics most simulation methods for de-
formable solids are mesh-based, like the finite element
method (FEM) [KBT17, KKB18] and Position-Based Dy-

namics (PBD) [BKCW14, BMM14, BMM17]. The advantage of
using a meshless approach like SPH is that a unified representation
for fluids and solids simplifies the coupling between the different
materials and allows a simulation of state transitions like solidi-
fication or melting. A meshless representation of a solid can be
obtained by sampling its geometry. Different sampling techniques
are discussed in [KBFF∗21].

5.2.1. Continuum Formulation

In the following we use a Lagrangian formulation where the equa-
tions of motion and the constitutive laws are described by posi-
tions X in the undeformed rest pose (reference configuration). The
deformed configuration at time t is defined by the deformation
mapping x = x(X, t) [Sif12]. Differentiating the deformation map-
ping w.r.t. the reference positions X yields the deformation gradient
J = ∂x

∂X which can be used to define a constitutive model.

In the following we introduce different corotated SPH ap-
proaches which are either based on the linear or on the corotated
linear constitutive model with the elastic energy densities [Sif12]

Ψ
linear(J) = µε : ε+

λ

2
tr2(ε) (78)

Ψ
corotated(J) = µ∥J−R∥2

F +
λ

2
tr(RT J−1)2, (79)

where ε = 1
2 (J+ JT)− 1 is the linear infinitesimal strain tensor,

µ and λ are the Lamé coefficients, R is the rotational part of J,
and ∥ · ∥F denotes the Frobenius norm. The total elastic energy is
determined by an integral over the rest-pose domain Ω of the body

E =
∫

Ω

Ψ(J)dX . (80)

Finally, the elastic body forces can be computed as the diver-
gence of the first Piola–Kirchhoff stress tensor f = ∇ · P, where
P(J) = ∂Ψ

∂J .

5.2.2. SPH Discretization

The deformation of a deformable solid is computed with respect to
its reference configuration and its topology does not change during
the simulation. Therefore, the particle neighborhood N 0 in refer-
ence configuration is used for the SPH discretization of the defor-
mation gradient

Ji(x,X) = ∑
j∈N 0

i

V 0
j x ji

(
Li∇W

(
Xi j
))T

, (81)

where x ji = x j −xi, Xi j = Xi −X j , V 0 is the rest volume and Li is
a correction matrix to restore 1st-order consistency (cf. Section 2.3)
that is defined as [BL99]

Li =

 ∑
j∈N 0

i

V 0
j ∇W

(
Xi j
)
XT

ji

−1

. (82)

This matrix is required to correctly capture the rotational motion
and can be precomputed at the beginning of the simulation. Note
that the Moore–Penrose inverse can be used if the matrix is singu-
lar, e.g., due to a collinear or coplanar particle configuration.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

Corotated Linear Elasticity In computer graphics often the lin-
ear infinitesimal strain tensor is used to avoid the solution of a
non-linear system in an implicit time integration step. However,
this tensor is not invariant under rotations. A well-known solution
is to use a corotational approach (e.g., [KKB18]), where the rota-
tion is extracted from the deformation gradient in order to compute
the strain measure in an unrotated frame. An explicit corotational
SPH approach was first introduced by Becker et al. [BIT09] to get
a unified representation for fluids and solids. Since this approach
is only conditionally stable, also implicit methods were investi-
gated [PGBT17, KBFF∗21].

The first step of a corotational SPH method is to extract the rota-
tion Ri for each particle i from the kernel gradient Ji (see Eq. (81)),
e.g., by applying the efficient and stable method of Müller et
al. [MBCM16]. Peer et al. [PGBT17] propose to rotate the ref-
erence configuration so that the displacement vector u = x−RX
contains no rotation. The resulting corotated deformation gradient
is given by

J∗i (x,X) = 1+ ∑
j∈N 0

i

V 0
j
(
x ji −RiX ji

)(
RiLi∇W

(
Xi j
))T

. (83)

Peer et al. use the linear constitutive model (see Eq. (78)) to deter-
mine the corotated stress tensor P∗ = P(J∗) and finally the elastic
force [Gan15]

Fi =V 0
i ∑

j∈N 0
i

V 0
j
(
P∗

i RiLi∇W
(
Xi j
)
−P∗

j R jL j∇W
(
Xi j
))

. (84)

In contrast, Kugelstadt et al. [KBFF∗21] directly substitute the
deformation gradient J from Eq. (81) in the corotated linear consti-
tutive model (see Eq. (79)) to obtain the stress tensor Pcorotated(J).
Finally, the elastic forces can be determined using Eq. (84).

5.2.3. Implicit Time Integration

Explicit time integration schemes are only conditionally stable and
require small time steps when simulating stiff deformable solids.
Therefore, Peer et al. [PGBT17] propose to use an implicit Euler
integration scheme

vt+∆t = vt +
∆t
m

F
(

Jt+∆t
)
, (85)

where Jt+∆t is computed using xt+∆t = xt +∆tvt+∆t . Since the elas-
tic forces in Eq. (84) depend linearly on the particle positions, this
yields a linear system for the new velocities. Peer et al. use a matrix-
free conjugate gradient method to efficiently solve this system.

Kugelstadt et al. [KKB18, KBFF∗21] split the corotated linear
constitutive model (see Eq. (79)) in a stretching term µ∥J−R∥2

F
and a volume term λ

2 tr(RT J− 1)2 and keep the rotation constant
during the step. The resulting stretching force linearly depends on
x while the resulting volume force also depends on the rotation
matrix R. Hence, the linear system for the stretching term, which
has to be solved in the implicit integration step, has a constant ma-
trix. Therefore, its Cholesky factorization can be precomputed at
the beginning of the simulation and the system can be solved very
efficiently in each step. The volume conservation term is solved
using a matrix-free conjugate gradient solver. Finally, this splitting
approach is more than an order of magnitude faster than the method

Figure 5: SPH simulation of deformable. Top: A deformable hair-
ball interacts with water [PGBT17]. Bottom: Walrus models are
pushed through a tight funnel [KBFF∗21].

of Peer et al. However, it can only be applied if there are no topol-
ogy changes during the simulation.

Simulations with both implicit methods are shown in Fig. 5.

5.2.4. Zero-Energy Mode Suppression

In the introduced SPH formulation for deformable solids only one
deformation gradient Ji is computed to describe the deformation
of the neighborhood of particle i. However, Ji can only represent
a linear deformation and cannot capture non-linear deformations,
e.g., due to strong collision forces. Therefore, the non-linear part of
the deformation does not contribute to the elastic energy and pre-
vents that particles return to their rest-pose (hence the name zero-
energy modes). Note that zero-energy modes are similar to hour
glass modes in finite element methods [Gan15].

We can determine the deformed position x(X j) for a particle j,
which is a neighbor of i, by a Taylor series

x(X j) = x(Xi)+Ji(X j −Xi)+ ei
i j, (86)

where ei
i j represents all higher-order terms. One approach to handle

the zero-energy modes is to attempt to suppress the problematic
local higher-order terms ei

i j = JiXi j −xi j.

Ganzenmüller [Gan15] adds an explicit penalty force to the sys-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

tem in order to suppress the zero-energy modes:

FHG
i =−1

2
αk ∑

j∈N 0
i

V 0
i V 0

j
W
(
Xi j
)

∥Xi j∥2

(
ei

ji ·x ji

∥x ji∥
+

e j
i j ·xi j

∥xi j∥

)
x ji

∥x ji∥
,

(87)
where the coefficient α controls the magnitude of the zero-energy
mode suppression and k is the Young’s modulus. However, the
force minimizes ei

i j only in the direction of the vector xi j . In con-
trast to that, Kugelstadt et al. [KBFF∗21] propose an implicit zero-
energy mode control by minimizing the quadratic energy function

EZE =
α
′

2 ∑
i

µV 0
i ∑

j∈N 0
i

V 0
j
∥ei

i j∥2

∥Xi j∥2 Wi j, (88)

where α
′ is the zero-energy mode coefficient and µ the first Lamé

coefficient. Since the energy is quadratic in x, the corresponding
stiffness matrix is constant which enables an efficient implicit Eu-
ler integration step by using a precomputed Cholesky factorization.
Finally, the zero-energy mode suppression improves the stability of
the simulation.

5.3. Rigid Solids

The simulation of rigid bodies with contact and friction is an active
research topic in computer graphics [BET14]. Recently, it has been
shown that rigid body contact handling can also be realized using
an SPH approach [GPB∗19]. This enables a unified SPH simula-
tion of fluids, rigid bodies, deformable solids and highly viscous
materials (see Fig. 7).

5.3.1. Rigid Body Solver

The SPH rigid body solver computes contact forces for each pair
of colliding bodies using an approach which is similar to the con-
cept of particle-based boundary handling (see Section 4). A particle
sampling for each body surface is determined to obtain a unified
particle representation of all objects in the simulation. Each sam-
pling point defines a rigid body particle r. The artificial rest volume
for r can be computed as [GPB∗19]

V 0
r =

0.7
∑k∈RWrk

, (89)

where R denotes the set of all particles of rigid body R. This repre-
sentation enables to detect rigid body contacts using the neighbor-
hood search and to resolve contacts by an artificial pressure force.

To determine this force an artificial rest density ρ
0
r = 1 is in-

troduced for each rigid particle r, which defines the particle mass
mr =V 0

r ρ
0
r . Since we are only interested in a density deviation, the

magnitude of ρ
0
r can be chosen arbitrarily. To compute the deviation

the density is determined as ρr = ∑k mkWrk, where the sum consid-
ers the particles k of all rigid bodies within the support radius. A
deviation of ρr −ρ

0
r > 0 corresponds to an interpenetration which

has to be resolved by a contact force Frr that enforces ρr = ρ
0
r .

A linear system for the contact force is derived by first applying
a backward difference time discretization to the continuity equation
and considering the constant density constraint ρ

t+∆t
r = ρ

0
r :

ρ
0
r −ρr

∆t
=−ρr∇·vt+∆t

r , (90)

where vt+∆t
r = vt+∆t

R +ω
t+∆t
R × rt+∆t

r is the rigid particle velocity
at time t +∆t, vR and ωR are the linear and angular velocity of the
rigid body R, respectively, and rr is the vector from the center of
mass of the rigid body to the position of the particle r. The ve-
locities vt+∆t

R and ω
t+∆t
R can be approximated by an Euler integra-

tion step considering all known external forces FR and torques τR
as well as the unknown rigid-rigid contact forces Frr

r = −mr
ρr
∇pr.

Substituting the resulting velocities in Eq. (90) and introducing the
approximation rt+∆t

r = rt
r yields a linear system for the unknown

contact pressure pk

ρr∇·

(
∆t ∑

k∈R

mk
ρk

Krk∇pk

)
=

ρ
0
r −ρr

∆t
+ρr∇·vs

r. (91)

The matrix Krk, which is well-known in the area of rigid body
solvers [Mir96, BET14], is defined as

Krk =
1

mR
1− r̃rI−1

R r̃k, (92)

where mR and IR are mass and inertia tensor of rigid body R, re-
spectively, and r̃r is the cross product matrix of rr. The vector

vs
r = vR+

∆t
mR

FR+
(

ωR +∆tI−1
R (τR +(IRωR)×ωR)

)
×rr. (93)

determines the new velocity of a particle r after a time step which
considers all forces and torques except the unknown contact forces.
After solving the linear system for the unknown pressure values, we
can compute the contact forces as Frr

r =−mr
ρr
∇pr.

To solve the linear system a relaxed Jacobi solver is applied
which updates the pressure in iteration l +1 as

pl+1
r = pl

r +
β

RJ
r

br

(
sr −ρr∇·

(
∆t ∑

k∈R
VkKrk∇pl

k

))
, (94)

where br is the diagonal element of the linear system and β
RJ
r is the

relaxation coefficient which is set to β
RJ
r = 0.5

num_contacts . The diver-
gence on the right-hand side of the system (Eq. (91)) is computed
using an SPH formulation

∇·vs
r =

1
ρr

∑
k∈R

Vkρk
(
vs

k −vs
r
)
·∇W rk. (95)

The linear system contains one equation for each rigid particle.
However, the equations for all particles which have no contact can
be removed to improve the performance.

The introduced rigid body solver is able to resolve thousands of
simultaneous contacts accurately (see Fig. 6). More details about
the derivation of the system and an extension to simulate friction
effects can be found in [GPB∗19].

5.4. Further Materials

In the previous sections we discussed SPH methods for highly vis-
cous fluids, deformable solids and rigid bodies. However, the sim-
ulation with the SPH approach is an active research topic and also
other material types have been investigated in recent years. It is out
of scope of this paper to discuss all of them in detail but we want to
at least mention some important ones. Alduán and Otaduy [AO11]

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

Figure 6: Simulation of a bolt which is loosened by a screwdriver
while interacting with water particles.

introduced an SPH method for the simulation of granular materi-
als which was later improved by Ihmsen et al. [IWT13]. The sim-
ulation of viscoelastic materials has been investigated by Taka-
hashi et al. [TDFN14] and Barreiro et al. [BGFAO17]. Gissler
et al. [GHB∗20] introduced an SPH formulation for elastoplastic
material behavior in order to simulate snow. Yan et al. [YJL∗16]
present a multi-phase method for fluids and solids. Finally, even
for complex materials like ferrofluids SPH approaches were devel-
oped [HHM19].

5.5. Handling Material Interfaces

In the previous sections SPH formulations for different materials
were introduced. Since all of them use the same discretization, it
is easy to couple the models in a unified simulation. To determine
contact forces at the interface between two materials, a common
pressure solver is used. However, to consider the different mate-
rial rest densities, a special handling at the interfaces is required.
The standard SPH formulation computes a quantity at a position by
interpolating the values of all adjacent particles. However, in case
of different rest densities, the desired density discontinuity across
the interface is smoothed due to this interpolation which leads to
wrong density values at interface particles. This affects the pres-
sure and force computation which manifests as spurious interface
tension [Hoo98, AMS∗07]. Large density ratios between the mate-
rials intensify the problem and significantly degrade the simulation
stability regardless of the time step size.

In order to solve this problem an adapted SPH formulation to
model density discontinuities across material interfaces was intro-
duced based on the so-called number density δi = ∑ j Wi j [HA06,
SP08]. This value is used to define an adapted particle density as

ρ̃i = miδi = mi ∑
j

Wi j. (96)

The core idea of this adapted density computation is that each par-
ticle treats its neighbors as if they would have the same rest density
as the particle itself. In this way only the geometric contribution Wi j
of a neighboring particle j is considered but not its mass properties.
The adapted density can then be used to obtain according pressure
values and pressure forces.

Solenthaler et al. [SP08] replace the original SPH density ρ in the

Tait equation by the adapted value ρ̃ to compute pressure values.
This adapted equation of state has the following form

p̃i =
κρ

0

γ

((
ρ̃i

ρ0

)γ

−1
)
, (97)

where κ and γ are stiffness parameters. Substituting the adapted
density and pressure in the symmetric SPH gradient formula (12)
yields the adapted pressure force

Fp
i = mia

p
i =−∇p̃i

δi
=−∑

j

(
p̃i

δi
2 +

p̃ j

δ j
2

)
∇Wi j, (98)

where ap
i = −∇ p̃i

miδi
is the adapted pressure acceleration. Note that

similar equations can be found in [TM05, HA06].

In subsequent works it was shown that this approach can also
be used in combination with an implicit pressure solver [AIA∗12,
GPB∗19]. Moreover, non-pressure forces can also be adapted
using the number density. For example, this was demonstrated
for elastic models [PGBT17, KBFF∗21], highly viscous material
models [PICT15, BKWK20] and solid-fluid coupling [AIA∗12,
GPB∗19]. It has also been successfully applied in multi-scale SPH
methods [SG11,HS13]. Finally, this enables a simple two-way cou-
pling of fluids, highly viscous materials, deformable solids, and
rigid bodies (see Fig. 7).

When applied to a single material, the derived equations are
identical to the standard SPH formulation. However, for multiple
materials the adapted forces eliminate spurious tension effects and
increases stability. Note that these problems can also be avoided
by advecting the density over time using the continuity equation
(see Section 2.4) instead of performing the SPH density compu-
tation (Equation (5)) in each step. In this way the density compu-
tation does not suffer from smoothing artifacts across fluid inter-
faces. However, in case of density advection numerical integration
errors sum up over time and cause a drift from true mass conserva-
tion when not preforming small time steps or applying higher-order
time integration schemes [SP08, SB12].

6. Vorticity

The generation of realistic turbulent flows is a challenging research
topic in SPH fluid simulations. Turbulent details quickly get lost
due to a coarse sampling of the velocity field [IOS∗14, CIPT14]
or due to numerical diffusion [dGWH∗15]. Therefore, in recent
years several approaches have been investigated to facilitate the for-
mation of vortices and to counteract numerical diffusion [MM13,
BKKW18, WLB∗20, LWB∗21]. In the following we introduce two
different approaches in detail.

Vorticity Confinement Turbulent motions are largely caused by
the interaction of unsteady vortices on various scales. Macklin and
Müller [MM13] counteract the dissipation in SPH fluid simulation
by amplifying existing vortices using a vorticity confinement ap-
proach. The vorticity, which describes the local spinning motion, is
defined by the vector field ω = ∇× v. The SPH discretization of
this vector field determines the vorticity ωi for each particle i as

ωi =∇×vi =−∑
j

m j

ρ j
vi j ×∇Wi j . (99)

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

Figure 7: A unified SPH solver enables complex simulations with different materials. In this example two creatures run in highly viscous
mud, break through a wall of rigid bodies and collide with a deformable tree while water is flowing down the canyon.

To amplify existing vortices a force is applied

Fvorticity
i = ε

v
(

η

∥η∥ ×ωi

)
, η = ∑

j

m j

ρ j
∥ω j∥∇Wi j, (100)

where ε
v is a user-defined parameter which controls the amplifica-

tion. Finally, the velocity field is smoothed using XSPH [Mon92]
to get a coherent particle motion.

Vorticity Confinement is simple to implement and effectively
amplifies existing vortices. However, the parameter ε

v must be cho-
sen carefully to avoid an overamplification and therefore an en-
ergy gain. Moreover, the method only amplifies existing vortices
but does not facilitate the formation of new ones.

Micropolar Model In general a micropolar fluid has a non-
symmetric stress tensor and the model assumes that the infinites-
imally small particles which compose a fluid continuum are rota-
tionally invariant [Łuk99]. In comparison to a Newtonian fluid, a
micropolar fluid additionally models a rotational motion using an
angular velocity field due to the non-symmetric stress measure. The
additional rotational degrees of freedom facilitate the generation of
vortices and a wider range of potential dynamic effects are captured
by the model.

Bender et al. [BKKW18] introduce a micropolar model that gen-
eralizes the Navier-Stokes model to simulate incompressible, invis-
cid turbulent flow. They define a non-symmetric stress tensor

T =−p1−µt∇v+µtω
×, (101)

where ω
× = ∑i ε jikωi, εi jk is the Levi-Civita tensor, and µt denotes

the transfer coefficient. Note that in this section we neglect any
dissipation term, such as viscosity, and focus on the generation of
undamped, highly turbulent flows.

Substituting the stress tensor in the conservation laws for linear
and angular momentum in combination with the incompressibility
condition (19) yields the equations of motion:

Dv
Dt

=− 1
ρ
∇p+νt∇×ω+

fext

ρ
(102)

Θ
Dω

Dt
= νt(∇×v−2ω)+

τext

ρ
, (103)

where νt ≥ 0 is the kinematic transfer coefficient, τext the exter-
nal body torque, and Θ a scalar, isotropic microinertia coefficient.
Bender et al. suggest to set Θ = 2m2 s−1 based on experimenta-
tion. Eq. (102) is identical to the inviscid Navier-Stokes equation
but augmented by the term νt∇×ω. This term and the complemen-
tary term νt(∇× v− 2ω) in Eq. (103) effectively convert angular
accelerations into linear accelerations and vice versa. These terms
can be physically interpreted as a model for dissipation-free fric-
tion between the infinitesimal material particles in the fluid which
couples the linear and rotational motion.

To compute the transfer forces Ftransfer
i = miνt∇ × ωi and

torques τtransfer
i = miνt(∇×vi −2ωi) an SPH discretization is ap-

plied using the difference curl formulation [Mon92]:

∇×Ai ≈
1
ρi

∑
j

m j(Ai −A j)×∇Wi j. (104)

These forces are then handled as non-pressure forces and integrated
explicitly as they are considerably less stiff than the pressure forces.
Moreover, the vorticity ω has to be stored in each particle and is
also integrated explicitly:

ωi(t +∆t) = ωi(t)+
∆t

miΘi
(τtransfer

i +τext
i). (105)

Finally, it is recommended to smooth the resulting linear and angu-
lar velocity fields, e.g., using XSPH [Mon92], to ensure coherent
particle motion.

Figure 8 demonstrates the effect of an increasing transfer coef-
ficient in a simulation with three obstacles that cause turbulences.
A lid-driven cavity experiment (see Fig. 9) shows the difference
between vorticity confinement and the micropolar model. In the
experiment the "lid" (top-side) of a two-dimensional cavity, which
is filled with water, is accelerated with a constant velocity. The ve-
locity field is expected to stabilize in a big central vortex and three
minor vortices rotating in the opposite direction. While vorticity
confinement derives the vorticity from the linear velocity field and
is only able to amplify the existing central vortex, the micropo-
lar approach discretizes the linear and angular velocity field inde-
pendently and couples both fields via the transfer terms. This con-
serves existing vortices, facilitates the formation of new vortices,
and yields the expected result in the lid-driven cavity experiment.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

Figure 8: Simulation of 4.7M fluid particles with three obstacles
using the micropolar model with increasing transfer coefficient νt .
Top-down: νt = 0.2m2 s−1, νt = 0.3m2 s−1, νt = 0.4m2 s−1.

Figure 9: Velocity fields of the lid-driven cavity benchmark. Vor-
ticity confinement (left) is only able to generate one large central
vortex. In contrast, the micropolar approach (right) produces the
expected result, i.e., one central vortex and three smaller vortices in
the corners which are rotating in the opposite direction.

7. Data Driven Fluid Simulation

Combining classical numerical simulation techniques with ma-
chine learning methods – and in particular deep neural networks
– is a very active and rapidly growing research field. Different ap-
proaches can be followed to embed domain knowledge in the form
of physical models into the learning, either separately or in tan-
dem. Karniadikis et al. [KKL∗21] distinguishes between observa-
tional, learning and inductive biases that can steer the learning pro-
cess towards identifying physically consistent solutions. Observa-
tional biases can be introduced directly through data (real or simu-
lated), which corresponds to the classic machine learning approach.
A large volume of data is typically necessary to reinforce the bi-
ases and to generate predictions that respect physical principles.
Learning biases are introduced over the loss functions (soft con-
straints), favoring convergence towards solutions that adhere to the
underlying physics. Inductive biases require the neural network ar-
chitecture to encode specific physical properties such that they are

implicitly satisfied (hard constraints). Thuerey et al. [THM∗21] as
well as Wang and Yu [WY21] additionally list the class of hybrid
approaches, where a traditional physics solver is coupled with an
output from a deep neural network. This requires the physics solver
to be fully differentiable and represents the tightest coupling be-
tween simulation and learning. The scientific literature on physics-
based deep learning is rapidly growing across different disciplines,
and we refer the interested reader to the excellent survey article
of Karniadikis et al. [KKL∗21] and the digital book of Thuerey et
al. [THM∗21]. In the following, we focus our survey on particle
simulations only.

7.1. Particle State Prediction with Regression Forests

The seminal work of Ladický et al. [LJS∗15] introduced a surro-
gate model for SPH by employing Regression forests to infer the
system’s state, eliminating the expensive computation of numerical
approximations of the PDEs. For each particle a feature vector Φxi

is evaluated and serves as the input to the regressor. The features
are designed such that they represent the individual forces and con-
straints of the Navier-Stokes equations and model pressure, incom-
pressibility, viscosity and surface tension. Features are computed as
flat-kernel sums of rectangular regions surrounding a particle, and
different box sizes capture both close and distant neighbors. The re-
gression problem is formulated as ai(t) := Reg(Φx∗i), where Reg(.)
is the learned regression function and x∗i is the particle position af-
ter adding external forces, advection and collision handling. Using
this intermediate particle state has two advantages: First, it enables
the regressor to predict compression and hence to counteract those
with a corrective acceleration or velocity (conceptually mimicking
PCISPH [SP09] or PBF [MM13]). Second, arbitrary external forces
(such as surface tension, friction, drag) can be added at test time
without requiring model retraining. This regression fluid approach
enables the simulation of over a million particles in real time.

7.2. Lagrangian Fluids with Convolutional Neural Networks

The work of Tumanov et al. [TKC21] follows the idea of Ladický et
al. [LJS∗15] to regress corrective values to speed up particle-based
fluid simulations. Instead of using a decision tree based model that
requires hand-crafted features, a neural network regressor is used
instead. The regression is formulated such that it substitutes the ex-
pensive iterative Jacobi-style method to enforce incompressibility
in PBF [MM13]. The intermediate particle states and solid obsta-
cles are first rasterized onto a Cartesian grid to enable the use of
3D convolutional networks. The deep learning network then com-
putes a latent representation of this data on the grid, and either a
fully connected network or sub-pixel convolutions are used to ob-
tain the final velocity correction for each particle. With this ap-
proach, large particle numbers running at high frame rates have
been achieved. Although being slightly slower than a decision tree
driven solver [LJS∗15], the method clearly outperforms previous
network-based approaches (e.g., [UPTK20,SGGP∗20]) in terms of
particle count and computational speed.

Ummenhofer et al. [UPTK20] use continuous convolutions that
are repeatedly applied to particles to create a latent space at each lo-
cation. After expanding the size of the latent space over the course

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

of a few layers, it is contracted again to produce the desired result,
e.g., an acceleration or velocity correction. The convolution is eval-
uated on a set of particle positions xi in a radial neighborhood as
(f ∗g)(x) = ∑i f (xi)g(Λ(xi−x)). Λ represents a mapping from the
unit ball to the unit cube and plays a central role, as it allows the use
of a simple grid to represent the unknowns in the convolutional ker-
nel. A radial weighting function was additionally added to ensure a
smooth kernel falloff and hence that the learned influence smoothly
drops to zero for each of the individual convolutions. The fluid sim-
ulation network is trained in a supervised fashion based on particle
trajectories produced by a physics simulation. The loss function
combines two subsequent time steps, and parameters account for
neighbor deficiency and small motions. The method achieves a high
level of accuracy compared to other data-driven approaches. It was
reported to outperform a graph-based network approach [LWT∗19]
while having a reduced implementation complexity.

7.3. Graph Network-based Simulations

Graph networks and their variants (e.g., interaction networks) can
learn the dynamics of various material types. A Hierarchical Re-
lation Network based on hierarchical graph convolution was used
in [MZW∗18] to simulate elastic bodies represented by particles. A
Dynamic Particle Interaction network was employed in [LWT∗19]
for solid objects and fluids, reporting superior performance com-
pared to the aforementioned work. Sanchez et al. [SGGP∗20] in-
troduced a Graph Network-based Simulator, which leverages that
particle-based simulation can be viewed as message-passing on
a graph. The nodes correspond to particles, and the edges repre-
sent pairwise relations between particles, over which interactions
are computed. Applied to SPH, messages passed between nodes
correspond, for example, to the pressure computation using the
smoothed density. Since this neural architecture models physical
states and interactions, it imposes a strong inductive bias. An en-
coder X → G is used to embed the particle-based state represen-
tation as a latent graph; a processor G → G then computes inter-
actions among nodes to generate a sequence of updated learned
latent graphs; and a decoder G →Y extracts the dynamics informa-
tion, such as accelerations, from the nodes of the final latent graph.
The presented examples demonstrate that the Graph Network Sim-
ulation architecture trained on data generated with SPH, PBD and
MPM can successfully learn the dynamics of different materials up
to a resolution of ˜20K particles in 3D. In general, Graph Network
Simulations come at a high level of generality with respect to mate-
rial types, while other neural methods are typically tailored towards
fluid dynamics. The architecture was extended in [LF20] by intro-
ducing two types of graph neural networks, a node-focused graph
network to predict advection and projection, and an edge-focused
graph network to model an elastic collision.

7.4. Differentiable Solvers and Neural Networks

Differentiable physics solvers have proven to be very powerful in
various control task problems. These optimization tasks require the
computation and backpropagation of analytical gradients of a sim-
ulation step. By implementing a physics solver as a neural net-
work prediction this functionality is intrinsically given. This ap-
proach was applied to PBF fluids by Schenk and Fox [SF18] to

optimize fluid parameters from data and to control liquids. Neu-
ral network controllers can also be seamlessly combined with a
traditional physics solver, requiring the solver to be fully differ-
entiable. While auto-differentiation frameworks (such as Theano,
TensorFlow, PyTorch) can be used, the work of Hu et al. [HAL∗20]
is particularly noteworthy as their programming language is tai-
lored for high-performance differentiable physics simulations, and
was used, among others, in conjunction with MPM simulations.
Artistic manipulation of fluids, and in particular neural style trans-
fer from images to smoke, was achieved in Kim et al. [KAGS20]
by coupling a differentiable fluid solver with a pre-trained image
classification network. The optimization computes a control veloc-
ity, such that the fluid density is transported into the desired target
configuration. The Lagrangian representation of the fluid enables
temporally smooth stylization results, but requires particle-to-grid
operations in order to couple it with the pre-trained network. Re-
sults show that arbitrary structures given by 2D input images can
be transferred coherently in space and time onto 3D smoke simula-
tions with a Lagrangian formulation.

8. Conclusion

In this survey, we have summarized and discussed developments
in the field of SPH simulations in the graphics community. We
showed that with the recent improvements, the methods have ulti-
mately emerged as a significant technology to enrich virtual worlds
with physical behavior and their wide adoption has demonstrated
its impact on a vast number of application domains. Many long-
standing challenges have been overcome such that a wide variety
of materials are simulatable while the improvements in robustness
and efficiency allow us to simulate millions of particles on a single
desktop computer as of today. Nevertheless, there are still many
open problems to be solved and challenges to be overcome which
we will outline in the following.

Approximation Quality and its Implications A long standing
problem in the domain of SPH simulation is the degradation
of approximation quality in spatial regions where the particle
count is low. This phenomenon is often referred to as the par-
ticle deficiency problem. Even though numerical accuracy is
rarely the first priority in the context of graphics applications,
low-quality approximations often have an immense effect on
the visual quality of the simulation outcome. Those particle de-
ficiencies are naïvely unavoidable near free surfaces. Numeri-
cally, this effect leads to an underestimation of physical quanti-
ties such as mass density, forces, vorticity, etc. One of the main
consequences of this underestimation is that negative pressures
are usually clamped to avoid particle clumping near the free-
surface (cf., Section 3) and, hence, projecting iterative solvers,
e.g., the projected Jacobi or Gauss-Seidel iterations, have to be
employed while more efficient solvers such as the Conjugate
Gradient Method can not be used. While some solutions to this
problem exist, they are often either computationally intensive,
e.g., [SB12], or their lack of accuracy makes them insufficient,
e.g., using Shepherd filters. Practical yet sufficiently accurate so-
lutions have still to be found.

Unified Solver and Ultimate Coupling While there have been
works focusing on the coupling between SPH solvers simulat-
ing dedicated materials, e.g., [GBP∗17], many solvers are highly

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

specialized to model certain phenomena, e.g., [HHM19], and it
is therefore non-trivial to incorporate them into existing imple-
mentations. The design of a common framework that accommo-
dates the specialized requirements of existing solvers which also
scales well with particle resolution is still a matter of research.

Artist Control As discussed in this survey the community has de-
veloped methods to simulate a wide variety of different ma-
terials. However, their behavior is in most cases solely gov-
erned by physical laws while many graphics applications re-
quire artists to control and edit the behavior to achieve the de-
sired visual effects. Although there is high-demand from in-
dustry, work on artist control still seems to be niche and so
far only a few SPH-specific papers have been published, e.g.,
[ZYWL15, LCY∗19, SPDM20].

Data-driven Solvers Massive advances have been made in the
field of machine-learning but, so far, the body of work on SPH
solvers is relatively small. Given the existing work discussed in
this survey, there is good potential to enhance existing solvers
especially with respect to artist control and stylization but poten-
tially also to contribute to any other subdomain such as material
modeling, neighborhood search, vorticity improvement etc.

We hope that this survey helps to explain the basics as well as
the most recent advances of the SPH-related research to a larger
audience in research and industry and thus facilitate future works
to build on the foundation which has been layed so far.

References

[AHA12] ADAMI S., HU X., ADAMS N. A.: A generalized wall bound-
ary condition for Smoothed Particle Hydrodynamics. Journal of Com-
putational Physics 231, 21 (2012), 7057–7075. 11

[AIA∗12] AKINCI N., IHMSEN M., AKINCI G., SOLENTHALER B.,
TESCHNER M.: Versatile rigid-fluid coupling for incompressible SPH.
ACM Transactions on Graphics 31, 4 (July 2012), 1–8. 9, 10, 17

[AMS∗07] AGERTZ O., MOORE B., STADEL J., POTTER D., MINIATI
F., READ J., MAYER L., GAWRYSZCZAK A., KRAVTSOV A., MON-
AGHAN J., NORDLUND A., PEARCE F., QUILIS V., RUDD D.,
SPRINGEL V., STONE J., TASKER E., TEYSSIER R., WADSLEY J.,
WALDER R.: Fundamental differences between SPH and grid methods.
Mon. Not. R. Astron. Soc. 380, 3 (2007), 963–978. 17

[AO11] ALDUÁN I., OTADUY M. A.: SPH granular flow with friction
and cohesion. In ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (2011), ACM Press. 16

[Ben22] BENDER J.: SPlisHSPlasH Library.
https://github.com/InteractiveComputerGraphics/
SPlisHSPlasH, 2022. 23

[BET14] BENDER J., ERLEBEN K., TRINKLE J.: Interactive Simulation
of Rigid Body Dynamics in Computer Graphics. Computer Graphics
Forum 33, 1 (2014), 246–270. 16

[BGFAO17] BARREIRO H., GARCÍA-FERNÁNDEZ I., ALDUÁN I.,
OTADUY M. A.: Conformation constraints for efficient viscoelastic fluid
simulation. ACM Transactions on Graphics 36, 6 (2017), 221.1–221.11.
13, 17

[BGI∗18] BAND S., GISSLER C., IHMSEN M., CORNELIS J., PEER A.,
TESCHNER M.: Pressure boundaries for implicit incompressible SPH.
ACM Transactions on Graphics 37, 2 (Feb. 2018), 14:1–14:11. 6, 9, 10,
11

[BGPT18] BAND S., GISSLER C., PEER A., TESCHNER M.: MLS pres-
sure boundaries for divergence-free and viscous SPH fluids. Computers
& Graphics 76 (nov 2018), 37–46. 6, 9, 10, 11, 12

[BIT09] BECKER M., IHMSEN M., TESCHNER M.: Corotated SPH for
deformable solids. In Proceedings of Eurographics Conference on Nat-
ural Phenomena (2009), pp. 27–34. 15

[BK15] BENDER J., KOSCHIER D.: Divergence-Free Smoothed Parti-
cle Hydrodynamics. In ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (2015), pp. 1–9. 9

[BK17] BENDER J., KOSCHIER D.: Divergence-Free SPH for Incom-
pressible and Viscous Fluids. IEEE Transactions on Visualization and
Computer Graphics 23, 3 (2017), 1193–1206. 5, 9, 12, 13, 14

[BKCW14] BENDER J., KOSCHIER D., CHARRIER P., WEBER D.:
Position-Based Simulation of Continuous Materials. Computers &
Graphics 44, 1 (2014), 1–10. 14

[BKKW18] BENDER J., KOSCHIER D., KUGELSTADT T., WEILER M.:
Turbulent micropolar SPH fluids with foam. IEEE Transactions on Vi-
sualization and Computer Graphics (2018). 17, 18

[BKWK19] BENDER J., KUGELSTADT T., WEILER M., KOSCHIER D.:
Volume maps: An implicit boundary representation for SPH. In Proceed-
ings of ACM SIGGRAPH Conference on Motion, Interaction and Games
(2019), MIG ’19, ACM. 9

[BKWK20] BENDER J., KUGELSTADT T., WEILER M., KOSCHIER D.:
Implicit frictional boundary handling for SPH. IEEE Transactions on
Visualization and Computer Graphics 26, 10 (2020), 2982–2993. 9, 10,
11, 17

[BL99] BONET J., LOK T.-S.: Variational and momentum preserva-
tion aspects of Smooth Particle Hydrodynamic formulations. Computer
Methods in Applied Mechanics and Engineering 180, 1 (1999), 97 – 115.
14

[BLS12] BODIN K., LACOURSIÈRE C., SERVIN M.: Constraint fluids.
IEEE Transactions on Visualization and Computer Graphics 18 (2012),
516–526. 10

[BMM14] BENDER J., MÜLLER M., MACKLIN M.: A Survey on
Position-Based Simulation Methods in Computer Graphics. Computer
Graphics Forum 33, 6 (2014), 228–251. 14

[BMM17] BENDER J., MÜLLER M., MACKLIN M.: A Survey on Po-
sition Based Dynamics, 2017. In EUROGRAPHICS 2017 Tutorials
(2017), Eurographics Association. 14

[Bri15] BRIDSON R.: Fluid Simulation for Computer Graphics, Second
Edition. Taylor & Francis, 2015. 4, 5

[Bro85] BROOKSHAW L.: A method of calculating radiative heat diffu-
sion in particle simulations. Publications of the Astronomical Society of
Australia 6, 2 (1985), 207–210. 4, 12

[BT07] BECKER M., TESCHNER M.: Weakly compressible SPH for free
surface flows. In ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (2007), pp. 1–8. 6

[CBG∗18] CORNELIS J., BENDER J., GISSLER C., IHMSEN M.,
TESCHNER M.: An optimized source term formulation for incompress-
ible SPH. The Visual Computer (Feb. 2018). 7, 9

[CIPT14] CORNELIS J., IHMSEN M., PEER A., TESCHNER M.: IISPH-
FLIP for incompressible fluids. Computer Graphics Forum 33, 2 (may
2014), 255–262. 17

[CM99] CLEARY P. W., MONAGHAN J. J.: Conduction Modelling Using
Smoothed Particle Hydrodynamics. Journal of Computational Physics
148, 1 (1999), 227 – 264. 12

[CR99] CUMMINS S. J., RUDMAN M.: An SPH Projection Method.
Journal of Computational Physics 152 (1999), 584–607. 6

[dGWH∗15] DE GOES F., WALLEZ C., HUANG J., PAVLOV D., DES-
BRUN M.: Power Particles: An incompressible fluid solver based on
power diagrams. ACM Transactions on Graphics 34, 4 (2015), 50:1–
50:11. 17

[ER03] ESPANOL P., REVENGA M.: Smoothed dissipative particle dy-
namics. Physical Review E 67, 2 (2003), 026705. 12

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/InteractiveComputerGraphics/SPlisHSPlasH
https://github.com/InteractiveComputerGraphics/SPlisHSPlasH

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

[FIF18] FIFTY2 TECHNOLOGY: PreonLab. www.fifty2.eu, 2018.
24

[FM15] FUJISAWA M., MIURA K. T.: An Efficient Boundary Handling
with a Modified Density Calculation for SPH. Computer Graphics Fo-
rum 34, 7 (2015), 155–162. 9, 10

[FMH∗94] FLEBBE O., MUENZEL S., HEROLD H., RIFFERT H.,
RUDER H.: Smoothed Particle Hydrodynamics: Physical viscosity and
the simulation of accretion disks. The Astrophysical Journal 431 (Aug.
1994), 754–760. 12

[Gan15] GANZENMÜLLER G. C.: An hourglass control algorithm for
Lagrangian Smooth Particle Hydrodynamics. Computer Methods in Ap-
plied Mechanics and Engineering 286 (apr 2015), 87–106. 15

[GBP∗17] GISSLER C., BAND S., PEER A., IHMSEN M., TESCHNER
M.: Approximate air-fluid interactions for SPH. In Virtual Reality Inter-
actions and Physical Simulations (Apr. 2017), pp. 1–10. 20

[GHB∗20] GISSLER C., HENNE A., BAND S., PEER A., TESCHNER
M.: An implicit compressible SPH solver for snow simulation. ACM
Transactions on Graphics 39, 4 (Aug. 2020), 1–16. 17

[GM77] GINGOLD R. A., MONAGHAN J.: Smoothed Particle Hydrody-
namics: Theory and Application to Non-Spherical Stars. Monthly No-
tices of the Royal Astronomical Society, 181 (1977), 375–389. 3

[GPB∗19] GISSLER C., PEER A., BAND S., BENDER J., TESCHNER
M.: Interlinked SPH pressure solvers for strong fluid-rigid coupling.
ACM Transactions on Graphics 38, 1 (Jan. 2019), 5:1–5:13. 9, 10, 16,
17

[HA06] HU X., ADAMS N.: A multi-phase SPH method for macroscopic
and mesoscopic flows. Journal of Computational Physics 213, 2 (2006),
844–861. 17

[HAL∗20] HU Y., ANDERSON L., LI T.-M., SUN Q., CARR N.,
RAGAN-KELLEY J., DURAND F.: DiffTaichi: Differentiable program-
ming for physical simulation. In International Conference on Learning
Representations (ICLR) (2020). 20

[HEW15] HUBER M., EBERHARDT B., WEISKOPF D.: Boundary Han-
dling at Cloth-Fluid Contact. Computer Graphics Forum 34, 1 (2015),
14–25. 10

[HHM19] HUANG L., HÄDRICH T., MICHELS D. L.: On the accurate
large-scale simulation of ferrofluids. ACM Transactions on Graphics 38,
4 (July 2019), 93:1–93:15. 17, 21

[HKK07a] HARADA T., KOSHIZUKA S., KAWAGUCHI Y.: Smoothed
Particle Hydrodynamics in complex shapes. In Spring Conference on
Computer Graphics (2007), pp. 191–197. 10, 11

[HKK07b] HARADA T., KOSHIZUKA S., KAWAGUCHI Y.: Smoothed
Particle Hydrodynamics on GPUs. In Computer Graphics International
(2007), pp. 63–70. 10, 11

[HLL∗12] HE X., LIU N., LI S., WANG H., WANG G.: Local Poisson
SPH for Viscous Incompressible Fluids. Computer Graphics Forum 31
(2012), 1948–1958. 6

[Hoo98] HOOVER W.: Isomorphism linking smooth particles and embed-
ded atoms. Physica A: Statistical Mechanics and its Applications 260, 3
(1998), 244–254. 17

[HS13] HORVATH C. J., SOLENTHALER B.: Mass preserving multi-
scale SPH. Pixar Technical Memo 13-04, Pixar Animation Studios,
2013. 17

[IAAT12] IHMSEN M., AKINCI N., AKINCI G., TESCHNER M.: Uni-
fied spray, foam and air bubbles for particle-based fluids. The Visual
Computer 28, 6-8 (2012), 669–677. 5

[IAGT10] IHMSEN M., AKINCI N., GISSLER M., TESCHNER M.:
Boundary handling and adaptive time-stepping for PCISPH. In Virtual
Reality Interactions and Physical Simulations (2010), pp. 79–88. 10

[ICS∗14] IHMSEN M., CORNELIS J., SOLENTHALER B., HORVATH C.,
TESCHNER M.: Implicit incompressible SPH. IEEE Transactions on
Visualization and Computer Graphics 20, 3 (2014), 426–435. 5, 6, 7

[IOS∗14] IHMSEN M., ORTHMANN J., SOLENTHALER B., KOLB A.,
TESCHNER M.: SPH Fluids in Computer Graphics. Eurographics (State
of the Art Reports) (2014), 21–42. 1, 3, 5, 12, 17

[IWT13] IHMSEN M., WAHL A., TESCHNER M.: A Lagrangian frame-
work for simulating granular material with high detail. Computers &
Graphics 37, 7 (nov 2013), 800–808. 17

[JSD04] JUBELGAS M., SPRINGEL V., DOLAG K.: Thermal conduction
in cosmological SPH simulations. Monthly Notices of the Royal Astro-
nomical Society 351, 2 (2004), 423–435. 12

[KAGS20] KIM B., AZEVEDO V. C., GROSS M., SOLENTHALER B.:
Lagrangian neural style transfer for fluids. ACM Transactions on Graph-
ics 39, 4 (2020). 20

[KB17] KOSCHIER D., BENDER J.: Density maps for improved SPH
boundary handling. In ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (July 2017), pp. 1–10. 9, 10, 11

[KBFF∗21] KUGELSTADT T., BENDER J., FERNÁNDEZ-FERNÁNDEZ
J. A., JESKE S. R., LÖSCHNER F., LONGVA A.: Fast corotated elastic
SPH solids with implicit zero-energy mode control. Proc. ACM Comput.
Graph. Interact. Tech. 4, 3 (2021). 14, 15, 16, 17

[KBT17] KOSCHIER D., BENDER J., THUEREY N.: Robust eXtended
Finite Elements for Complex Cutting of Deformables. ACM Transac-
tions on Graphics 36, 4 (2017), 55:1–55:13. 14

[KDBB17] KOSCHIER D., DEUL C., BRAND M., BENDER J.: An
hp-adaptive discretization algorithm for signed distance field genera-
tion. IEEE Transactions on Visualization and Computer Graphics 23,
10 (2017), 2208–2221. 11

[KKB18] KUGELSTADT T., KOSCHIER D., BENDER J.: Fast corotated
FEM using operator splitting. Computer Graphics Forum 37, 8 (2018).
14, 15

[KKL∗21] KARNIADAKIS G., KEVREKIDIS Y., LU L., PERDIKARIS P.,
WANG S., YANG L.: Physics-informed machine learning. Nat Rev Phys
3 (2021), 422–440. 19

[Lau11] LAUTRUP B.: Physics of Continuous Matter. Taylor & Francis,
2011. 12

[LCY∗19] LU J.-M., CHEN X.-S., YAN X., LI C.-F., LIN M., HU S.-
M.: A rigging-skinning scheme to control fluid simulation. Computer
Graphics Forum 38, 7 (oct 2019), 501–512. 21

[LF20] LI Z., FARIMANI A. B.: Accelerating Lagrangian fluid simula-
tion with graph neural networks. In ICLR 2021 SimDL Workshop (2020).
20

[LJS∗15] LADICKÝ L., JEONG S., SOLENTHALER B., POLLEFEYS M.,
GROSS M.: Data-driven fluid simulations using regression forests. ACM
Transactions on Graphics 34, 6 (Oct. 2015), 199:1–199:9. 19

[LL10] LIU M., LIU G.: Smoothed Particle Hydrodynamics (SPH): an
Overview and Recent Developments. Archives of Computational Meth-
ods in Engineering 17, 1 (2010), 25–76. 3

[Łuk99] ŁUKASZEWICZ G.: Micropolar Fluids. Modeling and Simula-
tion in Science, Engineering and Technology. Birkhäuser Boston, 1999.
18

[LWB∗21] LIU S., WANG X., BAN X., XU Y., ZHOU J., KOSINKA J.,
TELEA A. C.: Turbulent details simulation for SPH fluids via vorticity
refinement. Computer Graphics Forum 40, 1 (2021), 54–67. 17

[LWT∗19] LI Y., WU J., TEDRAKE R., TENENBAUM J. B., TOR-
RALBA A.: Learning particle dynamics for manipulating rigid bodies,
deformable objects, and fluids. In International Conference on Learning
Representations (ICLR) (2019). 20

[MBCM16] MÜLLER M., BENDER J., CHENTANEZ N., MACKLIN M.:
A robust method to extract the rotational part of deformations. In Pro-
ceedings of ACM SIGGRAPH Conference on Motion in Games (2016),
MIG ’16, ACM. 15

[Mir96] MIRTICH B. V.: Impulse-based dynamic simulation of rigid body
systems. PhD thesis, University of California at Berkeley, 1996. 16

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

www.fifty2.eu

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

[MM13] MACKLIN M., MÜLLER M.: Position Based Fluids. ACM
Transactions on Graphics 32, 4 (2013), 1–5. 8, 17, 19

[Mon92] MONAGHAN J.: Smoothed Particle Hydrodynamics. Annual
Review of Astronomy and Astrophysics 30, 1 (1992), 543–574. 5, 12, 14,
18

[Mon05] MONAGHAN J. J.: Smoothed Particle Hydrodynamics. Reports
on Progress in Physics 68, 8 (2005), 1703–1759. 2, 11, 12

[MZW∗18] MROWCA D., ZHUANG C., WANG E., HABER N., FEI-FEI
L., TENENBAUM J. B., YAMINS D. L.: Flexible neural representation
for physics prediction. In Neural Information Processing Systems (NIPS)
(2018). 20

[PGBT17] PEER A., GISSLER C., BAND S., TESCHNER M.: An implicit
SPH formulation for incompressible linearly elastic solids. Computer
Graphics Forum (2017). 15, 17

[PICT15] PEER A., IHMSEN M., CORNELIS J., TESCHNER M.: An
Implicit Viscosity Formulation for SPH Fluids. ACM Transactions on
Graphics 34, 4 (2015), 1–10. 12, 13, 14, 17

[Pri12] PRICE D. J.: Smoothed Particle Hydrodynamics and Magneto-
hydrodynamics. Journal of Computational Physics 231, 3 (Feb. 2012),
759–794. 2, 3, 4, 12

[PT16] PEER A., TESCHNER M.: Prescribed velocity gradients for
highly viscous SPH fluids with vorticity diffusion. IEEE Transactions
on Visualization and Computer Graphics (2016), 1–9. 12, 13

[RL96] RANDLES P., LIBERSKY L.: Smoothed Particle Hydrodynam-
ics: Some recent improvements and applications. Computer Methods in
Applied Mechanics and Engineering 139, 1 (1996), 375 – 408. 3

[SB12] SCHECHTER H., BRIDSON R.: Ghost SPH for animating water.
ACM Transactions on Graphics 31, 4 (2012), 61:1–61:8. 5, 17, 20

[SF18] SCHENK C., FOX D.: SPNets: Differentiable fluid dynamics for
deep neural networks. In Proceedings of the Second Conference on Robot
Learning (CoRL) (2018). 20

[SG11] SOLENTHALER B., GROSS M.: Two-scale particle simulation.
TOG 30, 4 (2011), 72:1–72:8. 17

[SGGP∗20] SANCHEZ-GONZALEZ A., GODWIN J., PFAFF T., YING
R., LESKOVEC J., BATTAGLIA P. W.: Learning to simulate complex
physics with graph networks. In International Conference on Machine
Learning (ICLM)) (2020). 19, 20

[Sif12] SIFAKIS E.: SIGGRAPH 2012 Course Notes FEM Simulation
of 3D Deformable Solids Part 1. Tech. rep., University of Wisconsin-
Madison, 2012. 14

[SP08] SOLENTHALER B., PAJAROLA R.: Density Contrast SPH Inter-
faces. In ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (2008), pp. 211–218. 17

[SP09] SOLENTHALER B., PAJAROLA R.: Predictive-corrective incom-
pressible SPH. ACM Transactions on Graphics 28, 3 (2009), 40:1–40:6.
5, 7, 19

[SPDM20] SCHOENTGEN A., POULIN P., DARLES E., MESEURE P.:
Particle-based liquid control using animation templates. Computer
Graphics Forum 39, 8 (nov 2020), 79–88. 21

[TDF∗15] TAKAHASHI T., DOBASHI Y., FUJISHIRO I., NISHITA T.,
LIN M.: Implicit Formulation for SPH-based Viscous Fluids. Computer
Graphics Forum 34, 2 (2015), 493–502. 12, 14

[TDFN14] TAKAHASHI T., DOBASHI Y., FUJISHIRO I., NISHITA T.:
Volume preserving viscoelastic fluids with large deformations using
position-based velocity corrections. The Visual Computer (2014). 17

[THM∗21] THUEREY N., HOLL P., MUELLER M., SCHNELL P.,
TROST F., UM K.: Physics-based deep learning.
https://physicsbaseddeeplearning.org, 2021. 19

[TKC21] TUMANOV E., KOROBCHENKO D., CHENTANEZ N.: Data-
driven particle-based liquid simulation with deep learning utilizing sub-
pixel convolution. Proc. ACM Comput. Graph. Interact. Tech. 4, 1
(2021). 19

[TM05] TARTAKOVSKY A., MEAKIN P.: Modeling of surface tension
and contact angles with Smoothed Particle Hydrodynamics. Physical
Review E 72, 2 (2005), 026301. 17

[UPTK20] UMMENHOFER B., PRANTL L., THUEREY N., KOLTUN V.:
Lagrangian fluid simulation with continuous convolutions. In Interna-
tional Conference on Learning Representations (ICLR) (2020). 19

[WAK20] WINCHENBACH R., AKHUNOV R., KOLB A.: Semi-analytic
boundary handling below particle resolution for Smoothed Particle Hy-
drodynamics. ACM Transactions on Graphics 39, 6 (nov 2020), 1–17.
10

[WBF∗96] WATKINS S. J., BHATTAL A. S., FRANCIS N., TURNER
J. A., WHITWORTH A. P.: A new prescription for viscosity in Smoothed
Particle Hydrodynamics. Astron. Astrophys. Suppl. Ser. 119, 1 (1996),
177–187. 12

[WKBB18] WEILER M., KOSCHIER D., BRAND M., BENDER J.: A
physically consistent implicit viscosity solver for SPH fluids. Computer
Graphics Forum 37, 2 (2018). 12, 13, 14

[WLB∗20] WANG X., LIU S., BAN X., XU Y., ZHOU J., KOSINKA J.:
Robust turbulence simulation for particle-based fluids using the Rankine
vortex model. The Visual Computer 36 (2020), 2285–2298. 17

[WY21] WANG R., YU R.: Physics-guided deep learning for dynamical
systems: A survey. arXiv, 2021. 19

[YJL∗16] YAN X., JIANG Y.-T., LI C.-F., MARTIN R. R., HU S.-M.:
Multiphase SPH simulation for interactive fluids and solids. ACM Trans-
actions on Graphics 35, 4 (July 2016), 79:1–79:11. 17

[ZYWL15] ZHANG S., YANG X., WU Z., LIU H.: Position-based fluid
control. In Symposium on Interactive 3D Graphics and Games (feb
2015), ACM. 21

Appendix A: Biographies

Dan Koschier has been a research associate in the Smart Geome-
try Processing group at University College London until 2019 and
has since moved on to work in the technology industry. He received
his PhD in Computer Science from RWTH Aachen University in
2018. His research interests include physically-based simulation of
deformable solids, cutting, fracture, fluids, machine learning aided
physical simulations as well as character animation.

Jan Bender is professor of computer science and leader of the
Computer Animation Group at RWTH Aachen University. He re-
ceived his diploma, PhD and habilitation in computer science from
the University of Karlsruhe. His research interests include inter-
active simulation methods, multibody systems, deformable solids,
fluid simulation, collision handling, cutting, fracture, GPGPU and
real-time visualization. He serves on program committees of major
graphics conferences, has been program chair of VRIPHYS, VMV
and ACM SIGGRAPH / Eurographics SCA and associate editor for
IEEE Computer Graphics and Applications. Finally, he is the main
developer of SPlisHSPlasH [Ben22], an open-source library for the
physically-based SPH simulation of fluids and solids.

Barbara Solenthaler is a senior research scientist at the Computer
Science department at ETH Zurich, where she leads the research on
simulation and animation. Prior to joining ETH, she received her
Ph.D. in Computer Science from the University of Zurich. In her
research she develops algorithms and techniques for data-driven
physics simulations, where a particular challenge is to synergisti-
cally combine machine learning with 3D modeling and the laws of

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://physicsbaseddeeplearning.org

D. Koschier, J. Bender, B. Solenthaler & M. Teschner / A Survey on SPH Methods in Computer Graphics

dynamics. Her research includes efficient reconstruction of simula-
tions, image based modeling, and artist-controllable simulations,
aiming at transforming and simplifying workflows in visual ef-
fects and medical fields. Barbara is currently also affiliated with
the Institute for Advanced Study at the Technical University of
Munich, where she holds a Hans Fischer Fellowship awarded by
the Siemens AG on digital twin technologies. Barbara serves on
various technical program and organization committees of major
graphics conferences, is appointed as an Associate Editor of Com-
puter Graphics Forum, and is a co-founder of Apagom AG that
provides a real-time fluid engine using machine learning.

Matthias Teschner is professor of Computer Science and head
of the Computer Graphics group at the University of Freiburg.
He received the PhD degree in Electrical Engineering from the
University of Erlangen-Nuremberg in 2000. From 2001 to 2004,
he was research associate at Stanford University and at the ETH
Zurich. His research interests comprise physically-based simula-
tion and rendering. Recent research focuses on the development
of cutting-edge technology for Lagrangian simulations which are
applied in engineering, entertainment technology, art, computa-
tional medicine and robotics. In 2015, Matthias Teschner has been
a co-founder of FIFTY2 Technology, where the SPH-based Preon
solver [FIF18] is being developed. He serves on program commit-
tees of major graphics conferences. He serves or has served as an
associate editor for Computers & Graphics (2009 -), Computer
Graphics Forum (2011 - 2014) and IEEE Transactions on Visual-
ization and Computer Graphics (2018 - 2022). He was conference
co-chair of ACM SIGGRAPH/Eurographics SCA 2016 and pro-
gram co-chair of VMV 2019. He received the highly prestigious
Günter Enderle Award at Eurographics 2014 for his research on
fluid simulation.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

