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1 CONVERGENCE RATE
Whereas measuring convergence rates for standard finite element
discretizations is fairly straightforward, the measurement for em-
bedded methods is more complicated by the need to design a mea-
surement scheme which takes into account the precision with which
the embedded domain is correctly captured. We discuss this problem
more in detail in the following, and describe the setup we use to
verify the convergence rate of the Finite Cell Method for a family of
uniform background meshes with a non-trivial embedded geometry.

1.1 Measuring convergence rate
A popular and straightforward way to study convergence rates of fi-
nite element discretizations is to employ theMethod of Manufactured
Solutions (MMS) (see e.g. [Roache 2002]). The idea is to construct the
problem from a prescribed exact solution — in this case a prescribed
displacement function u — by determining the remaining terms in
the PDE so that they are consistent with the desired exact solution.
By judiciously choosing a well-behaved, smooth, solution u, opti-
mal convergence rates in the 𝐿2 and 𝐻1 norms can then be attained.
However, when manufacturing solutions in this way, one typically
decides on the exact solution before deciding on the domain. Hence,
the shape of the domain has no impact on the exact solution to the
problem, and as a consequence, two different numerical solutions
for two different domains will converge to the same solution when
restricted to the intersection of the two domains. In the context of
embedded methods, this means that solving the PDE on the back-
ground mesh with the standard FEM will essentially give the same
solution as solving the PDE on the exact embedded domain. Hence,
the MMS is not well-suited for studying the convergence rate of
the FCM, as essentially the same solution is obtained regardless of
whether the exact embedded domain is accurately captured or not.
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More than just confirming expected convergence rates, we would
like to contrast themwith the results of simply applying the standard
FEM applied to the background mesh. This leaves us with some
constraints on how we can formulate our test problem:

• The domain should contain some flat region on which homo-
geneous Dirichlet boundary conditions (zero displacement)
can be consistently applied across all discretizations.

• In order to avoid discrepancies in how boundary integrals are
treated, the solution should satisfy homogeneous Neumann
conditions on the non-Dirichlet portion of the boundary (zero
surface traction).

• The domain must be non-trivial, in the sense that a coarse
polyhedral FEM discretization can not exactly capture its
shape.

• Optimal convergence rates are not generally attained for
real-world problems unless graded or adaptive meshes are
employed. Since we would like to study convergence rates
for regular meshes, the solution must be sufficiently regular
as well (smooth and without sharp gradients).

Sincewe can not useMMS for the aforementioned reasons, andwe
are not aware of any published problems with exact solutions that
would fit the requirements we have laid out, we resort to computing
a high-resolution reference solution and compare a set of lower-
resolution discretizations to the reference solution.

1.2 Problem description
We study the deformation of a linearly elastic material in a static
equilibrium setting, with Poisson’s ratio 𝜈 = 0 and Young’s modulus
𝐸 = 5 · 106 Pa. Consider the unit ball 𝐵1 and the half-space 𝐻 ⊆ R3
defined by𝑦 ≥ 0. The intersection 𝐵1∩𝐻 is a hemisphere, on whose
flat region (𝑦 = 0) we impose the Dirichlet condition u = 0. The
remaining part of the boundary is assumed to have zero traction.
We thus consider the PDE in weak form

−
∫
Ω
P(F) : ∇w𝑑X +

∫
Ω
fext ·w𝑑X = 0 ∀w ∈ 𝑉 .

Since we do not have an exact solution available, the choice of fext
is crucial to reproducing optimal convergence rates. A simple choice
would be the standard gravitational force. However, this leads to
localized stress concentrations near the structural weak points of
the domain (𝑦 = 0, 𝑥2 + 𝑧2 = 1), which appears to preclude higher-
order convergence rates with regular meshes, presumably due to
a lack of sufficient regularity in the exact solution. Therefore we
instead use an artificial force which is concentrated at the top of
the hemisphere and fades out before reaching the aforementioned
structural weak points. The resulting deformation is a slight dent
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Fig. 1. The reference domain of the hemisphere experiment used for experi-
mental convergence analysis.

on the top of the hemisphere. Specifically, we define the body force
fext as

fext (𝑥,𝑦, 𝑧) = −𝛼 𝜓
(
3
√
𝑥2 + 𝑧2

)
𝑦 ŷ,

where ŷ = (0, 1, 0), 𝛼 := 5 · 105 and𝜓 is the standard bump function
defined by

𝜓 (𝑟 ) =

exp

(
− 1

1−𝑟 2

)
, 𝑟 ∈ (−1, 1)

0 otherwise.
(1)

Note that the composition 𝜓 (3
√
𝑥2 + 𝑦2) is smooth even though√

𝑥2 + 𝑦2 is not.

1.3 Discretization
In principle, our embedded method could handle curved boundaries
if we were to use an appropriate subdivision integration method
that can accurately deal with curved interfaces and couple it with
our simplification algorithm. However, it would be difficult with
our current setup to compute an accurate reference solution on
such a curved domain, and our focus is in any case on polyhedral
domains. Therefore we instead consider a tetrahedral approxima-
tion of the hemisphere with 10395 tetrahedra generated by Gmsh
[Geuzaine and Remacle 2009], depicted in Figure 1. This means that
the exact domain Ω is a polyhedron, not a real hemisphere. As a
reference solution, we apply two rounds of uniform refinement to
produce a boundary-conforming tetrahedral mesh with 665k ele-
ments and 120k vertices. We use cubic tetrahedral elements for the
finite element discretization, so that the total node count is 3.1M
nodes.

We consider a family of uniform hexadral meshes with (2𝑖)×(2𝑖)×
𝑖 cells, where 𝑖 ∈ {1, 2, 4, 8, 16, 24, 32}. Each uniform mesh covers
the domain [−1, 1] × [0, 1] × [−1, 1]. The mesh cell width ℎ is then
defined by ℎ := 1/𝑖 . For each resolution 𝑖 , all cells that lie completely
outside the embedded domain Ω are discarded, and the remaining
cells form the background mesh Ω𝑖

ℎ
. We consider elements Hex8

(trilinear hexahedra) and Hex20 (quadratic Serendipity elements).
We solve the problem in two ways: by simulating on Ω𝑖

ℎ
with the

standard FEM, and by embedding the exact domain Ω into Ω𝑖
ℎ
with

the algorithm from Section 4 to form quadrature rules that we use

for the FCM. Since we focus on order of convergence for the finite
element spaces, we would like to eliminate systematic errors due
to inaccurate integration. In all experiments, we use sufficiently
high-order quadratures so that quantities are exactly integrated
(in the case of the stiffness matrix and internal forces) or to very
high precision with polynomial order 10 in the case of the external
force, which contains a non-polynomial exponential function. For
the stiffness matrix and internal force, we used our simplification
algorithm, which gave the same results as in the non-simplified case,
as expected.
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Fig. 2. 𝐿2 errors relative to a high-resolution reference solution for a static
equilibrium problem.

To measure the errors, we compute the squared 𝐿2 error in each
element of the reference discretization (cubic tetrahedra) by interpo-
lating the displacements of the reference solution and the FEM/FCM
approximation at quadrature point locations in the cells of the refer-
ence mesh. The resulting 𝐿2 error as a function of mesh width ℎ is
depicted in Figure 2. The expected convergence rates for a Finite Ele-
ment space with polynomial degree 𝑝 is O(ℎ𝑝+1) [Brenner and Scott
2007], which corresponds to ℎ2 for Hex8 and ℎ3 for Hex20. Here
we see how the standard FEM (which does not treat the embedded
domain accurately) experiences a severe reduction in convergence
rate. In this case, the overall error is dominated by the local error
near the hemisphere surface, which is a result of the poorly captured
geometry. Moreover, the higher-order Hex20 elements are unable
to improve over the (already poor) Hex8 results, suggesting that
the main benefits of a higher-order discretization are essentially
lost when the geometry is poorly approximated. In contrast, the
FCM results show optimal convergence rates, though the rate for
Hex20 diminishes somewhat for higher resolutions (lower ℎ). Since
an exact solution is not available, we are not able to ascertain with
certainty the cause, but some plausible factors that come into play
are:

• The (numerical) reference solution is perhaps not accurate
enough.

• The exact solution may not be sufficiently regular.
• The handling of Dirichlet boundary conditions is not optimal,
in the sense that some nodes of the background mesh at𝑦 = 0
are constrained to have zero displacement even though they
lie outside of the embedded domain Ω. This might perhaps
overconstrain the solution space for higher-order elements.
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Nevertheless, the results demonstrate that the FCM coupled with
our embedded quadrature algorithm is able to attain higher order
convergence rates, and clearly outperforms the standard FEM for
hexahedral meshes where the geometry can not be accurately cap-
tured. This is especially true for higher-order elements, such as the
quadratic Serendipity Hex20 elements.
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