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Fig. 1. Sequence of four simulation steps of a deformable hollow ball with holes which is compressed and twisted. Our embedded simulationmethod with higher-
order finite elements is able to capture the complex deformation behavior of the model without the requirement of a high-resolution boundary-conforming
discretization. Note that self-collisions are not handled in this simulation.

As demands for high-fidelity physics-based animations increase, the need
for accurate methods for simulating deformable solids grows. While higher-
order finite elements are commonplace in engineering due to their superior
approximation properties for many problems, they have gained little traction
in the computer graphics community. This may partially be explained by
the need for finite element meshes to approximate the highly complex
geometry of models used in graphics applications. Due to the additional per-
element computational expense of higher-order elements, larger elements
are needed, and the error incurred due to the geometry mismatch eradicates
the benefits of higher-order discretizations. One solution to this problem is
the embedding of the geometry into a coarser finite element mesh. However,
to date there is no adequate, practical computational framework that permits
the accurate embedding into higher-order elements.

We develop a novel, robust quadrature generation method that generates
theoretically guaranteed high-quality sub-cell integration rules of arbitrary
polynomial accuracy. The number of quadrature points generated is bounded
only by the desired degree of the polynomial, independent of the embedded
geometry. Additionally, we build on recent work in the Finite Cell Method
(FCM) community so as to tackle the severe ill-conditioning caused by par-
tially filled elements by adapting an Additive-Schwarz-based preconditioner
so that it is suitable for use with state-of-the-art non-linear material models
from the graphics literature. Together these two contributions constitute
a general-purpose framework for embedded simulation with higher-order
finite elements.
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We finally demonstrate the benefits of our framework in several scenarios,
in which second-order hexahedra and tetrahedra clearly outperform their
first-order counterparts.
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1 INTRODUCTION
The Finite Element Method (FEM) is a tried and tested solution
to many engineering problems, and also has a long tradition in
computer graphics, in particular for the dynamic simulation of
deformable bodies. Over the past few decades, a vast amount of
research on first-order discretizations has pushed the first-order
elements — linear tetrahedra and trilinear hexahedra — close to their
computational limits. Whereas traditionally the goal of computer
graphics researchers has been plausibility at modest computational
costs, there is a growing trend towards, and demand for, high-fidelity
predictive simulations that faithfully reproduce real-life behavior.
This is particularly important for virtual prototyping applications,
as well as for pushing the boundaries of animation and visual effects.
In order to meet this phenomenal challenge, it is our opinion that
more effective algorithmic strategies that exhibit faster convergence
towards high-fidelity solutions are needed.
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Under the right conditions, higher-order elements offer signifi-
cantly higher convergence rates than first-order elements, and by
more faithfully capturing variations in the underlying stress field,
are less prone to locking effects. However, due to the increased
computational expense of the higher-order formulation, it is gener-
ally necessary to use larger elements. This in turns leads to a less
accurate approximation of the often highly complex geometrical
models used in computer graphics applications. As a result, the
errors incurred due to the geometrical mismatch essentially negate
the benefits of the higher-order discretization.

A solution to this issue is to accurately embed the high-resolution
geometry into a lower resolution background mesh, so that the
correct distribution of mass and stiffness can be accommodated by
the discretization. There exists a vast body of research in various
finite element communities on methods that accomplish this task in
subtly different ways. For this publication, we have been particularly
inspired by the Finite Cell Method (FCM) [Parvizian et al. 2007],
which in its simplest form is just the finite elementmethod combined
with a procedure for sub-cell integration of the cut cells, i.e. the
cells in the background mesh that intersect the boundary of the
embedded geometry. For non-linear problems in particular, such
as the simulation of non-linear deformable solids, it is of crucial
importance to obtain high-quality, efficient numerical quadrature
rules for the elements used. Higher-order elements generally require
more accurate integration, putting additional demand on the quality
of the numerical quadrature.

Part of the success of the FEM is arguably owed to its standardized
integration procedure. Since elements of the same type use the same
quadrature rules regardless of their shape, high-quality tabulated
rules with strong theoretical properties are always in reach. This is
no longer the case for the FCM or other embedded methods, where
individual cut elements require custom rules. However, to ensure
robust simulations in all cases, including fully automated pipelines,
it is crucial that the quadrature rules for individual elements satisfy
certain theoretically guaranteed properties.
Our main contribution is a novel robust quadrature generation

algorithm that guarantees that all quadrature rules produced for cut
elements satisfy the following quality criteria:

• Accuracy. Constructed quadrature rules are accurate up to
the required polynomial degree𝑚.

• Boundedness. The number of quadrature points is bounded
by a reasonably small number depending only on the polyno-
mial degree𝑚, and is independent of the complexity of the
embedded geometry.

• Authenticity. Quadrature points are always inside the embed-
ded geometry.

• Positivity. Quadrature weights are always positive.
• Efficiency. Quadrature rules can be computed efficiently.

Accuracy is necessary to ensure that all finite element quantities
(mass matrix, stiffness matrix, etc.) can be computed to sufficient
accuracy in order to ensure theoretically predicted convergence
rates. For non-linear problems, numerical quadrature is typically
repeatedly re-used. Since assembly scales linearly with the number
of quadrature points, it is of crucial importance that the number

of quadrature points is bounded independently of the embedded ge-
ometry, so that the computational complexity of assembly depends
only on the complexity of the background mesh. The requirement on
authenticity, i.e. that the quadrature points do not lie in a fictitious
domain outside the embedded geometry, ensures that we can assign
meaningful material parameters to the quadrature points. Moreover,
the evaluation of non-linear basis functions sufficiently far outside
the embedded domain is tantamount to polynomial extrapolation,
which could lead to unpredictable effects on the solution. Positivity
prevents negative weights from contributing negative eigenvalues
to the coefficient matrices. Negative weights lead to non-physical
phenomena associated with negative volume for some physical pro-
cesses. Finally, our method computes the quadrature rules efficiently.
This facilitates fast iteration times or even on-the-fly adaptations to
changing topology. To our knowledge, our quadrature generation
algorithm is the only algorithm that theoretically guarantees all the
above properties, in graphics or elsewhere in literature.
De Prenter et al. [2019] recently proposed an Additive-Schwarz-

type preconditioner for the FCM that effectively resolves the severe
ill-conditioning that arises when cut cells with small volume over-
laps are present. However, it is not directly applicable to state-of-
the-art non-linear material models found in the computer graphics
literature. We extend the preconditioner so that it is applicable also
in this setting. Together with a stabilization strategy, we demon-
strate that we are able to overcome the severe ill-conditioning issues
that plague embedded methods.
Previous works in graphics have exclusively considered embed-

ded simulation with first-order elements. The aforementioned con-
tributions constitute a general-purpose framework for higher-order
finite element simulation of embedded deformables. We show in
Section 6 the computational advantages of our framework by demon-
strating that second-order hexahedra and tetrahedra clearly outper-
form their first-order counterparts in several scenarios.

2 RELATED WORK
The simulation of deformable bodies has a long history in computer
graphics and there is a vast amount of related work on this topic.
Here we mainly focus on publications which are closely related to
our work, like methods for embedding high-resolution solids in a
simpler background mesh and higher-order finite element methods.
For a general overview we refer the reader to the survey of Nealan
et al. [2006] and a good introduction to finite element methods can
be found in the Siggraph course of Sifakis and Barbic [2012].

2.1 Embedded simulation in graphics
A simple way of embedding the simulated geometry into a coarser
background mesh is to treat all elements of the background mesh as
completely filled. The embedded geometry is deformed by interpo-
lating the displacements from the background mesh. This approach
has been used by several authors to simulate embedded geometry
[Faloutsos et al. 1997; James et al. 2004; Müller et al. 2004; Rivers
and James 2007] or to achieve spatially adaptive FEM simulations
[Debunne et al. 2001]. In a similar way the virtual node algorithm
[Molino et al. 2004; Sifakis et al. 2007] which was originally designed
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for cutting and fracturing applications can be used to simulate em-
bedded geometry. However, treating the partially filled elements as
completely filled means that the mass and stiffness properties of the
embedded geometry are not accurately captured, which can lead to
visual artifacts.

To handle partially filled elements of the background mesh ac-
curately, Kaufmann et al. [2008] employ a discontinuous Galerkin
(DG) FEM. It is problematic that their method relies on analytic
integrals of polynomials to assemble the system matrices because
this does not extend to non-linear material models. Later, Kaufmann
et al. [2009] also apply the DG-FEM to cutting of shells. Patterson
et al. [2012] propose a FEM method that embeds detailed geometry
into a regular lattice. They reach sub-voxel accuracy by introducing
a specialized integration rule for partially filled boundary cells. How-
ever, this only works for hexahedra with trilinear shape functions
and it is not obvious whether it can be generalized to work with
higher-order elements. Their quadrature rule construction cannot
guarantee that all quadrature points are inside the embedded geom-
etry which is problematic when higher-order elements are used. In
summary, none of these previous works on embedded simulation
present an accurate sub-cell integration method that satisfies all
of the five quality criteria that we outlined in Section 1. However,
these properties are important for achieving efficient and robust
embedded simulations with higher-order finite elements.

Some authors propose methods based on multi-scale techniques,
in which the basis of a coarse background mesh is adapted to better
capture the underlying behavior of an embedded, fine-resolution
solid [Budninskiy et al. 2019; Chen et al. 2018, 2019; Kharevych et al.
2009; Nesme et al. 2006]. Nesme et al. [2009] propose an embedded
FEM approach that uses a projection between different levels of
a hierarchical hexahedral grid that allows for relatively accurate
handling of empty spaces and different material parameters within
each cell. We remark that such basis adaptation is largely orthogonal
to our method: we make no attempt to modify the finite element
basis to be better suited for a particular deformable solid, and such
techniques could in principle be built on top of our framework.

2.2 Higher-Order FEM in Graphics
In contrast to engineering, where higher-order methods are often
preferred because of their superior accuracy and convergence prop-
erties, most works in computer graphics use FEM with linear shape
functions because of their simplicity and computation speed [Kugel-
stadt et al. 2018]. However, there are a few works that show that
higher-order methods are useful also in graphics. Roth et al. [1998]
use quadratic tetrahedral finite elements with Bézier basis functions
in surgery simulations. Mezger et al. [2009] employ quadratic tetra-
hedral elements to simulate elastoplastic materials for the purpose
of shape editing. Bargteil and Cohen [2014] present a simulation of
deformable bodies in which they can adaptively switch from linear
to quadratic elements in regions of large deformations where more
accuracy is required. Weber et al. [2013; 2015] present an efficient
GPU implementation of a simulation method with quadratic ele-
ments and a method with cubic elements and p-multigrid solver.
These previous works show that higher-order FEM can produce
better simulation quality or save computation time because fewer

(a) FEM - 1348 elements (b) FCM - 32 cells

Fig. 2. Since the FCM does not need to fit the boundary, one can generate
substantially simpler finite element meshes that still capture the main topo-
logical features of the embedded geometry. We refer to the finite element
mesh used in the FCM as the background mesh.

elements are needed in comparison to linear ones. However, in all of
these methods the benefit from using fewer elements is limited by
the need for conforming discretizations. In contrast, Rémillard and
Kry [2013] use quadratic B-spline elements on a regular lattice to
model volumetric deformation of an embedded solid coupled with
thin shell surface deformations. However, they do not accurately
account for the material distribution in the partially filled elements
near the surface.

2.3 Finite Cell Method
We discuss relevant connections to the Finite Cell Method [Düster
et al. 2008; Parvizian et al. 2007] in Section 4 for topics related to
sub-cell integration and Section 5 for topics related to the treatment
of ill-conditioning. We recommend the review paper by Schillinger
and Ruess [2015] for an overview.

3 EMBEDDED FINITE ELEMENTS FOR DEFORMABLE
SOLIDS

First, we briefly review finite element methods for deformable solids,
thereby introducing our notation and establishing the mathematical
framework we need for the following sections.

3.1 Background
We consider the equation of motion for a deformable solid, posed
in its reference configuration:

𝜌 ¥u = div P(F) + fext in Ω. (1)

Here Ω ⊆ R𝑑 is the 𝑑-dimensional geometry of the solid, 𝜌 = 𝜌 (X)
is the density at point X in the configuration. Similarly, u = u(𝑡,X)
is the displacement at time 𝑡 , F the deformation gradient, P the
first Piola-Kirchhoff stress tensor and fext = fext (𝑡,X) represents
the external forces per unit volume. We have here omitted the
inclusion of damping forces in order to simplify the presentation,
but e.g. Rayleigh damping may be incorporated as in any other
FEM framework. The resulting weak form associated with the finite-
dimensional Galerkin problem is∫

Ωℎ
𝜌 ¥uℎ ·wℎ 𝑑X = −

∫
Ωℎ

Pℎ : ∇wℎ 𝑑X +
∫
𝛿Ωℎ

𝝉 ·wℎ d𝐴

+
∫
Ωℎ

fext ·wℎ 𝑑X ∀wℎ ∈ 𝑉 FEM
ℎ

,

(2)
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where wℎ is a test function in the finite-dimensional approximation
space 𝑉 FEM

ℎ
, Ωℎ is the domain associated with the finite element

mesh and 𝛿Ωℎ its boundary. 𝝉 represents the surface traction. We
do not consider Neumann boundary conditions, and we remark
that the surface traction terms on the Dirichlet boundary may be
ignored when the Dirichlet nodes are constrained directly to the
boundary. For traditional finite element methods, it is assumed that
Ω ≈ Ωℎ , i.e. that the finite element mesh closely approximates the
real geometry Ω.

3.2 Embedded Finite Elements
In computer graphics applications, it is usually of interest to simulate
high-resolution geometry at comparatively low cost. It is therefore
common practice to embed high-resolution geometry into a lower-
resolution simulation mesh. In the context of finite elements, the
simplest form of embedding is realized simply by simulating an as-
sociated lower resolution, enclosing finite element mesh, which we
refer to as the background mesh (Figure 2b). Then the displacement
of the high-resolution embedded geometry is interpolated from the
coarser background mesh. Although straightforward, this method
artificially adds mass and stiffness in regions devoid of material,
because the integral is computed over a larger domain Ωℎ ⊇ Ω. We
show in Section 6 that a poor approximation of the geometry may
lead to a severe decrease in convergence rate of the FEM.
Conceptually, the remedy is simple: Simply replace the integra-

tion domain Ωℎ in the weak form (2) with the embedded geometry
Ω. This means that the typical per-element integrals in the FEM are
replaced by integrals over partially filled elements. If these integrals
are computed exactly, then the resulting method is mathematically
equivalent to the Finite Cell Method (FCM) (and other similar im-
mersed methods). In order to distinguish between the standard FEM
and our embedded method, we will henceforth refer to standard
discretizations on Ωℎ as FEM, and the method that arises when
embedding Ω into Ωℎ and integrating over Ω as FCM.
Alas, this remedy immediately poses two major computational

challenges. First is the realization of an effective integration method
for the intersection of embedded geometry and individual finite
elements. Second, the embedding almost invariably leads to very
small supports of some basis functions, wreaking havoc on the
conditioning of the finite element equations. We present solutions
to both these problems in the following sections.

4 INTEGRATION OF CUT ELEMENTS
All matrix and vector components associated with the FEM can be
decomposed as a sum of integrals over individual elements. These
per-element integrals are then computed by tabulated quadrature.
This is also the case for the FCM, except that the integrals for ele-
ments that intersect the boundary of Ω must take into account only
the part of the element that intersects Ω. Thus, the FEM and FCM
differ only in the quadrature rules used for boundary elements.

A question that arises is how accurate the quadrature rules need
to be. In general, higher-order elements require quadrature rules
that are accurate to higher polynomial accuracy. Bathe [2006] recom-
mends to use exact quadratures when possible to ensure reliability.

For linear elasticity, the integrands are polynomials and can be ex-
actly evaluated, but for non-linear problems, the best choice may be
very problem-dependent. Since our method allows us to construct
quadrature rules that are exact up to any desired polynomial order,
we leave the choice of accuracy to the user.

We will proceed to make the discussion more mathematically pre-
cise. Basis functions are defined on a reference element (sometimes
called master element) and transformed for each element 𝐾 by an
invertible mapping 𝑇𝐾 : 𝐾̂ → 𝐾 from the reference element 𝐾̂ to 𝐾 .
This construction makes it convenient to transform integrals from
material space back to integrals over the reference element. For a
given quantity 𝑓 (X), we have∫

𝐾∩Ω
𝑓 (X) 𝑑X =

∫
𝑇 −1
𝐾

(𝐾∩Ω)
𝑓 (𝑇𝐾 (𝝃 )) |𝐽𝐾 (𝝃 ) | d 𝝃 (3)

≈
𝑁∑
𝑗=1

𝑤 𝑗 𝑓 (𝑇𝐾 (𝝃 𝑗 )) |𝐽𝐾 (𝝃 𝑗 ) |, (4)

where 𝑤 𝑗 , 𝝃 𝑗 for 𝑗 = 1, . . . , 𝑁 represent quadrature weights and
points in the reference element 𝐾̂ , and 𝐽𝐾 denotes the Jacobian of the
transformation𝑇𝐾 . If 𝐾 = 𝐾 ∩Ω (as it is assumed for the traditional
FEM), then 𝑇−1

𝐾
(𝐾 ∩ Ω) = 𝐾̂ and we may use standard quadrature

rules. Thus, we focus only on the construction of specialized per-
element integration rules for elements𝐾 that intersect the boundary
of the embedded geometry, often referred to as cut or partially filled
elements. Roughly speaking, quadrature construction algorithms
rely on one (or both) of the following paradigms:

• Geometric methods. The embedded domain is somehow (ap-
proximately) decomposed into smaller regions for which
quadrature rules are known.

• Moment-fitting methods. Quadrature rules are obtained as the
solution to an algebraic problem involving the moments of
polynomials.

In the following sections, we will briefly describe some common
approaches to integration of partially filled cells. Building on these
approaches, we describe our proposed quadrature simplification
method in Section 4.4. Finally, in Section 4.5 we propose a geometric
method that, when combined with our simplification scheme is suit-
able for quadrature generation for polyhedral embedded geometry.
Figure 3 demonstrates our proposed procedure for computing quad-
rature rules for a given pair of background and embedded meshes.

4.1 Geometric subdivision
Methods based on geometric subdivision are conceptually simple
and can produce high-quality quadrature rules, though at the ex-
pense of a large number of quadrature points. Given a background
cell 𝐾 and embedded geometry Ω, the cell is left unchanged if it
is entirely contained inside the embedded geometry. Otherwise,
if the cell intersects the boundary of the embedded geometry, an
approximate geometry 𝐾̃ is constructed by recursively subdividing
the cell 𝐾 . For each subdivision level, the sub-cells entirely outside
the embedded geometry are discarded. Then only cells that intersect
Ω are recursively subdivided. The recursive process stops either at a
predefined maximum depth or when a sufficiently good approxima-
tion of the embedded geometry has been obtained. Once the octree
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Background mesh

Embedded mesh Intersection Quadrature generation Quadrature simplification

Fig. 3. We embed a mesh of a frog with 55 triangles into a background mesh consisting of 6 triangles and compute quadrature rules that are exact for
polynomials of order 2 for each background element. Intersection (Section 4.5): For each background cell, we compute the intersection of the embedded
mesh with the background cell, which gives a collection of convex polygons.Quadrature generation (Section 4.5): For each background cell, each polygon is
triangulated. For each resulting triangle, we take a standard 3-point triangle quadrature rule (accurate up to order 2 polynomials) and map the weights and
points to material space, such that the collection of points from all triangles form an initial quadrature rule for each background element, with a total of 429
points in all background elements. The quadrature is accurate to polynomial order 2. Larger area and darker color corresponds to larger weights. Quadrature
simplification (Section 4.4): The quadrature rule in each background elements is simplified by picking at most𝑀 = 6 weights from the initial quadrature and
a new set of positive weights. The resulting quadrature consists of 36 points in total, and is also accurate to polynomial order 2. Note that in practice, the
quadratures are stored (and simplified) in coordinates of the reference element, not in world coordinates as depicted here.

has been sufficiently refined, a quadrature rule can be constructed
by combining the Gauss quadratures of the individual sub-cells.
Subdivision methods have been extensively researched within

the FCM community. Traditionally the FCM has been associated
with regularly shaped hexahedral elements (see e.g. [Düster et al.
2008; Parvizian et al. 2007]), for which an octree subdivision scheme
is straightforward to implement, but there also exist similar sub-
division methods for tetrahedral elements, in the form of TetFCM
[Duczek et al. 2016]. We mention smart octrees [Kudela et al. 2016]
as an important variation of this paradigm, in which cells are sub-
divided according to locations of sharp features of the embedded
geometry. Nevertheless, the number of quadrature points obtained
from any purely geometrical method generally increases with the
complexity of the embedded geometry, unless accuracy is compro-
mised by limiting the number of quadrature points generated.

4.2 Moment fitting
Moment fitting is a fundamentally different approach to quadrature
generation [Müller et al. 2013]. We limit our discussion to moments
associated with total-order polynomials. Let P𝑑𝑚 denote the space of
polynomials inR𝑑 of total order at most𝑚. Then if 𝑓 is a polynomial
function in P𝑑𝑚 , it can be expanded in an appropriate basis such that

𝑓 (𝝃 ) =
𝑀∑
𝑖=1

𝜅𝑖𝑝𝑖 (𝝃 ) (5)

for basis polynomials 𝑝𝑖 and weights 𝜅𝑖 . Even when 𝑓 is not a
polynomial, it is widely recognized that quadrature rules based
on polynomial approximation are well-suited for general purpose
integration of smooth functions. The simplest choice of basis, the
monomial basis, would give basis polynomials of the form 𝑥𝛼𝑦𝛽𝑧𝛾

for 𝛼 + 𝛽 + 𝛾 ≤ 𝑚. The number of basis polynomials𝑀 = dimP𝑑𝑚 is
given by (see e.g. [Xu 1997])

𝑀 =

(
𝑚 + 𝑑
𝑚

)
. (6)

Given 𝑁 quadrature points 𝝃 𝑗 ∈ R𝑑 and weights𝑤 𝑗 for integrating
over a domain 𝐷 , the quadrature rule is able to exactly integrate 𝑓
in 𝐷 if the rule is able to integrate every basis polynomial exactly.
This leads to the set of algebraic equations

©­­«
𝑤1𝑝1 (𝝃 1) +𝑤2𝑝1 (𝝃 2) + · · · +𝑤𝑁 𝑝1 (𝝃𝑁 )

.

.

.

𝑤1𝑝𝑀 (𝝃 1) +𝑤2𝑝𝑀 (𝝃 2) + · · · +𝑤𝑁 𝑝𝑀 (𝝃𝑁 )

ª®®¬ =
©­­­«
∫
𝐷
𝑝1 (𝝃 ) d𝝃
.
.
.∫

𝐷
𝑝𝑀 (𝝃 ) d𝝃

ª®®®¬ ,
which is compactly represented by the𝑀 × 𝑁 system of non-linear
equations, in which 𝑃 = 𝑃 (𝝃 1, . . . , 𝝃𝑁 ) ∈ R𝑀×𝑁

𝑃w = b. (7)

Computing good quadrature points from the above relation is a
major computational challenge. For this reason, most practitioners
simplify the problem by a-priori determining a set of suitable points
based on application-specific heuristics. With the points fixed, the
problem reduces to the solution of a linear system for the weights.
However, the conditioning of the matrix 𝑃 often makes it very
difficult to obtain highly accurate solutions, especially for higher-
order polynomials. Moreover, the resulting weights are in general
not positive. We remark that there exist sophisticated and very
computationally expensive methods that may be able to solve the
full non-linear problem (see e.g. the work of Keshavarzzadeh et
al. [2018] and the references therein), but to our knowledge, the
robustness of these procedures is not guaranteed.

Additionally, some geometric procedure is still required for com-
puting the integrals in the vector b. Popular choices are Monte Carlo
integration [Patterson et al. 2012] or transforming volume integrals
to surface integrals by way of the divergence theorem [Hafner et al.
2019; Koschier et al. 2017]. In the first case, it might prove difficult
to obtain sufficient accuracy for polynomials of higher order. In the
second case, self-intersections or non-manifold surface geometry
might reduce the robustness of the procedure.
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4.3 LP-based moment fitting
Ryu and Boyd [2014] demonstrated that Gauss quadratures may
be formulated as solutions to an infinite-dimensional Linear Pro-
gram (LP). From this, they developed a method in which a finite-
dimensional LP based on moment-fitting of a fine sampling of points
in the domain of interest is solved to obtain an initial quadrature
rule, which is further improved through non-linear optimization.
However, as remarked by other authors [Jakeman and Narayan

2018], the solvability of this LP is closely tied to the placement of
points, andmay fail altogether, whichmatches our own observations
while working with the closely related LP formulation that we
will present in the next section. As a result, additional complex
safeguards are necessary to ensure convergence, and the theoretical
guarantees provided by the original infinite-dimensional LP cannot
be maintained in practice.

4.4 Simplification of high-quality rules
We have seen that while geometric methods can produce high-
quality rules with positive weights and points (approximately) in-
terior to the embedded geometry, the number of points produced
may easily make simulations intractably expensive for complex
geometry. Moment-fitting methods use an algebraic procedure to
potentially produce a much smaller amount of points, but it may
be difficult or expensive to obtain high accuracy, and often there
are no guarantees that the weights are positive, which may be of
crucial importance for non-linear problems.
We propose an algorithm that takes a high-quality quadrature

rule satisfying all of the quality criteria outlined in Section 1 except
for Boundedness and produces a simplified quadrature consisting
of at most 𝑀 quadrature points for a given polynomial degree𝑚,
independent of the embedded geometry. This initial quadrature
rule could for example come from a geometric subdivision method
(Section 4.1) or from our intersection-based method (Section 4.5).

4.4.1 Admissible quadrature rules. For a given polynomial degree𝑚,
we seek a quadrature rule that satisfies the moment fitting equations
(7), with the additional constraint that the weights must be non-
negative. That is, we seek points and weights w that satisfy

𝑃w = b, w ≥ 0. (8)

We denote by w0 ∈ R𝑁 and 𝝃 0
𝑗
for 𝑗 = 1, . . . 𝑁 a set of 𝑁 initial

quadrature weights and points that satisfy (8). We assume that
𝑁 > 𝑀 , otherwise we leave the quadrature rule untouched, as we
can not usually expect to improve it further in this case.

In practice, it is not important that the given quadrature weights
w0 satisfy 𝑃w = b exactly. In fact, we define b0 = 𝑃 (𝝃 0)w0 and
instead relax the admissible set of weights to those that satisfy
𝑃0w = b0, where 𝑃0 = 𝑃 (𝝃 0). Thus, our simplification method will
produce weights that are as good as the initial quadrature rule. If the
initial quadrature rule is exact, our simplified rule will also be exact
(up to numerical error). To simplify the remaining presentation, we
assume that 𝑃 = 𝑃0 and b = 𝑃w0.

4.4.2 Basic feasible points. For a fixed set of quadrature points (and
therefore 𝑃 ), the admissible weights are represented exactly by the
feasible set of a Linear Program (LP), and it is very possible that the

set of admissible weights is empty, i.e. that there exist no admissible
weights for the given set of points. However, by assumption,w0 and
𝝃 0 are admissible, and so we know that the feasible set is non-empty.
Without loss of generality, we assume that 𝑃 = 𝑃0 has full row
rank. Otherwise, since the linear system is consistent, it is possible
to remove linearly dependent rows from 𝑃 and b and produce a
linear system 𝑃 ′w = b′ with a smaller number of equations. From
Linear Programming theory (see e.g. [Nocedal and Wright 2006]),
these prerequisites imply the existence of one or more basic feasible
points w. In this context, a basic feasible point w is an admissible
set of weights with at most 𝑀 non-zeros. If 𝑤 𝑗 is zero, we may
discard 𝝃 𝑗 , and so in other words it is always possible to select𝑀
points from 𝝃 0 for which there are admissible weights. In practice,
such a basic feasible point w can be obtained directly by a simplex
solver for solving LPs to very high precision at reasonable cost,
provided𝑀 is not too large (polynomials of𝑚 = 10 and higher can
be accommodated, but costs increase quickly).

4.4.3 Choice of polynomial basis. The simplest choice of polyno-
mial basis is the set of monomials, i.e. 𝑥𝛼𝑦𝛽𝑧𝛾 for 𝛼+𝛽+𝛾 ≤ 𝑚. How-
ever, monomials are notorious for producing severely ill-conditioned
systems due to their near-linear dependence in large subregions
of the domain. In practice, tensor product constructions of Cheby-
shev or Legendre polynomials are sensible alternatives. We remark
that the choice of polynomial basis for the quadrature construc-
tion is unrelated to the choice of polynomials for the finite element
basis. In our implementation, we use a tensor product basis of one-
dimensional 𝛼-order Chebyshev polynomials 𝑝𝛼 (𝑥) of the first kind,
defined as

𝑝𝛼𝛽𝛾 (𝑥,𝑦, 𝑧) = 𝑝𝛼 (𝑥) 𝑝𝛽 (𝑦) 𝑝𝛾 (𝑧), (9)

with 𝛼 +𝛽+𝛾 ≤ 𝑚. These polynomials are defined in such a way that
they behave well in the unit cube domain [−1, 1]3. For the moment,
we assume without loss of generality that 𝝃 0

𝑗
∈ [−1, 1]𝑑 for all 𝑗 . In

the context of cut cells and embedded geometry, it is quite likely
that some cells will contain only a small cluster of points in [−1, 1]𝑑 .
To be more precise, let us assume that the points are contained
inside a subdomain 𝑈 ⊂ [−1, 1]𝑑 with diameter |𝑈 | ≪ 1. In this
case, the values of the basis polynomials barely change inside of the
subdomain, and the basis functions 𝑝𝛼𝛽𝛾 become close to linearly
dependent. To improve this situation, we scale and translate the
polynomials to the bounding box of our quadrature points, which
significantly improves conditioning.

4.4.4 Robust simplification. In practice, the LP (8) suffers from some
of the same problems as other moment-fitting methods. The condi-
tioning of the matrix may still be poor, despite adapting the basis
polynomials to the point set, which might cause simplex solvers
to fail in finding a good solution. However, all is not lost. The key
ingredient in our simplification scheme is the realization that we
may take advantage of the initial quadrature w0 to transform the
LP into an equivalent, much better conditioned LP.
The key property we exploit is that the right-hand side b is

evaluated by our original quadrature rule, and so we may write
b = 𝑃w0. Thus, we may reformulate the equality constraint 𝑃w = b
as (w −w0) ∈ ker 𝑃 , where ker 𝑃 denotes the kernel (null space) of
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𝑃 . Let now 𝑃 = 𝑈 Σ𝑉𝑇 denote the SVD of 𝑃 , 𝑟 = rank 𝑃 and 𝑉𝑟 the
first 𝑟 columns of 𝑉 . The kernel constraint may then be formulated
𝑉𝑇𝑟 (w −w0) = 0, and we obtain the transformed LP feasible set

𝑉𝑇𝑟 w = 𝑉𝑇𝑟 w0, w ≥ 0. (10)

Since 𝑉𝑇𝑟 has orthogonal rows, this modified but equivalent for-
mulation is perfectly conditioned in terms of its singular values, and
may in principle be solved by any robust LP solver. Whereas we
experienced frequent, spurious failures with the original LP formu-
lation, we have only found the transformed formulation to fail to
reach high accuracy when faced with severely degenerate geometry,
and in all cases simply filtering out the near-degenerate geometry
would resolve the issue.

We remark that our LP formulation has no objective function to
optimize for. One might attempt to further minimize some function
that represents the sparsity ofw, in the hope that this might give fur-
ther reduction in the number of points. The sparsity-minimization
problem can be formulated exactly as a Mixed Integer Linear Pro-
gram (MILP), and although we found this to be prohibitively expen-
sive, our tests showed that little was to be gained from trying to find
sparser solutions w. This seems to suggest that in general simply
picking a subset of existing points is not sufficient to obtain a sparser
quadrature, and more complex and expensive non-linear optimiza-
tion techniques (e.g. [Jakeman and Narayan 2018; Keshavarzzadeh
et al. 2018]) for more optimal point locations may be suitable if high
offline precomputation costs are permitted.

4.4.5 Summary. When combined with a high-quality initial quad-
rature, we conclude that:

• Our simplification algorithm picks a subset of points from the
initial quadrature. Thus, the points are inside the embedded
geometry if the initial points are.

• The new weights are positive and preserve the polynomial
approximation properties of the initial quadrature, up to any
reasonable polynomial order𝑚.

• Our algorithm never produces more than𝑀 points, where𝑀
is the dimension of the polynomial basis.

• Our algorithm is reliable and is suitable for use in a fully
automated pipeline.

For𝑚 ≤ 10, 𝑀 is only a small constant factor (at most ≈ 3 − 4)
greater than the number of points found in state-of-the-art quadra-
ture rules for interior cells [Witherden and Vincent 2015]. Although
we have restricted our discussion to total-order polynomial rules,
our algorithm is not restricted to total-order moments, and can eas-
ily be adapted to any other type of moments (such as product rule for
hex elements) by replacing the polynomial basis. For relatively low
order polynomials (say,𝑚 ≤ 6 or so), our experience suggests that
the computational costs are modest. In fact, we have not attempted
to make any kind of optimizations from our initial implementation,
because our precomputation costs were insignificant compared to
the simulation. The computation is dominated by the SVD and the
simplex solver. The former has a complexity of O(𝑀2𝑁 ), and so
scales linearly with the complexity of the geometry. The simplex
solver technically does not have a polynomial complexity bound,

but in practice it works well. We conclude that our proposed algo-
rithm fulfills the desiderata set out in the introduction, provided
that the initial quadrature rule can be obtained at acceptable cost.

4.5 Quadrature rules from intersections of convex
polyhedra

When the embedded geometry is described by a level-set func-
tion, subdivision-based methods work very well for constructing
an initial quadrature rule as input to our simplification algorithm.
However, for many tasks in computer graphics, the geometry is ini-
tially described by a surface mesh that may not even be designed for
simulation, and so might be non-manifold, have self-intersections or
otherwise exhibit artifacts that would complicate the definition of a
consistent level-set function or directly computing the intersection
between the surface mesh and a given background mesh element.
State-of-the-art mesh generators are able to reliably and quickly
produce high-quality tetrahedral meshes even from severely flawed
input [Hu et al. 2020, 2018]. By offloading these complex geometry
processing tasks to such external specialized software, we instead
propose a method that, given a background finite element mesh and
a polyhedral mesh consisting of convex polyhedral cells, directly
produces high-quality quadrature rules of arbitrarily high polyno-
mial degree𝑚, and therefore serves as a natural companion to our
simplification algorithm. Figure 3 gives a high-level overview of the
procedure when used together with our simplification algorithm.

Let the embedded geometry Ω be represented by a mesh T that
consists of convex polyhedral cells. For a given finite element 𝐾
whose geometry is a convex polyhedron, we can easily obtain a
tetrahedral decomposition of the intersection 𝐾 ∩ Ω by intersecting
each (candidate) polyhedral cell with 𝐾 and decompose the result
into a set of tetrahedra — a trivial operation given that the poly-
hedron is convex. We remark that there is no need to preserve the
connectivity of the polyhedral mesh. Let T𝐾 denote such a tetra-
hedralization for element 𝐾 , and let 𝜼 𝑗 and 𝑙 𝑗 denote quadrature
points and weights for the reference tetrahedron 𝑄̂ . Employing the
Inverse Function Theorem, we can reformulate the integral (3) as∫

𝐾∩Ω
𝑓 (X) 𝑑X =

∑
𝑄 ∈T𝐾

∫
𝑄

𝑓 𝑑X =
∑
𝑄 ∈T𝐾

∫
𝑄̂

𝑓 ◦𝑇𝑄 |𝐽𝑄 | 𝑑X

≈
∑
𝑄 ∈T𝐾

∑
𝑗

𝑙 𝑗 𝑓 (𝑇𝑄 (𝜼 𝑗 )) |𝐽𝑄 |,

and defining X𝑄
𝑗
= 𝑇𝑄 (𝜼 𝑗 ) ∈ 𝑄 as the quadrature points in physical

space, we can map them back to 𝐾̂ as 𝝃𝑄
𝑗
:= 𝑇−1

𝐾
(X𝑄

𝑗
) to obtain the

quadrature rule∫
𝐾∩Ω

𝑓 (X) 𝑑X ≈
∑
𝑄,𝑗

𝑙 𝑗
|𝐽𝑄 |

|𝐽𝐾 (𝝃𝑄𝑗 ) |
𝑓 (𝑇𝐾 (𝝃𝑄𝑗 )) |𝐽𝐾 (𝝃

𝑄

𝑗
) | (11)

=
∑
𝑄,𝑗

𝑤
𝑄

𝑗
𝑓 (𝑇𝐾 (𝝃𝑄𝑗 )) |𝐽𝐾 (𝝃

𝑄

𝑗
) |. (12)

Clearly, the weights𝑤𝑄
𝑗
are positive for non-degenerate elements.

Moreover, if 𝑇𝐾 is a linear map (e.g. tetrahedra, parallelogram-
shaped hexahedra), 𝑓 a polynomial of degree𝑚 and the tetrahedron
quadrature rule 𝑙 𝑗 ,𝜼 𝑗 integrates polynomials of degree𝑚 exactly,
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then the resulting quadrature rule for 𝐾 ∩ Ω integrates 𝑓 exactly. If
𝑇𝐾 is not a linear map, then the application of𝑇−1

𝐾
is straightforward

to compute with Newton’s method.
Since it is possible to construct quadrature rules for tetrahedra

with arbitrarily high polynomial order, the proposed intersection
method can generate quadrature rules of arbitrarily high order. This
is particularly useful because the mass matrix integrals for some
higher-order elements must be evaluated to relatively high order to
avoid singular mass matrices.
Unlike subdivision methods, the proposed intersection method

directly constructs a quadrature rule of the desired degree, and no
stopping criterion is needed for an iterative process. Given a robust
implementation for convex polyhedra intersection, it is straightfor-
ward to implement, and for high accuracy quadrature rules, it can
be expected to generate substantially fewer quadrature points due
to the explicit geometry representation. The intersection method is
therefore a good candidate for generating initial quadrature rules
for our simplification algorithm.

4.6 Numerical verification
To verify the accuracy of the simplified quadratures, we perform
a numerical experiment. For a quadrature rule of strength 𝑚, all
three-dimensional monomials of up to and including order𝑚 (i.e.
𝑥𝛼𝑦𝛽𝑧𝛾 where 𝛼 + 𝛽 +𝛾 ≤ 𝑚) are integrated over a cuboid geometry
embedded inside the reference hexahedron [−1, 1]3. A rigid body
transformation with a non-zero rotation is applied to the embedded
geometry to verify that a non-trivial intersection of embedding and
background element is handled correctly. Then, the monomials are
defined in the local coordinate system of the embedded geometry
with an additional translation such that the integrals do not van-
ish due to anti-symmetry of monomials with odd exponents. In
this local coordinate system, the exact integrals can be computed
analytically as volume integrals of polynomials over a cuboid do-
main. As all integrals are non-zero, relative errors between the
integrals approximated using quadratures and the exact integrals
can be computed. The results are shown in Figure 4, where each
point represents the relative error for a single monomial. In our
implementation only quadrature rules of strengths 1, 2, 3, 5 and
10 are implemented, although a simplification to any strength is
possible. For the results with initial rules in between which are
shown in the figure (indicated by greyish blue), the closest rule with
a higher strength was used. This rule was also used as a source
for the corresponding simplified rule. The results show that the
relative error using the simplified quadratures is of the same order
of magnitude (close to machine epsilon) as the relative error using
the initial non-simplified quadratures.

5 CONDITIONING OF SYSTEM MATRICES
Awell-known problem of fictitious domain, immersed, or embedded
simulation methods, is that of the poor conditioning of system ma-
trices when the intersection of a background cell and the embedded
geometry is small compared to the size of the background cell. We
discuss the cause of this ill-conditioning in Section 5.1. We adapt an
Additive-Schwarz preconditioner that was recently introduced in
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Quadrature strength𝑚

10−16
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10−14
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Initial quadratures

Simplified quadratures

Fig. 4. Relative error of numerically approximated integrals for a range of
quadrature strengths. For each quadrature strength𝑚, all three-dimensional
monomials of up to and including order𝑚 were integrated over a cuboid
geometry embedded inside the reference hexahedron.

the FCM community in Section 5.2, and finally discuss stabilization
in Section 5.3 to ensure robustness in all cases.

5.1 The cause of ill-conditioning
Ill-conditioning of immersed methods was recently studied in detail
in the context of the FCM by de Prenter et al. [2017]. The problem
can be illustrated in the 1D context. When a 1D linear element is cut
on one end, the portion inside the embedded geometry consists of
two linear functions that take radically different values. Scaling the
functions appropriately (Jacobi preconditioning) thus effectively
improves the conditioning for first-order elements, also in 2 and 3
dimensions. However, when considering a quadratic element, the
portion inside the embedded geometry now contains three almost
linear functions. Scaling does not resolve the problem in this case,
because the three functions are still nearly linearly dependent after
scaling. In summary, the ill-conditioning is a result of a combination
of poorly scaled and nearly linearly dependent basis functions.

5.2 Additive-Schwarz preconditioning
De Prenter et al. [2017] proposed an algebraic preconditioner based
on local orthogonalization of basis functions. The similarity of this
preconditioner to Additive-Schwarz preconditioners was recognized
in a subsequent publication [de Prenter et al. 2019]. We refer to these
publications for in-depth details on the preconditioning scheme, and
only summarize the key features below.
The preconditioner is purely algebraic, and so is applicable to

any linear combination of the mass matrix𝑀 ∈ R𝑛×𝑛 and stiffness
matrix𝐾 ∈ R𝑛×𝑛 . We let𝐶 be such a linear combination. For a given
element 𝐾 , we denote by 𝑅𝐾 the restriction to the element, i.e. when
applied to a vector it selects the entries corresponding to nodes in
𝐾 . The preconditioner 𝑆 is then given by

𝑆 :=
∑
𝐾

𝑅𝑇𝐾𝐶
−1
𝐾 𝑅𝐾 =

∑
𝐾

𝑆𝐾 , (13)

where 𝐶𝐾 = 𝑅𝐾𝐶 𝑅
𝑇
𝐾
is the submatrix of 𝐶 obtained when select-

ing only the rows and columns corresponding to the nodes in 𝐾 .
Note that this is not the same as the element matrices involved in
the assembly process, as 𝐶𝐾 already includes contributions from
neighboring elements.
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It is not necessary to include every element 𝐾 in the summation.
It is enough only to consider cut elements. The remaining nodes that
do not belong to any cut element 𝐾 can instead be preconditioned
with a diagonal preconditioner. Further cost savings can be obtained
by only considering cut elements with a volume fraction (ratio of
embedded intersection volume to background cell volume) lower
than a certain threshold. We have found 0.5 − 0.7 to work well,
but the optimal value is rather application-dependent. Including
fewer elements in the summation makes the construction of the
preconditioner less expensive, butmay increase the number of solver
iterations. We remark that the number of non-zeros in 𝑆 is at most
the same as 𝐶 , and for applications where only a small fraction of
elements are cut by the embedded geometry, the preconditioner is
similar to a diagonal matrix plus some additional dense blocks.

Although in principle𝐶𝐾 should be invertible, small intersections
with the geometrymay lead to inaccurate inverses. Jomo et al. [2019]
suggested to use a pseudo-inverse to improve robustness in these
cases. However, they only considered positive definite matrices,
whereas the system matrices encountered with non-linear material
models may be indefinite and contain negative eigenvalues. Their
truncation of small eigenvalues would therefore lead to a singular
preconditioner, while indefinite solvers like MINRES [Paige and
Saunders 1975] require a positive definite preconditioner. To ensure
a positive definite preconditioner, we instead reflect the eigenvalues
of 𝐶𝐾 , so that if 𝜆𝐾 is an eigenvalue, we rebuild a reflected pseudo-
inverse by setting the 𝑘th eigenvalue to

𝜆𝑘 (𝑆𝐾 ) =
{
|𝜆𝑘 (𝐶𝐾 ) |−1 if |𝜆𝑘 (𝐶𝐾 ) | ≥ 𝜀𝜆max (𝐶𝐾 ),
𝜀 |𝜆max (𝐶𝐾 ) |−1 otherwise

(14)

with 𝜀 ≈ 10−13. Since both the eigenvectors and magnitude of the
eigenvalues are preserved with respect to the original formulation,
we have found the preconditioner to still be an effective treatment
for the ill-conditioning caused by small intersections.

5.3 Quadrature stabilization
If the volume fraction (see Section 5.2) of a cut finite element is per-
mitted to become arbitrarily small, the mass and stiffness matrices
may become arbitrarily close to singular. In this case, the precondi-
tioner from Section 5.2 will also break down due to numerical error.
Like Patterson et al. [2012], we also discard background elements
with a volume fraction lower than a certain threshold, e.g. 10−4.
These cells can be expected to have little impact on the simulation
output, so points in the embedded geometry are instead extrapolated
from the closest element still present in the background mesh.

However, the ill-conditioning for higher-order elements kicks in
already at reasonably high volume fractions, and may cause issues
for the Schwarz preconditioner far above the volume fraction thresh-
old. In the FCM community, it is common practice for simulations
of elasticity to insert Gauss quadrature points for the uncut cell
in the portion of the element 𝐾 that does not intersect the embed-
ded geometry, i.e. 𝐾 \ Ω. This part is then simulated with a very
soft material that has a vanishingly small impact on the embedded
geometry, yet prevents the coefficient matrix from becoming com-
pletely singular. It is however possible to imagine geometry which
would contain all these standard Gauss points, yet have a very low
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Fig. 5. Condition numbers 𝜅 for the preconditioned system 𝑆𝐴 = 𝑆 (𝑀 +
(Δ𝑡 )2𝐾) for different preconditioners for linear and quadratic tetrahedra,
with (top) and without (bottom) stabilization of the quadrature rule.

volume fraction and potentially lead to poor conditioning. In order
to ensure robustness, we therefore insert all the Gauss points of the
uncut cell, but instead of framing the problem in terms of material
coefficients, we directly scale the weights of the quadrature by a
small factor, say, 10−6. This stabilization procedure ensures that all
basis functions are supported on the original finite element domain,
although poorly scaled. We remark that we have found it sufficient
only to stabilize the mass matrix when direct solvers are employed,
and first-order elements need no stabilization at all when a diagonal
preconditioner is used.

5.4 Numerical verification
In order to verify the efficacy of our preconditioner and quadrature
stabilization, we construct a 4×4×4 voxel grid covering the domain
[0, 4/3]3. We then embed another box [0, 1+𝜖/3]3 into the voxel grid
for decreasing values of 𝜖 ∈ (0, 1], so that the mesh contains a mixed
amount of interior cells and cut cells that are small in one, two and
three coordinate directions. The cell with the smallest intersection
with the embedded intersection has volume (𝜖/3)3, and we use its
volume fraction, i.e. the ratio between the embedded intersection
volume and the volume of the background cell, as a measure of
the smallest overlap with the embedded geometry. We consider the
condition number of the coefficient matrix associated with a typical
Backward Euler step𝑀 + (Δ𝑡)2𝐾 (𝑢) evaluated with displacement
u(X) = (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧) = (𝑋,𝑋,−𝑋 ),Δ𝑡 = 1/60 andDirichlet boundary
condition u = 0 for X = 0. We note that for a matrix𝐴, the spectrum
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of 𝑆𝐴 and 𝑆1/2𝐴𝑆1/2 are the same due to similarity, so we study
the condition number of 𝑆𝐴. Similar experiments have been carried
out in the FCM literature but with a focus on hexahedral meshes.
Hence, we instead consider uniform linear and quadratic tetrahedral
meshes as an additional data point. The material model used was
the Stable Neo-Hookean model [Smith et al. 2018] with Young’s
modulus 3 · 106 Pa and Poisson’s ratio 0.4.

The effectiveness of the Additive-Schwarz-type preconditioner is
demonstrated in Figure 5. The ill-conditioning problems associated
with small intersection volumes are effectively resolved when the
quadrature is stabilized, here with a stabilization parameter of 10−6.
However, the preconditioner fails to resolve ill-conditioning when
no stabilization is used, which demonstrates that stabilization is
essential to ensuring robustness. The results also corroborate the
effectiveness of a simple diagonal preconditioner for first-order
elements (both tet and hex), for which no stabilization is needed.

6 SIMULATION RESULTS
We evaluate our embedded simulation approach, show compar-
isons with standard FEM, which uses boundary-conforming ele-
ments, and compare the effectiveness of linear and higher-order
elements. Moreover, we demonstrate that our finite cell method is
able to handle different kinds of element types. We consider stan-
dard linear and quadratic tetrahedra, denoted as Tet4 and Tet10
respectively, 8-noded (trilinear) hexahedral elements, denoted as
Hex8, and 20-noded quadratic Serendipity elements, denoted as
Hex20, and employ tetrahedral and hexahedral quadrature rules
published by Witherden and Vincent [2015]. For the quadratic tetra-
hedra, we use quadrature that is exact up to polynomial order 3,
for Hex8 we use order 2 and for Hex20 we use order 4, and use our
simplification algorithm unless otherwise noted. For integrating
the mass matrix terms we use a much higher degree quadrature
to guarantee non-singular matrices, but avoid simplification since
this quadrature is only needed once. In all experiments we use
the non-linear Stable Neo-Hookean material model [Smith et al.
2018]. For the Newton iterations we used the stopping criterion
∥𝑀 ¤v − f total∥ ≤ 10−5∥𝑀arep∥, where finite differences are used
to approximate ¤v and gravity is used as a representative accelera-
tion arep. The timings in this section are measured on a PC with
two 14-core Intel Xeon E5-2690v4 processors. We used our own
in-house FEM library written in Rust for all our experiments with
the nalgebra library for dense matrix-vector operations [Crozet
et al. 2019]. We used Nested Cages [Sacht et al. 2015] to generate
background surface meshes, TetWild [Hu et al. 2018] to generate
tetrahedral meshes, MeshLab [Cignoni et al. 2008] to compute Haus-
dorff distances for error analysis, the Google GLOP solver to solve
all LPs, and Intel MKL 2020 for sparse matrix-vector operations
and direct sparse solvers. Direct solvers were used for the twisting
cylinder and hollow ball scenarios due to the challenging material
parameters, which would otherwise require sophisticated precondi-
tioning or much smaller time steps. We stress that this is also true
for FEM; the FCM preconditioner only treats ill-conditioning due to
small volume overlaps, not due to stiff material. To make Dirichlet
boundary conditions consistent across different meshes, all meshes

Fig. 6. A comparison of the ability to capture rigid body modes. Top left:
The fine FEM mesh (1k linear triangles) is used as ground truth. Top right:
The coarse FEM mesh (54 triangles) does not have the correct center of
mass. Bottom: FCM captures the correct rotation at both coarse (20 bilinear
quads) and very coarse (1 quad) resolutions.

were adapted to contain identical planar boundary-conforming re-
gions where the BCs were applied.

6.1 Rigid body motion
We simulated a stiff fine-resolution 2D bike model with 1k linear
triangle elements spinning around its center of mass (see Figure 6
and the supplemental video) and compared it to a coarse simulation
with 54 triangles. All discretizations are initialized with the same
initial velocity field, which represents an angular velocity around
the exact geometry’s center of mass. The coarse finite element
mesh fails to capture the correct mass distribution of the object and
quickly drifts off from the correct center of mass. In comparison,
embedding the bike into an FCM mesh with bilinear quads correctly
and automatically captures the correct rigid bodymotion, evenwhen
only a single element is used. We conclude that correctly integrating
over the embedded domain is crucial to accurately capturing inertial
properties of the embedded object.

6.2 Accuracy & performance
In order to compare the finite element method and the finite cell
method using linear and higher-order elements, we simulated the
twisting of a hollow cylinder. The length of the cylinder was 16m.
We used a Young’s modulus of 5 · 106 Pa and a Poisson’s ratio of 0.48.
While twisting the cylinder, we get a characteristic deformation in
the middle of the model (see the supplementary video). First, we
computed an accurate reference solution consisting of 86k boundary-
conforming Tet10 elements. The same scene was simulated with
Tet4 FEM, Tet10 FEM, Hex8 FCM and Hex20 FCM discretizations
of different resolutions (see the supplementary video). For each
discretization, the root mean square (RMS) value of the Hausdorff
distance from the discretization to the reference solution was com-
puted for the final timestep of the simulation. Based on the results,
we picked the RMS value 0.015m as a representative threshold for
when the approximations look sufficiently similar to the reference
solution. For each discretization, we picked the resolution with the
RMS value closest to the threshold (see Figure 7) and compared the
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(a) FCM - 2 016 Hex20 elements, 11 572 nodes, Haus-
dorff distance (RMS): 0.015m.

(b) FCM - 98 939 Hex8 elements, 121 692 nodes,
Hausdorff distance (RMS): 0.015m.

(c) FEM - 1 633 559 Tet4 elements, 320 000 nodes,
Hausdorff distance (RMS): 0.015m.

Fig. 7. Comparison of FCM using higher-order Hex20 elements, FCM using Hex8 elements, and FEM using Tet4 elements with a reference solution. We
simulated the twisted hollow cylinder shown in the supplementary video with all methods. The figures show the characteristic deformation of the hollow
cylinder, where the color-coding represents the Hausdorff distance to the reference solution.

Table 1. Performance comparison of FCM using Hex20 elements, FCM using
Hex8 elements, FEM using Tet4 elements, and FEM using Tet10 elements in
a simulation of a hollow cylinder (see Figure 7). The table shows the number
of elements and nodes and the average time per simulation step.

FCM FEM Reference
Hex20 Hex8 Tet4 Tet10 solution

# elem. 2 016 98 939 1 633 559 17 695 86 292
# nodes 11 572 121 692 320 000 31 805 135 631
time step 359ms 2 907ms 56 321ms 560ms 21 157ms

runtimes (see Table 1). Note that for Tet10 the RMS was also 0.015m.
The first-order elements (Hex8 FCM, Tet4 FEM) struggled with slow
spatial convergence, and the Tet4 elements in particular. For the
very high resolution Tet4 mesh (Figure 7c), the Newton solver only
succeeded when projecting the stiffness matrix to semidefiniteness
(see e.g. [Smith et al. 2018]). On the other hand, the higher-order ele-
ments (Hex20 FCM, Tet10 FEM) performed very well, with the FCM
roughly 1.6 times faster than the Tet10 FEM. The results demon-
strate that higher-order elements are essential to simultaneously
achieving high fidelity and performance in this case, and our embed-
ding methodology unlocks the potential of higher-order methods
without conformance to the boundary of the embedded geometry.

6.3 Quadrature construction & simplification
To demonstrate the effectiveness of our quadrature simplification
procedure, we repeated the Hex20 FCM simulation without quadra-
ture simplification. We confirmed that the RMS Hausdorff distance
was essentially the same, 0.0149m with simplification and 0.0153m
without. An average time step took 5691ms, which compared to
359ms for the simulation with the simplified quadrature means
that the simplification enabled a 15.8 times speedup by lowering
the associated assembly costs. Simplification reduced the number
of points from 5 857 880 to 70 560 — a reduction by a factor of 83.
The quadrature generation (Section 4.5) required 255ms, while the
simplification step finished in 5.23 s. In other words, the cost of the
simplification algorithm paid off after the first time step.

(a) Tet4 FEM - 83 411 elements, 27 766
nodes.

(b) Tet4 FEM - 192 031 elements,
52 076 nodes.

(c) Tet10 FCM - 22 938 elements,
47 591 nodes.

(d) Reference solution.

Fig. 8. Comparison of the final deformation of the hollow ball simulation
in Figure 1 for different methods. The FEM with boundary-conforming
Tet4 elements is not able to capture the complex deformation of the model
correctly. Our method captures the deformation much better while being 8
times faster than the reference solution.

6.4 Complex deformation
In the preceding experiment we showed that our embedded simu-
lation method outperforms standard FEM when using hexahedral
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elements. In this comparison we simulate the complex deforma-
tion behavior of a hollow ball with different holes (see Figure 1)
using Tet4 and Tet10 elements. As reference solution, we consider
a high-resolution Tet10 boundary-conforming FEM discretization
with 192k elements and 332k nodes, at an average cost of 5930ms
per time step. For the comparison we performed the simulation
again using a medium and high resolution FEM discretization with
Tet4 elements and a lower resolution FCM with Tet10 elements.
Figure 8 shows the final deformation of all simulations after the
ball was compressed and twisted. The figure shows that the high-
resolution FEM simulation with Tet4 elements is not able to capture
the complex deformation of the ball correctly, at a cost of 519ms
per time step on average. The coarse Tet10 FCM simulation, on the
other hand, is visually almost indistinguishable from the reference
solution, at an average cost of 739ms per time step. Preprocessing
took approximately 12𝑠 , and the number of quadrature points for
boundary elements after simplification were reduced from 27M to
0.7M. Although further refinement of the Tet4 FEM mesh might
give a comparable solution in quality (at increasing cost), we remark
that the Tet10 FCM directly produced a high-quality solution for
the coarsest background mesh that we were able to produce that
still respects the topological features of the embedded geometry.
It is therefore arguably a more reliable (yet competitive) “default"
discretization. Finally, even though in this case the coarsest back-
ground mesh we were able to produce is visually similar to the exact
geometry, the FCM produced a substantially more accurate solution
at a modest computational overhead compared to a Tet10 FEM sim-
ulation on the same background mesh, which required 607ms per
time step. The maximal RMS Hausdorff distance to the reference
solution throughout all frames of the simulation for Tet10 FEM was
0.047, compared to 0.018 for the FCM.

6.5 Iterative solvers
To demonstrate that the preconditioner from Section 5.2 effectively
enables the use of iterative solvers for embedded higher-order sim-
ulation, we consider the armadillo slingshot scenario shown in
Figure 9. The armadillo (Young’s modulus: 5 · 105 Pa, Poisson’s ratio:
0.4) is stretched backwards and then released, resulting in a cata-
pulting motion forward. We consider two Tet10 meshes with 5k and
35k elements, respectively, and we simulate both resolutions with
FEM and FCM. The coarse background mesh is shown in Figure 9a.
In the case of the FCM, a high-resolution mesh with 124k tetrahedra
was embedded. For the coarse model (5k), FEM took on average
184ms and 102 CG iterations per time step, while FCM required
on average 230ms and 147 CG iterations. For the fine model (35k),
FEM took 1465ms and 231 CG iterations, while FCM took 1683ms
and 293 CG iterations. Only cells with a volume fraction lower than
0.5 were treated with the preconditioner. A higher value would lead
to fewer CG iterations, but the preconditioner would be more ex-
pensive. The experiment demonstrates that the performance of the
preconditioned FCM is on par with that of the same model without
any embedding.

(a) Coarse simulation mesh (b) Deformed model

Fig. 9. FCM simulation of an embedded deformable model with 4916 Tet10
elements and 8634 nodes. Boundary conditions are defined at the dark blue
boxes, including one on the back that is used to deform the model.

6.6 Convergence rate
We study the 𝐿2 convergence rate for a static equilibrium prob-
lem with a linearly elastic material model and a hemisphere-like
geometry. We choose a sequence of regular hexahedral meshes pa-
rameterized by mesh width ℎ and measure the error for FEM and
FCM Hex8 and Hex20 discretizations relative to a high-resolution
boundary-conforming reference solution. The results are presented
in Figure 10. Here we see that the poorly approximated geometry for
the FEM leads to a dramatically reduced convergence rate, whereas
the FCM simulations attain optimal convergence rates O(ℎ2) and
O(ℎ3). We refer to the technical supplement for a detailed account
of the experimental setup and further discussion.

7 CONCLUSION AND FUTURE WORK
Our robust quadrature generation procedure opens up interest-
ing new opportunities for high-fidelity embedded simulation using
higher-order elements. The ability to accurately capture complex
embedded geometry in larger elements significantly expands the
potential applications for higher-order elements.

We have only considered meshes where the entire mesh consists
of higher-order elements. We do not believe this is practical for most
graphics applications, as linear elements are typically more econom-
ical for less demanding scenarios, and moreover may be superior if
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Fig. 10. 𝐿2 errors relative to a high-resolution reference solution for a static
equilibrium problem. The slopes of the triangles correspond to O(ℎ), O(ℎ2)
and O(ℎ3) convergence.
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the deformation is highly irregular. Therefore, adaptive embedded
methods that select higher-order elements when the displacement
and stress fields are sufficiently smooth, and the topology of the
embedded object can be captured well, seem like promising avenues
for future research.

While we have shown that the Additive-Schwarz preconditioner
is effective in treating ill-conditioning and enables iterative solvers
in embedded simulations, the necessity to compute eigenvalue de-
compositions may be prohibitive for some applications in which
the majority of elements are cut. This may particularly be problem-
atic for even higher-order elements with more nodes per element
than we have presented here, due to the cubic complexity of the
eigenvalue decomposition. On the other hand, if the number of cut
elements that pass the volume fraction threshold is only a small
proportion of the elements, the preconditioner is quite inexpensive.
In either case, it would be preferable to develop a preconditioner
that would be inexpensive for all applications.

We have not addressed the problem of properly handling embed-
ded Dirichlet boundary conditions. Since we impose no particular
constraints on the shape of our background meshes, it is currently
possible to design the background mesh so that nodes can be con-
strained directly as in the standard FEM. However, we plan to inves-
tigate more accurate approaches to boundary handling. In a similar
vein, we have not considered the handling of contacts. Here it is
important to be able to retain some or all of the higher-order con-
vergence, which puts more stringent requirements on the contact
model. This is a topic of ongoing research for us, and we have had
some promising preliminary results with a variant of the Mortar
paradigm, which we hope to fully develop in a future publication.
The supplemental video shows a preview of our work on contacts.

Finally, we believe that the robustness and strong theoretical
guarantees of our quadrature generation procedure makes it excep-
tionally well-suited for use in simulations of accurate cutting and
fracture, where new quadrature rules may need to be constructed
on-the-fly depending on the progression of the simulation.

ACKNOWLEDGMENTS
We would like to thank Dan Koschier for his insightful feedback,
and the anonymous reviewers for their valuable suggestions. The
Armadillo and Bunny models are courtesy of the Stanford Computer
Graphics Laboratory. The frog and bicycle models are courtesy of
SVG Repo, the lion figure of OpenClipart, and the hollow ball of
GeniyRocka/TurboSquid. This paper was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) –
Project number BE 5132/5-1.

REFERENCES
Adam W. Bargteil and Elaine Cohen. 2014. Animation of Deformable Bodies with Qua-

dratic Bézier Finite Elements. ACM Trans. Graph. 33, 3, Article 27 (2014), 10 pages.
Klaus-Jürgen Bathe. 2006. Finite element procedures. Klaus-Jurgen Bathe.
Max Budninskiy, Houman Owhadi, and Mathieu Desbrun. 2019. Operator-adapted

wavelets for finite-element differential forms. J. Comput. Phys. 388 (2019), 144–177.
Jiong Chen, Hujun Bao, Tianyu Wang, Mathieu Desbrun, and Jin Huang. 2018. Numer-

ical Coarsening Using Discontinuous Shape Functions. ACM Trans. Graph. 37, 4,
Article 120 (2018), 12 pages.

Jiong Chen, Max Budninskiy, Houman Owhadi, Hujun Bao, Jin Huang, and Mathieu
Desbrun. 2019. Material-Adapted Refinable Basis Functions for Elasticity Simulation.
ACM Trans. Graph. 38, 6, Article 161 (2019), 15 pages.

Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganov-
elli, and Guido Ranzuglia. 2008. MeshLab: an Open-Source Mesh Processing Tool.
In Eurographics Italian Chapter Conference. The Eurographics Association.

Sébastien Crozet et al. 2019. nalgebra: a linear algebra library for Rust. https:
//nalgebra.org

Frits de Prenter, CVVerhoosel, and EH van Brummelen. 2019. Preconditioning immersed
isogeometric finite element methods with application to flow problems. Computer
Methods in Applied Mechanics and Engineering 348 (2019), 604–631.

Frits de Prenter, Clemens V Verhoosel, Gert J van Zwieten, and EHarald van Brummelen.
2017. Condition number analysis and preconditioning of the finite cell method.
Computer Methods in Applied Mechanics and Engineering 316 (2017), 297–327.

Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. 2001. Dynamic
Real-Time Deformations using Space & Time Adaptive Sampling. InACMConference
on Computer Graphics and Interactive Techniques. ACM, 31–36.

Sascha Duczek, Fabian Duvigneau, and Ulrich Gabbert. 2016. The finite cell method for
tetrahedral meshes. Finite Elements in Analysis and Design 121 (2016), 18–32.

Alexander Düster, Jamshid Parvizian, Zhengxiong Yang, and Ernst Rank. 2008. The
finite cell method for three-dimensional problems of solid mechanics. Computer
methods in applied mechanics and engineering 197, 45-48 (2008), 3768–3782.

P. Faloutsos, M. Van de Panne, and D. Terzopoulos. 1997. Dynamic free-form deforma-
tions for animation synthesis. IEEE Trans. on Vis. and Comp. Graph. 3, 3 (1997).

Christian Hafner, Christian Schumacher, Espen Knoop, Thomas Auzinger, Bernd Bickel,
and Moritz Bächer. 2019. X-CAD: optimizing CAD models with extended finite
elements. ACM Trans. Graph. 38, 6 (2019), 1–15.

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast
Tetrahedral Meshing in the Wild. ACM Trans. Graph. 39, 4, Article 117 (2020).

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (2018).

John D Jakeman and Akil Narayan. 2018. Generation and application of multivariate
polynomial quadrature rules. Comp. Methods in Applied Mech. and Eng. 338 (2018).

Doug L James, Jernej Barbič, and Christopher D Twigg. 2004. Squashing cubes: Au-
tomating deformable model construction for graphics. In ACM SIGGRAPH Sketches.

John N Jomo, Frits de Prenter, Mohamed Elhaddad, Davide D’Angella, Clemens V
Verhoosel, Stefan Kollmannsberger, Jan S Kirschke, Vera Nübel, EH van Brummelen,
and Ernst Rank. 2019. Robust and parallel scalable iterative solutions for large-scale
finite cell analyses. Finite Elements in Analysis and Design 163 (2019), 14–30.

Peter Kaufmann, Sebastian Martin, Mario Botsch, Eitan Grinspun, and Markus Gross.
2009. Enrichment Textures for Detailed Cutting of Shells. ACM Trans. Graph. 28, 3
(2009), 50:1–50:10.

Peter Kaufmann, Sebastian Martin, Mario Botsch, and Markus Gross. 2008. Flexible
Simulation of Deformable Models Using Discontinuous Galerkin FEM. In ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. 105–115.

Vahid Keshavarzzadeh, Robert M Kirby, and Akil Narayan. 2018. Numerical integra-
tion in multiple dimensions with designed quadrature. SIAM Journal on Scientific
Computing 40, 4 (2018), A2033–A2061.

Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. 2009. Nu-
merical Coarsening of Inhomogeneous Elastic Materials. ACM Trans. Graph. 28, 3,
Article 51 (2009), 8 pages.

Dan Koschier, Jan Bender, and Nils Thuerey. 2017. Robust EXtended Finite Elements
for Complex Cutting of Deformables. ACM Trans. Graph. 36, 4, Article 55 (2017).

László Kudela, Nils Zander, Stefan Kollmannsberger, and Ernst Rank. 2016. Smart
octrees: Accurately integrating discontinuous functions in 3D. Computer Methods
in Applied Mechanics and Engineering 306 (2016), 406–426.

Tassilo Kugelstadt, Dan Koschier, and Jan Bender. 2018. Fast Corotated FEM using
Operator Splitting. In Computer Graphics Forum, Vol. 37.

Johannes Mezger, Bernhard Thomaszewski, Simon Pabst, and Wolfgang Straßer. 2009.
Interactive physically-based shape editing. Comp. Aided Geom. Design 26, 6 (2009).

Neil Molino, Zhaosheng Bao, and Ron Fedkiw. 2004. A Virtual Node Algorithm for
Changing Mesh Topology During Simulation. ACM Trans. Graph. 23, 3 (2004).

M. Müller, M. Teschner, and M. Gross. 2004. Physically-based simulation of objects
represented by surface meshes. In Computer Graphics International. 26–33.

B. Müller, F. Kummer, and M. Oberlack. 2013. Highly accurate surface and volume
integration on implicit domains by means of moment-fitting. Internat. J. Numer.
Methods Engrg. 96, 8 (2013), 512–528.

Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark Carlson.
2006. Physically Based Deformable Models in Computer Graphics. Computer
Graphics Forum 25, 4 (2006), 809–836.

Matthieu Nesme, Paul G. Kry, Lenka Jeřábková, and François Faure. 2009. Preserving
Topology and Elasticity for Embedded Deformable Models. ACM Trans. Graph. 28,
3, Article 52 (2009), 9 pages.

Matthieu Nesme, Yohan Payan, and François Faure. 2006. Animating shapes at arbitrary
resolution with non-uniform stiffness. In Proc. VRIPHYS.

Jorge Nocedal and Stephen Wright. 2006. Numerical optimization. Springer Science &
Business Media.

Christopher C Paige andMichael A Saunders. 1975. Solution of sparse indefinite systems
of linear equations. SIAM journal on numerical analysis 12, 4 (1975), 617–629.

ACM Trans. Graph., Vol. 39, No. 6, Article 181. Publication date: December 2020.

https://nalgebra.org
https://nalgebra.org


181:14 • A. Longva, F. Löschner, T. Kugelstadt, J. A. Fernández-Fernández, J. Bender

Jamshid Parvizian, Alexander Düster, and Ernst Rank. 2007. Finite cell method. Com-
putational Mechanics 41, 1 (2007), 121–133.

Taylor Patterson, Nathan Mitchell, and Eftychios Sifakis. 2012. Simulation of Complex
Nonlinear Elastic Bodies using Lattice Deformers. ACM Trans. Graph. 31, 6 (2012).

Olivier Rémillard and Paul G Kry. 2013. Embedded thin shells for wrinkle simulation.
ACM Trans. Graph. 32, 4 (2013), 1–8.

Alec R. Rivers and Doug L. James. 2007. FastLSM: Fast Lattice Shape Matching for
Robust Real-Time Deformation. ACM Trans. Graph. 26, 3 (2007), 82.

SH Roth, Markus H Gross, Silvio Turello, and Friedrich R Carls. 1998. A Bernstein-Bézier
Based Approach to Soft Tissue Simulation. In Computer Graphics Forum, Vol. 17.

Ernest Ryu and Stephen Boyd. 2014. Extensions of Gauss Quadrature Via Linear
Programming. Foundations of Computational Mathematics 15 (2014).

Leonardo Sacht, Etienne Vouga, and Alec Jacobson. 2015. Nested cages. ACM Trans.
Graph. 34, 6 (2015), 1–14.

Dominik Schillinger and Martin Ruess. 2015. The Finite Cell Method: A review in
the context of higher-order structural analysis of CAD and image-based geometric
models. Archives of Computational Methods in Engineering 22, 3 (2015), 391–455.

Eftychios Sifakis and Jernej Barbic. 2012. FEM Simulation of 3D Deformable Solids. In
ACM SIGGRAPH Courses. 1–50.

Eftychios Sifakis, Kevin GDer, and Ronald Fedkiw. 2007. Arbitrary cutting of deformable
tetrahedralized objects. In ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 73–80.

Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable neo-hookean
flesh simulation. ACM Trans. Graph. 37, 2 (2018), 12.

Daniel Weber, Jan Bender, Markus Schnoes, André Stork, and Dieter Fellner. 2013.
Efficient GPU Data Structures and methods to Solve Sparse Linear Systems in
Dynamics Applications. Computer Graphics Forum 32, 1 (2013), 16–26.

Daniel Weber, Johannes Mueller-Roemer, Christian Altenhofen, André Stork, and Dieter
Fellner. 2015. Deformation simulation using cubic finite elements and efficient p-
multigrid methods. Computers & graphics 53 (2015), 185–195.

Freddie D Witherden and Peter E Vincent. 2015. On the identification of symmet-
ric quadrature rules for finite element methods. Computers & Mathematics with
Applications 69, 10 (2015), 1232–1241.

Yuan Xu. 1997. On orthogonal polynomials in several variables. Special functions,
q-series and related topics, The Fields Institute for Research in Mathematical Sciences,
Communications Series 14 (1997), 247–270.

ACM Trans. Graph., Vol. 39, No. 6, Article 181. Publication date: December 2020.


	Abstract
	1 Introduction
	2 Related work
	2.1 Embedded simulation in graphics
	2.2 Higher-Order FEM in Graphics
	2.3 Finite Cell Method

	3 Embedded Finite Elements for Deformable Solids
	3.1 Background
	3.2 Embedded Finite Elements

	4 Integration of cut elements
	4.1 Geometric subdivision
	4.2 Moment fitting
	4.3 LP-based moment fitting
	4.4 Simplification of high-quality rules
	4.5 Quadrature rules from intersections of convex polyhedra
	4.6 Numerical verification

	5 Conditioning of system matrices
	5.1 The cause of ill-conditioning
	5.2 Additive-Schwarz preconditioning
	5.3 Quadrature stabilization
	5.4 Numerical verification

	6 Simulation results
	6.1 Rigid body motion
	6.2 Accuracy & performance
	6.3 Quadrature construction & simplification
	6.4 Complex deformation
	6.5 Iterative solvers
	6.6 Convergence rate

	7 Conclusion and Future Work
	Acknowledgments
	References

