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A. Method coefficients

This section gives method coefficients for the schemes introduced
for evaluation in the main paper. In the following, we consider
methods to solve systems of ordinary differential equations (ODEs)
of the form

ẏyy = ggg(t,yyy) . (1)

A.1. DIRK methods

Diagonally implicit RK (DIRK) methods can be written as

yyyn+1 = yyyn +∆t
s

∑
i

biGGGi ,

GGGi = ggg(tn + ci∆t,yyyn +∆t
i−1

∑
j=1

ai jGGG j +aii∆tGGGi) .

(2)

A thorough review of the theoretical background, implementation
details and numerical experiments w.r.t. DIRK methods was pre-
sented by Kennedy and Carpenter [KC16]. In the following, the
coefficients for the methods are written as Butcher tableaus of the
form

ccc A

bbbT

A.1.1. SDIRK2 and SDIRK3

SDIRK2 (two-stage, second-order) and SDIRK3 (three-stage,
third-order) were the first methods designated as DIRK meth-
ods [Ale77]. An embedded second-order method for error-
estimation for SDIRK3 was presented shortly afterwards [Cas79].
It was noted that both methods are stiffly-accurate and L-
stable [KC16]. Note that these names are also often used in the
literature for other methods. The coefficients given below, however,
are the only coefficients exhibiting all the listed properties.

SDIRK2 The butcher tableau for SDIRK2 is given by

γ γ 0
1 1− γ γ

1− γ γ

with γ = 1
2 (2−

√
2).

SDIRK3 The butcher tableau for SDIRK3 is given by

γ γ 0 0
c2 (c2− γ) γ 0
1 (1−b2− γ) b2 γ

(1−b2− γ) b2 γ

with

b2 =
−3α

2

4β
, c2 =

2−9γ+6γ
2

3α
,

and

α = 1−4γ+2γ
2 , β =−1+6γ−9γ

2 +3γ
3 ,

where γ = 0.43586652150845899941601945, which is the root of

x3−3x2 +
3
2

x− 1
6
= 0

in the interval ( 1
6 ,

1
2 ), see [Ale77].

A.1.2. The TR-BDF2 EDIRK family

The TR-BDF2 integrator, originally proposed by Banks et
al. [BCF∗85], performs a fractional substep from tn to tn+γ∆t with
the trapezoidal rule for γ∈ (0,1) and then uses the variable step size
BDF2 method (see [HW92]) with the states at tn and tn+γ. This
family of methods parametrized by γ can be written as an EDIRK
method with three stages. Particular choices for γ found in the lit-
erature are:

• γ = 2−
√

2, originally proposed by Banks et al. [BCF∗85] as
this leads to identical coefficients for the Jacobians of both im-
plicit stages. Bonaventura and Della Rocca [BDR17] derive that
this is an optimal choice in the context “strong stability preserv-
ing” (SSP) methods and that the method has a stage order of two
(which is not possible for SDIRK methods, only for methods
with an explicit first stage, see [KC16]). According to Butcher
and Chen [BC00], this is the only choice for which the family is
L-stable.
• γ = 1/2, as introduced to nonlinear structural dynamics by

Bathe [Bat07], and used in computer graphics by Xu and Bar-
bič [XB17]. We do not see a reason to prefer this choice of γ

over the former.

The Butcher tableau for the family is given by (see [BDR17]):
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A.1.3. SDIRK-NCS23 and SDIRK-NC34

SDIRK-NCS23 (two-stage, third-order) and SDIRK-NC34 (three-
stage, fourth-order) were some of the first DIRK methods that were
investigated for their nonlinear stability and are algebraically sta-
ble and A-stable. It was noted that SDIRK-NCS23 is not stiffly-
accurate [KC16] (as this is not possible for a two-stage method
with order higher than two).

SDIRK-NCS23 The butcher tableau for SDIRK-NCS23 is given
by

γ γ 0
1− γ 1−2γ γ

1
2

1
2

with γ = 3+
√

3
6 .

SDIRK-NC34 The butcher tableau for SDIRK3 is given by

γ γ 0 0
1
2

1
2 − γ γ 0

1− γ 2γ 1−4γ γ

b1 b2 b3

with

b1 =
1

6(1−2γ)2 , b2 =
2(1−6γ+6γ

2)

3(2γ−1)2 , b3 = b1 ,

where

γ =
3+2

√
3cos( π

18 )

6
.

A.1.4. SDIRK(3,3,4,5) and SDIRK(4,3,4,7)

SDIRK(3,3,4,5) and SDIRK(4,3,4,7) are derived as methods suited
well for ODEs with oscillating solutions [FGR97]. They follow
the naming scheme DIRK(s,p,pdisp,pdiss) where s is the number
of stages, p the classical order of accuracy, pdisp the dispersion or-
der and pdiss the dissipation order. Both methods are A-stable and
were tested with a low dimensional, nonlinear oscillatory problem
in the original publication.

SDIRK(3,3,4,5) The butcher tableau for SDIRK(3,3,4,5) is given
by

γ γ 0 0
c2 c2− γ γ 0
c3 0 c3− γ γ

0 1−b3 b3

with

γ = 1.068579021301629 ,

b3 = 0.6696236404609742 ,

c2 = 0.08902038200616 ,

c3 = 0.7027675575254050 .

SDIRK(4,3,4,7) The butcher tableau for SDIRK(4,3,4,7) is given
by

γ γ 0 0 0
c2 c2− γ γ 0 0
c3 0 c3− γ γ 0
c4 0 0 c4− γ γ

0 0 1−b4 b4

with

γ = 1.2805797612753055 ,

b4 = 0.4453994092277531 ,

c2 = 0.3489302860638736 ,

c3 = 0.7586985719573739 ,

c4 = 0.1778747841442887 .

A.2. Rosenbrock methods

For an implicit system

Mẏyy = ggg(t,yyy) , (3)

Hairer and Wanner [HW96] propose a formulation for Rosenbrock
methods that is optimized for computational efficiency given by

yyyn+1 = yyyn +
s

∑
i

miGGGi ,(
1

γii∆t
M− ∂ggg

∂yyy

)
GGGi = ggg(tn +αi∆t,yyyn +

i−1

∑
j

ai jGGG j)

+M
i−1

∑
j

ci j

∆t
GGG j + γi∆t

∂ggg
∂t

,

(4)

where ai j, ci j, mi and γi j and γi = ∑
i
j γi j are the coefficients identi-

fying a particular Rosenbrock scheme. In the literature, sometimes
other formulations of Rosenbrock methods are used such that one
has to take care to correctly transform the coefficients for the im-
plementation.

A.2.1. ROS3PL

ROS3PL is a four-stage, third-order method that is L-stable and
stiffly accurate. The authors derived it as a W-method that permits
inexact Jacobians and claim that it is robust against order reduc-
tion [CLW09]. In addition, it has an embedded method for error
estimation. The coefficients for the formulation shown above are
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given by γ = 0.435866521508459 and

γ1 = 0.435866521508459

γ2 =−0.064133478491541

γ3 = 0.111028172512505

γ4 = 0.0

The coefficients mi yield the original third-order method, while re-
placing them with m̂i yields the embedded second-order method

m1 = 2.463070773030053 m̂1 = 2.346947683513665

m2 = 1.147140180139521 m̂2 = 0.456530569451895

m3 = 0.0 m̂3 = 0.056949243945495

m4 = 1.0 m̂4 = 0.738684936166224

The other required coefficients are given by

a11 = 0.0

a21 = 1.147140180139521

a22 = 0.0

a31 = 2.463070773030053

a32 = 1.147140180139521

a33 = 0.0

a41 = 2.463070773030053

a42 = 1.147140180139521

a43 = 0.0

a44 = 0.0

and

c11 =−2.294280360279042

c21 =−2.631861185781065

c23 =−2.294280360279042

c31 =−1.302364158113095

c32 = 2.769432022251304

c33 =−2.294280360279042

c41 =−1.552568958732400

c42 = 2.587743501215153

c43 =−1.416993298352020

c44 =−2.294280360279042

Note the sign change of the coefficients ci j w.r.t. to the original
publication, as we use a slightly different formulation of the Rosen-
brock method here.

A.2.2. ROS3PRL2

More recent publications have shown that previously used con-
ditions to prevent order reduction for very stiff problems were
not sufficient. Rang [Ran15] derives new variants of commonly
used third-order methods including ROS3PL and, amongst others,
presents ROS3PRL2 that is shown to preserve third-order accuracy
in numerical experiments. In our experiments, however, we were
not able to obtain stable results with this method. Therefor, we will
not reproduce the coefficients here.
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