
1

Implicit Frictional Boundary Handling for SPH
Jan Bender, Tassilo Kugelstadt, Marcel Weiler, Dan Koschier

Abstract—In this paper, we present a novel method for the robust handling of static and dynamic rigid boundaries in Smoothed
Particle Hydrodynamics (SPH) simulations. We build upon the ideas of the density maps approach which has been introduced recently
by Koschier and Bender. They precompute the density contributions of solid boundaries and store them on a spatial grid which can be
efficiently queried during runtime. This alleviates the problems of commonly used boundary particles, like bumpy surfaces and
inaccurate pressure forces near boundaries. Our method is based on a similar concept but we precompute the volume contribution of
the boundary geometry. This maintains all benefits of density maps but offers a variety of advantages which are demonstrated in
several experiments. Firstly, in contrast to the density maps method we can compute derivatives in the standard SPH manner by
differentiating the kernel function. This results in smooth pressure forces, even for lower map resolutions, such that precomputation
times and memory requirements are reduced by more than two orders of magnitude compared to density maps. Furthermore, this
directly fits into the SPH concept so that volume maps can be seamlessly combined with existing SPH methods. Finally, the kernel
function is not baked into the map such that the same volume map can be used with different kernels. This is especially useful when
we want to incorporate common surface tension or viscosity methods that use different kernels than the fluid simulation.

Index Terms—Smoothed Particle Hydrodynamics, fluid simulation, boundary handling

F

1 INTRODUCTION

SMOOTHED Particle Hydrodynamics (SPH) has become a
powerful tool in computer graphics, where it is used for

visual effects in movies, and in interactive applications like
games or virtual training simulators. It can be used to simu-
late lots of different materials ranging from incompressible
fluids and highly viscous liquids to granular materials and
deformable solids.

Using particles as the primary material representation is
appealing because it simplifies implementations. Moreover,
it provides a straightforward way for two-way coupling of
many different materials and for two-way coupling with
rigid bodies. However, the accurate application of boundary
conditions remains challenging, but is especially important
when materials interact with complex static and dynamic
boundaries as depicted in Fig. 1. In recent years several
boundary representations based on particles, meshes or
implicit representations, like signed distance fields, have
been proposed. But most of them are either inaccurate or
have high computational demands. For instance, sampling
the boundary with particles results in bumpy surfaces which
lead to inaccurate forces and introduce artificial friction
or even jumping particle artifacts (cf. [1], [2]). A detailed
discussion of previous methods and the associated problems
can be found in Section 2.

Recently, Koschier and Bender [1] proposed an implicit
boundary representation called density maps. They use a
spatial grid to discretize the density contribution function
of static and dynamic rigid obstacles which is computed us-
ing adaptive Gauss-Kronrod quadrature in a preprocessing

• Jan Bender - RWTH Aachen University
E-mail: bender@cs.rwth-aachen.de

• Tassilo Kugelstadt - RWTH Aachen University
E-mail: kugelstadt@cs.rwth-aachen.de

• Marcel Weiler - RWTH Aachen University
E-mail: weiler@cs.rwth-aachen.de

• Dan Koschier - Unaffiliated
E-mail: dan.koschier@gmail.com

step. To reduce the memory footprint, the density maps are
only stored for a narrow band around the solid surfaces
and approximated with higher-order polynomials. During
runtime they can be efficiently queried and accurate forces
can be computed without the aforementioned problems of
particle based approaches and without significant compu-
tational overhead. Moreover, friction between particles and
solids, even in complex scenarios, can be handled.

Our method is inspired by the density maps approach
and is also based on an implicit boundary representation.
We use the same data structures as described in [1] to store
and query function values. However, instead of precomput-
ing the density contribution of the boundary, we determine
the boundary volume that overlaps with the support do-
main of the smoothing kernel. This has multiple advantages
which are demonstrated in a series of experiments. When
using the density maps approach, the derivatives of density
values are determined by differentiating the shape functions
of the cubic elements. However, this is prone to errors
because smoothness at cell interfaces is not guaranteed [3].
Our experiments show that this is not problematic for high
resolution grids but it results in visual artifacts for lower
resolutions due to force discontinuities. Compared to that,
we compute all derivatives by differentiating the SPH kernel
which is the standard SPH formulation. This results in
smooth forces even for low resolution volume maps which
enables significantly faster precomputations and reduces the
memory requirements drastically. Another advantage is that
it directly fits into the SPH concept such that volume maps
can be seamlessly integrated into existing solvers and com-
bined easily with nearly all existing SPH methods. Finally,
in contrast to the density maps approach, volume maps
are independent of the smoothing kernel. Hence, a single
instance of a volume map can be used in conjunction with
various kernel functions. This is especially advantageous
as some methods employ individual smoothing kernels for
specialized purposes, e.g. surface tension or viscosity ap-c© 2020 IEEE. This is the authors’ version of the work. Personal use is permitted. For any other purposes,

permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

The definitive version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3004245

2

Fig. 1. Our novel implicit boundary representation based on volume maps is able to handle scenarios with complex static and dynamic boundaries.
Left: 8 million turbulent fluid particles interact with a large-scale canyon boundary. Right: Four emitters generate 12 million fluid particles with high
velocities that interact with static dragons and dynamic ducks.

proaches, where multiple instances of the kernel-dependent
density maps would be required.

This paper is an extended version of our previous work
on volume maps [4]. In addition to the original paper
we introduce a method to simulate sticky boundaries and
tangential friction using volume maps. Moreover, we added
a section describing the volume map construction in more
detail. Finally, we performed further experiments and im-
proved the derivation of the volume maps formulation.

2 RELATED WORK

In recent decades there has been a large variety of research
on SPH methods. They have become a popular tool for
simulating incompressible fluids, highly viscous liquids,
and deformable solids. In this section, we briefly discuss
prior works that are related to the presented method. A
more general overview of recent developments in SPH can
be found in the state-of-the-art report by Ihmsen et al. [5]
and in the course notes of Koschier et al. [6].

SPH was introduced to the computer graphics commu-
nity by Stam and Fiume [7] to simulate fire and gaseous
phenomena. Later, it was also used to simulate deformable
solids [8] and fluids [9]. To achieve nearly incompressible
fluids, Becker and Teschner [10] used an equation of state
based approach. By choosing an appropriate stiffness con-
stant for the pressure forces they can guarantee a small max-
imal compression. To alleviate the small time step require-
ments and stability issues of explicitly integrated pressure
forces, many implicit solvers have been developed. One way
of enforcing incompressibility is to apply a constant density
constraint as proposed by Solenthaler and Pajarola [11]
who solve it with a predictive-corrective scheme. Similar
approaches based on position based and projective dynam-
ics have been proposed by Macklin and Müller [12] and
Weiler et al. [13], respectively. Ihmsen et al. [14] showed
that constant density can also be enforced by solving a dis-
crete pressure Poisson equation. Another way to guarantee
incompressibility is to solve a Poisson equation to make
the velocity field divergence-free [15]. This has been done
in a hybrid SPH and grid based approach by Raveendran
et al. [16]. Bender and Koschier [17] proposed to solve for

both, a divergence-free velocity field and a constant density,
which increases stability and computational performance.
In our experiments we use this pressure solver although the
proposed boundary handling method can be combined with
any of the aforementioned solvers.

Due to the particle nature of SPH it is not straightfor-
ward to enforce boundary conditions at interfaces between
fluids and solid surfaces. One problem is that particles
which are located close to the boundary typically suffer
from neighborhood particle deficiencies leading to inaccu-
rate density estimates and pressure forces. Another prob-
lem is that implicit pressure solvers also require pressure
values inside the boundary domain which are unknown.
These problems are orthogonal to each other and several
methods to solve them have been proposed in recent years.
Most approaches use specialized boundary representations,
including particles, triangle meshes, and implicit represen-
tations such as signed distance fields.

A popular approach is to sample solid boundaries with
particles which exert penalty forces onto nearby fluid par-
ticles to avoid penetrations [10], [18]. Instead of integrating
these forces with explicit schemes, Becker et al. [19] pro-
posed a predictor-corrector scheme. However, their method
suffers from particle stacking artifacts near the boundary.
Alternatively, the boundary particles can be treated as fluid
particles such that they contribute to the density and pres-
sure computations [20]. This solves the particle deficiency
problem and results in smooth density distributions near
solid boundaries. However, small time steps are necessary
to guarantee non-penetration. Ihmsen et al. [21] combine the
approaches of Becker et al. [19] and Solenthaler et al. [20]
to get smooth particle distributions without requiring small
time steps. Their method was further improved by Akinci
et al. [22] such that two-way coupling of fluids with rigid
bodies can be achieved. Moreover, they introduced normal-
ized pseudo masses to account for non-uniform boundary
particle distributions. He et al. [23] proposed to add auxil-
iary staggered particles to discretize a Poisson equation with
appropriate boundary conditions for projecting the velocity
field onto a divergence-free state. For two-way coupling
of fluids and deformable solids several adaptive particle

3

sampling approaches have been proposed [24], [25], [26].
One problem of the particle based boundary representa-

tions is that the surfaces are typically irregular. This causes
non-smooth surface normals and therefore non-penetration
forces that are not completely orthogonal to the surface
which leads to undesired artificial friction or even jumping
particle artifacts [1]. Band et al. [2] proposed a method to
alleviate this problem. They use the moving least squares
(MLS) method to fit local planes to the boundary particles.
This results in correct normals and eliminates most artifacts.
However, it can be only applied in planar surface regions.
Another disadvantage of boundary particles is that they
introduce a substantial computational overhead. They need
to be considered during neighborhood searches and for each
fluid particle it is required to iterate over all neighboring
boundary particles during force and pressure computations.

Alternatively, solid boundaries can be represented as
triangle meshes. Bodin et al. [27] use unilateral constraints
to prevent the fluid particles from penetrating triangulated
surfaces. The two-way coupling of fluids with cloth was ad-
dressed by Huber et al. [28]. They use continuous collision
detection and apply correction impulses such that the fluid
particles cannot penetrate the cloth. However, neither of
the approaches addresses the problem of inaccurate density
estimates close to the boundary. Fujisawa and Miura [29]
also use meshes as a boundary representation and adopt
a solution for the density problem from the engineering
community [30]. In order to correct the SPH approximations,
they compute a renormalization factor which takes the
overlapping volume of the SPH kernel and the boundary
into account. However, they compute these factors at run-
time which results in significantly higher computation times
compared to the particle based approaches.

Solid boundaries can be alternatively represented with
implicit functions, e.g. signed distance fields (SDFs) as pro-
posed by Harada et al. [31], [32]. To virtually extend the
fluid density into the solid they sample the density contri-
bution of a planar surface depending on the distance of a
prototype fluid particle. The resulting values are discretely
sampled prior to the simulation and are then queried during
runtime based on the signed distance value of the fluid
particle. However, this is only correct for planar surfaces
and results in incorrect density values for curved geome-
tries. Koschier and Bender [1] proposed to precompute the
density contributions of rigid boundaries and store them in
a so called density map which can be efficiently queried
during runtime. This results in accurate density values and
avoids the artifacts of bumpy particle samplings. Since our
work is inspired by the density maps approach, it will be
discussed in more detail in Section 4.2.

A popular approach to solve the problem of required but
unknown pressure values at the boundary is a technique
called pressure mirroring (cf. [22]). While processing a fluid
particle that requires to determine the pressure value at
a boundary sample, pressure mirroring assumes that this
value is equal to the fluid’s pressure value. This is easy to
implement and computationally cheap, but has the problem
that the pressure values at the boundary are not unique. As
shown by Band et al. [33] this reduces the stability and con-
vergence of the pressure solver. Therefore, they suggested to
include the boundary particles into the pressure projection

step. In a follow-up work [34], they point out that it is even
more beneficial to compute unique boundary pressures by
extrapolating the values from the fluid particles using MLS.
In our work we focus on removing artifacts induced by the
irregularity of the typically particle-sampled surface and to
enhance accuracy in the evaluation of discrete field samples
and their derivatives in close proximity to the boundary.
However, we would like to stress the fact that the discussed
boundary pressure computation approaches are orthogonal
to the proposed method.

3 FOUNDATIONS

In this section we briefly introduce the governing equations
to simulate incompressible fluids. Moreover, we derive the
standard SPH discretization which is then extended in the
next section by boundary handling.
Governing Equations: In our work we simulate fluids by
using the Navier-Stokes equations for incompressible flow
in Lagrangian coordinates

Dρ

Dt
= 0 ⇔ ∇ · v = 0 (1)

Dv

Dt
= −1

ρ
∇p+ ν∇2v +

f

ρ
, (2)

where ρ, t,v, p, ν and f denote density, time, velocity, pres-
sure, kinematic viscosity and body forces, respectively. To
solve the Navier-Stokes equations numerically a discretiza-
tion is required.
Spatial Discretization: In the following we introduce the
SPH formalism which is a common approach for spatial
discretization. To derive the standard SPH discretization for
a function g(x), we first rewrite it using the Dirac-δ identity
(cf. [6])

g(x) =

∫
Ω
g(x′) δ(x− x′)dx′, (3)

where Ω defines the problem domain. Then, we approxi-
mate the integral by replacing δ with a kernel function W
with compact support and finally approximate the resulting
integral using a sum over a set of sampling points xj

g(x) ≈
∫
N (x)

g(x′) W (‖x− x′‖, h)dx′ (4)

≈
∑
j

Vjg(xj)W (‖x− xj‖, h), (5)

where N (x) defines the support domain of the kernel
function (see Fig. 2), h is the smoothing length of the kernel
and Vj is the volume represented by a sampling point.

In an SPH simulation the fluid is discretized by particles.
Each particle i represents a sampling point and its volume is
computed as mi

ρi
. The mass mi is determined by the size of

the particle and the rest density ρ0 of the fluid. The density
ρi of particle i is computed using the SPH formalism

ρi =
∑
j

mjWij , (6)

where Wij = W (‖xi − xj‖, h).

4

N(x)
x

B

F

r

Fig. 2. Definition of the fluid domain F (blue), the boundary domain B
(gray) and the support domain N (x) of the compact kernel function
(green) with radius r at position x. The fluid domain is discretized by
particles.

4 BOUNDARY HANDLING

Most graphics-related techniques to handle boundary con-
ditions in the context of SPH solvers are based on the con-
cept of virtually extending field quantities into the boundary
domain, e.g. density, pressure, velocity etc. [6]. Moreover,
the vast majority of proposed methods consider incom-
pressible continua and, therefore, ensure that the incom-
pressibility constraint (see Eq. (1)) is satisfied. By extending
the density field into the boundary domain, the typically
employed pressure solvers implicitly resolve boundary pen-
etrations as the virtual density contributions lead to local
compressions that violate the incompressibility constraint.
Recent work has demonstrated the generality and versatility
of the concept (cf. [35]). Building on this concept, we will
assume that (at least) the mass density ρ is extended into
the boundary such that ρ > 0 on B.

Given the (extended) density field, a smoothed density
sample ρ(x) located in close proximity to the boundary
domain is determined as follows. The density function is
plugged into Eq. (4). We can then partition the integral into
fluid and boundary portion (see Fig. 2)

ρ(x) ≈
∫
N (x)

ρ(x′) W (‖x− x′‖, h)dx′

=

∫
N (x)∩F

ρ(x′) W (‖x− x′‖, h)dx′+∫
N (x)∩B

ρ(x′) W (‖x− x′‖, h)dx′

=ρF (x) + ρB(x).

(7)

While the fluid integral ρF is typically discretized into
SPH particles and numerically approximated using Eq. (6),
there exist various approaches to numerically approximate
the boundary portion ρB. The most popular approach is
based on particle sampling. Recently, an alternative concept,
referred to as density maps [1], has been proposed, where
samples of ρB are computed using adaptive numerical
quadrature to discretize the function onto a spatial grid.
In the following, we first briefly describe the core concepts
of particle-based approaches and density maps and then
introduce our novel volume maps approach. We further
discuss the differences between all approaches and review
the advantages of our novel method in the next section.

4.1 Particle-Based Approaches

The core idea of particle-based approaches is to discretize
the boundary geometry with particles [18], [21], [22]. These
boundary particles typically have the same size as the fluid
particles and serve as additional sampling points. In this
way the boundary portion ρB(x) can be discretized analo-
gously to the fluid portion using a sum (see Eq. (6))

ρi = ρF (xi) + ρB(xi) ≈
∑
j

mjWij +
∑
k

m̃kWik, (8)

where j and k denote the indices of particle i’s fluid and
boundary particle neighbors, respectively. Note that the
boundary masses m̃k are independent of the boundary
object’s material properties and solely fulfill the purpose of
extending the fluid’s mass density field into the boundary.
The values m̃k are therefore often called pseudo masses.

One of the most popular approaches for particle-based
boundary handling was proposed by Akinci et al. [22].
In this approach the pseudo masses are chosen such that
ρB ≈ ρ0 inside the boundary domain. They compute the
pseudo mass of a boundary particle k as m̃k = ρ0∑

lWkl
,

where l denotes the indices of the neighboring boundary
particles of k, to account for non-uniform boundary particle
distributions.

For a more detailed discussion of particle-based ap-
proaches we would like to refer the reader to the work of
Koschier et al. [6].

4.2 Density Maps

Instead of sampling the boundary with particles one could
also solve the integral over the boundary part in Eq. (7) by
numerical integration methods such as Gauss quadrature
while setting the density in the boundary to ρ0. However,
the problem with this approach is twofold. First, the nu-
merical integration is expensive and significantly decreases
the performance of the simulation. Second, we have to
integrate a discontinuous, piecewise constant function as the
density field is zero outside of the boundary and takes on
ρ0 inside the boundary. This leads to staircase artifacts in
the resulting function due to the limited accuracy of fixed
pattern quadrature schemes (see Fig. 3).

The density maps concept [1] solves both problems. The
boundary density function ρB is discretized and precom-
puted on a spatial grid to solve the performance problem.
The discontinuities are removed by extending the boundary
density to the outside of the boundary to get a smooth
function. Since our novel boundary handling approach is
inspired by the density maps method, we will discuss this
concept here in more detail.

In contrast to particle-based approaches, the density
maps concept is based on an implicit representation of the
boundary. Building on a signed distance function Φ : R3 →
R whose zero iso-surface describes the boundary geometry,
the authors extend the density field into the boundary using
the extension function γ : R → R+. They further convolve
the density extension function with the kernel in order to
ensure compliance with the SPH formalism (cf. Eq. (7)), i.e.

ρB(x) =

∫
N (x)

γ(Φ(x′)) W (‖x− x′‖, h)dx′, (9)

5
Volume Maps: An Implicit Boundary Representation for SPH

the pseudo mass of a boundary particle k as

m̃k =
ρ0∑
lWkl

,

where l denotes the indices of the neighboring boundary particles
of k , to account for non-uniform boundary particle distributions.

For a more detailed discussion of particle-based approaches we
would like to refer the reader to the work of Koschier et al. [2019].

4.2 Density Maps
Instead of sampling the boundary with particles one could also
solve the integral over the boundary part in Equation (6) by numeri-
cal integration methods such as Gauss quadrature while setting the
density in the boundary to ρ0. However, the problem with this ap-
proach is twofold. First, the numerical integration is expensive and
significantly decreases the performance of the simulation. Second,
we have to integrate a discontinuous, piecewise constant function
as the density field is zero outside of the boundary and takes on ρ0
inside the boundary. This leads to staircase artifacts in the resulting
function due to the limited accuracy of fixed pattern quadrature
schemes (see Figure 3).

The density maps concept of Koschier and Bender [2017], which
is introduced in this section, solves both problems. The boundary
density function ρB is discretized and precomputed on a spatial grid
to solve the performance problem. The discontinuities are removed
by extending the boundary density to the outside of the boundary to
get a smooth function. Since our novel boundary handling approach
is inspired by the density maps method, we will discuss this concept
here in more detail.

In contrast to the particle-based approaches, the density maps
concept is based on an implicit representation of the boundary.
Building on a signed distance function Φ : R3 → R whose zero
iso-surface describes the boundary geometry, the authors extend
the density field into the boundary using the extension function γ :
R→ R+. They further convolve the density extension function with
the kernel in order to ensure compliance with the SPH formalism
(cf. Equation (6)), i.e.

ρB(x) =
∫
N(x)

γ (Φ(x′))W (∥x − x′∥,h)dx′, (7)

where the signed distance function is defined as

Φ(x) =
{
−d(x, ∂B) if x ∈ B
d(x, ∂B) otherwise,

(8)

and where
d(x, ∂B) = inf

x̃∈∂B
∥x − x̃∥

defines the shortest (unsigned) distance from x to the surface of
the boundary ∂B. They further model the extension function as a
linear polynomial that takes the rest density value on the boundary
surface

γ (x) =
{
ρ0

(
1 − x

r
)

if x < r

0 otherwise.
(9)

This means instead of having zero density outside of the bound-
ary and ρ0 inside, we have a linear function increasing from 0 to
ρ0 within the support radius r . In this way the extension func-
tion has no discontinuity within the support radius of the fluid

B

r enters the boundary, the boundary part of the density ρB
increases. Right: Computing ρB by numerical integration
leads to a discontinuity each time a sampling point (blue)
enters the boundary.

particle. In order to evaluate the boundary density function ρB
at a certain sample position x, Koschier and Bender numerically
approximate the integral using adaptive Gauss-Kronrod quadra-
ture. As this procedure is computationally expensive for arbitrarily
complex boundary shapes and therefore not bearable at runtime,
they discretize ρB on a regular grid with cubic shape functions of
Serendipity type. The discretized function can then be efficiently ac-
cessed at runtime such that boundary density values and gradients
can be computed in O(1). They justify the usage of the higher-order
polynomial discretization with the argument that the convolution
with typically piecewise polynomial kernels results in a sufficiently
smooth field. Therefore, the cubic discretization usually requires
fewer degrees of freedom to capture the field with high accuracy
than linear discretizations.

4.3 Volume Maps
Our novel volume maps approach is inspired by the density maps
concept and is also based on an implicit boundary representation.
Moreover, we also define an extension function to avoid disconti-
nuities and use a spatial grid to improve performance. However,
instead of computing the density part of the boundary directly, we
determine the intersection volume of the sphere around a fluid par-
ticle that is defined by the support radius r and the boundary (see
Figure 2). This offers several advantages as shown in the following.

The most important advantage is that the boundary volume can
be directly used in the general SPH formulation (see Equation (4))
which enables a consistent computation of the density gradient. Vol-
ume maps only determine the intersection volume between kernel
support domain and boundary and use the SPH formulation to com-
pute the density gradient. In contrast, density maps determine the
gradient by differentiating the cubic shape functions of Serendipity
type of their spatial grid discretization. The latter way to compute
the gradient has a significant drawback. It is not guaranteed that a
density map is continuous over the interfaces of neighboring grid
cells [Koschier et al. 2017]. This leads to ’kinks’ in the discretized
representation of the density function when using a coarse reso-
lution. At the position of such a kink the described computation

0

ρ0

-r 0 r

Fig. 3. Left: As the black fluid particle with support radius r enters
the boundary, the boundary part of the density ρB increases. Right:
Computing ρB by numerical integration leads to a discontinuity each
time a sampling point (blue) enters the boundary.

where the signed distance function is defined as

Φ(x) =

{
− inf x̃∈∂B ‖x− x̃‖ if x ∈ B
inf x̃∈∂B ‖x− x̃‖ otherwise.

(10)

The extension function is modeled as a linear polynomial
that takes the rest density value on the boundary surface

γ(x) =

{
ρ0

(
1− x

r

)
if x < r

0 otherwise.
(11)

This means we have a linear function increasing from 0 to
ρ0 within the support radius r. In this way the extension
function has no discontinuity within the support radius.
In order to evaluate the boundary density function ρB at
a certain sample position x, the integral is numerically ap-
proximated using adaptive Gauss-Kronrod quadrature. As
this procedure is computationally expensive for arbitrarily
complex boundary shapes and therefore not bearable at
runtime, ρB is discretized on a regular grid with cubic shape
functions of Serendipity type. The discretized function can
then be efficiently accessed at runtime such that boundary
density values and gradients can be computed in O(1).

4.3 Volume Maps

Our novel volume maps approach is inspired by the density
maps concept and is also based on an implicit boundary rep-
resentation. Moreover, we also define an extension function
to avoid discontinuities and use a spatial grid to improve
performance. However, instead of computing the density
part of the boundary directly, we determine the intersection
volume of the sphere around a fluid particle that is defined
by the support radius r and the boundary (see Fig. 2). This
offers several advantages as shown in the following.

The most important advantage is that the boundary
volume can be directly used in the general SPH formula-
tion (see Eq. (5)) which enables a consistent computation
of the density gradient. Volume maps only determine the
intersection volume between kernel support domain and
boundary and use the SPH formulation to compute the
density gradient. In contrast, density maps determine the
gradient by differentiating the cubic shape functions of their
spatial grid discretization. The latter way to compute the
gradient has a significant drawback. It is not guaranteed

 0

 0.25

 0.5

 0.75

 1

0 0.5r r

(a) linear extension function

 0

 0.25

 0.5

 0.75

 1

0 0.5r r

(b) cubic extension function

Fig. 4. (a) The linear extension function γ (Eq. (11)) used for density
maps is not smooth at x = r. (b) In contrast our cubic function γ∗

(Eq. (13)) is continuously differentiable. Note that the plot in (a) shows
the normalized function γ/ρ0.

that a density map is smooth over the interfaces of neigh-
boring grid cells [3]. This leads to ’kinks’ in the discretized
representation of the density function when using a coarse
resolution. At the position of such a kink the described
computation of the density gradient leads to pressure forces
that are not consistently oriented and therefore to noticeable
visual artifacts (see Section 6). This can be improved by us-
ing a high-resolution density map which is computationally
expensive to generate and has significantly higher memory
requirements. In our method we use the map only to deter-
mine the boundary volume. The gradient is computed with
the classical SPH formulation. Therefore, our method yields
smooth pressure forces that do not cause visual artifacts
even for low resolution maps which is shown in Section 6.

In order to generate a volume map, we determine the
boundary volume as

VB(x) =

∫
N (x)

γ∗(Φ(x′))dx′, (12)

where Φ is the signed distance function (see Eq. (10)).
Note that this formulation is similar to the integral for the
boundary density in Eq. (9). However, the computation of
the volume does not require a convolution with the kernel
function. Therefore, in contrast to density maps, volume
maps are independent of the kernel and a single map can
be used in conjunction with various kernel functions. More-
over, in our formulation we use a cubic extension function
instead of a linear one (cf. Eq. (11))

γ∗(x) =

C(x)
C(0) if 0 < x < r

1 if x ≤ 0

0 otherwise,

(13)

where C denotes the cubic spline kernel [36]. Note that this
kernel is only used to define the cubic function γ∗ while an
arbitrary kernel can be used in the SPH formulation. Using
a cubic extension function has the advantage that in contrast
to a linear one, we get a smooth transition at distance x = r
(see Fig. 4). Moreover, the fact that our cubic extension func-
tion is continuously differentiable significantly improves the
Gauss quadrature approximation of the integral in Eq. (12)
in comparison to using the non-smooth linear function [37].
This means we can reach the same approximation accuracy
with a lower number of sample points which reduces the
precomputation time. Finally, the integral in Eq. (12) is nu-
merically solved using Gauss-Legendre quadrature and the

6

volume function is spatially discretized on a grid structure.
For further details see Section 5.

To compute the density of a particle we use the SPH
formulation in Eq. (5). Here a quantity at a position x is
determined by a sum over a set of sampling points in
the neighborhood of x. Each sampling point represents a
volume and its quantity is weighted by a kernel function
depending on the distance between the sampling point and
x. To determine the boundary portion of the density ρB
using our volume maps approach, we add a single sampling
point x∗ on the boundary which represents the boundary
volume VB. Moreover, we extend the density field to the
boundary and assume that the density in the boundary
volume VB is ρ0. Substituting the sampling point and the
density in the integral for the boundary density from Eq. (7)
allows us to solve the integral:

ρB(x) ≈
∫
N (x)∩B

ρ0 W (‖x− x∗‖, h)dx′

=ρ0 W (‖x− x∗‖, h)

∫
N (x)∩B

dx′

=ρ0 W (‖x− x∗‖, h)VB(x).

(14)

In our work we define x∗ as the closest point to x on the
boundary. This point can be easily determined by the signed
distance function Φ that we also use to generate the volume
map.

The volume map is generated in a precomputation step
before the simulation. To compute the density contribution
of the boundary during runtime, in each simulation step
we have to determine the closest point x∗ on the surface
of the boundary and the boundary volume VB for each
fluid particle x that is close to boundary. Note that both
quantities can be obtained by simple lookups in the map
which require constant time. The resulting density contribu-
tion can be easily used in any pressure solver. The required
density gradient can be determined analogously by taking
the gradient of the kernel. Finally, the symmetric pressure
force [36] for a particle i is computed as

Fpi =−mi

∑
j

mj

(
pi
ρ2
i

+
pj
ρ2
j

)
∇W (‖x− xj‖, h)

−miVBρ0

(
pi
ρ2
i

+
p̃

ρ̃2

)
∇W (‖x− x∗‖, h)

=Fpi←F + Fpi←B,

(15)

where Fpi←F is the part of the pressure force that is exerted
by the neighboring fluid particles and Fpi←B is the part that
is exerted by the boundary. p̃ and ρ̃ are the pressure and the
density at the boundary, respectively. In our work we used
pressure mirroring [22] and therefore set p̃ = pi and ρ̃ =
ρ0. However, we plan to compute the boundary pressure
value by extrapolation as proposed by Band et al. [34] in the
future. Their pressure extrapolation can be combined easily
with our approach by setting p̃ to the extrapolated value.

In case of dynamic boundaries we apply the negative
force FpB←i = −Fpi←B at the position x∗ to the boundary
object in order to realize two-way coupling. This two-way
coupling is shown in the simulations in Fig. 1 and 12.

x

x∗

n

t x1x2

r

N (x) ∩ BB

N (x)

Fig. 5. In a simulation with volume maps, the computation of boundary
viscosity requires the definition of additional points x1 and x2 (green) on
the boundary surface. When a particle x (blue) is closer to the boundary
than the support radius r, the volume maps approach determines the
closest point on surface x∗ (gray), the surface normal n and the volume
of the intersection N (x) ∩ B (yellow) of the support domain N and
the boundary domain B. By computing a tangent vector t which is
perpendicular to n two additional surface points are generated.

4.4 Boundary Viscosity

In the following we describe how volume maps can be
combined with a method for the simulation of boundary
viscosity in order to simulate sticky boundaries and tangen-
tial friction.
Sticky Boundaries: In our work we use the method of
Weiler et al. [38] to simulate highly viscous materials. Weiler
et al. introduce an implicit method to compute the viscos-
ity force fvisco = µ∇2v which is defined by the Navier-
Stokes equations. The Laplacian of the velocity field is
approximated by combining an SPH derivative with a finite
difference derivative [36]:

∇2vi = 2(d+ 2)
∑
j

Vj
vij · xij

‖xij‖2 + 0.01h2
∇Wij , (16)

where xij = xi − xj , vij = vi − vj and d is the num-
ber of spatial dimensions. The sum in Eq. (16) considers
all neighboring fluid particles j. Highly viscous materials
like honey tend to stick to the boundary. To simulate this
effect Weiler et al. propose to consider also all neighboring
boundary particles in the sum of Eq. (16).

However, when using volume maps this method cannot
directly be applied. The only point we have on the boundary
surface is the closest point x∗ (cf. Section 4.3). The vector
from this point to xi points exactly in the direction of the
surface normal (see Fig. 5). Hence, if we solely use this
boundary point, the term vij · xij in Eq. (16) would only
represent the velocity difference in normal direction while
the velocity in tangential direction is neglected. To solve this
problem, we temporarily add additional surface points to
evaluate the Laplacian of the velocity field.

To generate additional points on the boundary surface
we first determine two orthogonal vectors t1 and t2 in the
tangential plane perpendicular to the normal vector n. Then
we define four points in this plane by x1/2 = x∗ ± dt1

and x3/4 = x∗ ± dt2. In our work we use a distance of
d = 0.5r to the point x∗. When reducing the distance factor,
the points get closer to x∗ so that the tangential components

7

of the velocity have less influence. For larger factors the
points are far away from x so that they only lie within the
support radius when the fluid particle is very close to the
surface. In several experiments the value d = 0.5r gave us
the best results. Fig. 5 shows the two-dimensional case with
one tangent vector t and two additional points x1 and x2.

In our simulation we evaluate Eq. (16) only for the four
additional surface points. Since the four points represent the
volume VB of the intersection region N (x)∩B, we set Vj =
0.25VB. Finally, we need the velocity of each point which is
computed as

vj = vrb + ωrb × (xj − xrb), (17)

where xrb, vrb and ωrb are the center of mass, the velocity
and the angular velocity of the corresponding rigid body,
respectively.
Tangential Friction: When simulating deformable solids,
the bodies typically do not stick to the boundaries. How-
ever, tangential friction occurs between the solids and the
boundaries which can be simulated in a similar way.

For each solid particle i which is closer to the boundary
than its support radius we first determine additional surface
points xj as described above. Since we are only interested
in the relative tangential motion of the bodies, we then
compute the relative tangential velocities of a solid particle
i and its corresponding additional boundary surface points

vtij = vij − (vij · ni)ni, (18)

where ni is the surface normal at the closest point to xi
and vj is determined by Eq. (17). Finally, we compute the
Laplacian of the velocity field using the relative tangential
velocity:

∇2vi = 2(d+ 2)
∑
j

mj

ρj

vtij · xij
‖xij‖2 + 0.01h2

∇Wij . (19)

5 VOLUME MAP DISCRETIZATION

As previously explained, every evaluation of the boundary
volume function VB requires one to numerically solve an
integral over the cubically extended volume contribution
as defined in Eq. (12). Since our goal is to support arbi-
trarily complex boundary surface shapes, carrying out a
sufficiently accurate approximation of VB is computation-
ally involved. Fortunately, under the assumption that the
boundary geometry solely undergoes rigid transformations,
we can discretize the function prior to the simulation and
efficiently evaluate boundary volume samples using the
discrete field at runtime.

Generally, we are not restricted to a specific type of
discretization. However, given that we expect that VB is
sufficiently smooth and given that the cubic extension in-
troduced in Eq. (13) is smooth and non-linear, it is sensible
to employ a piecewise polynomial discretization in order to
capture the function with sufficient accuracy. Therefore, we
suggest to use cubic polynomials on a regular hexahedral
grid. An obvious choice for the cubic elements would be
to use isoparametric tensor-product polynomials leading to
64 node elements which in turn require 64 evaluations of
VB for construction. In order to minimize both the num-
ber of function evaluations and storage requirements, we

decided to use cubic elements of Serendipity type instead,
reducing the number of element nodes to 32 which is in
line with the method used by Koschier and Bender [1]. The
Serendipity elements still guarantee C0 continuity over ele-
ment boundaries. The loss in accuracy compared to tensor-
product elements is furthermore small, as the Serendipity
element solely dismisses basis functions of mixed higher-
order. However, those mixed higher-order terms add typi-
cally little to the overall approximation quality. To further
reduce the memory requirements, grid cells sufficiently far
away from and sufficiently deep inside the boundary object
can be discarded resulting in a sparse grid which only
stores cells in a narrow band around the surface. Finally,
the volume map construction is carried out in three steps:

1) Signed distance field discretization
2) Volume map discretization
3) Enforcing grid sparsity

In the first step, a discretization domain is determined by
computing the axis-aligned bounding box of the boundary
surface dilated by (at least) the SPH kernel support ra-
dius. Presuming a user-specified grid resolution, the signed
distance to the surface is then sampled at every node of
the cubic Serendipity elements in the grid, e.g. using the
method of Bærentzen and Aanæs [39]. This preliminary dis-
cretization allows us to efficiently compute signed distances
in the next steps at arbitrary points within the discretized
domain. Additionally, we can reuse the discretized signed
distance field for collision detection which is required when
simulating interacting rigid bodies.

In the second step, we sample the boundary volume
function VB at every element node. As previously discussed,
this requires to numerically solve the integral in Eq. (12). For
all of our results we have used a Gauss-Legendre quadra-
ture rule of order 30 which was enough to yield sufficiently
accurate results for all of our boundary geometries. Gen-
erally, using more elaborate quadrature techniques such as
adaptive quadrature might be beneficial if even more com-
plex boundary shapes are employed or if higher accuracy
is required. Fig. 6a shows the volume map of a duck model
which was generated with the method described above. The
map has a resolution of 20× 20× 20.

In the third and final step, we discard grid cells which
are located sufficiently far away from the boundary or deep
inside the boundary object in order to reduce the memory
requirements. The volume integral in Eq. (12) using the
cubic extension function defined in Eq. (13) is zero for all
x with a distance of Φ(x) > 2r. Moreover, we assume
that a particle never penetrates the boundary more than the
same distance. Therefore, we discard the grid cells, where all
points in the cell fulfill |Φ(x)| > 2r. For the dragon models
in Fig. 1 and 12 we used a map resolution of 60 × 40 × 40.
Storing the signed distance field and the volume map as
dense grid requires 35.7 MB while the sparse grid only
requires 6.4 MB which reduces the memory consumption by
a factor of 5.5.

The discretization described above enables us to ap-
proximate the boundary volume VB efficiently. While the
volume maps approach provides a quite accurate solution
at the grid nodes, it interpolates the solution in the interior
of a grid cell by cubic shape functions. To measure the

8

(a) Volume map (b) Error of a volume map

Fig. 6. (a) A 2D slice of the duck volume map used in the simulations in
Fig. 1 and 12. The size of the duck is 1.3m×1.3m×1.5m. The volume
is color-coded from white to blue. We used a coarse map resolution of
20 × 20 × 20. The object surface is represented by the black contour.
(b) For each pixel in this plot the volume is computed once using our
volume maps approach and once by solving the corresponding volume
integral accurately. The figure shows the deviation of our volume maps
approach from the accurate solution. White means no error and red is
the maximum volume error which was 0.000012m3 in this comparison.

accuracy of this approximation we compared the volume
maps solution to an accurate solution of the volume integral.
The accurate solution was computed by solving Eq. (12) at
every point (not only at the grid nodes) using a Gauss-
Legendre quadrature rule of order 100. The difference of
both solutions is shown in Fig. 6b, where the error is color-
coded from white (no error) to red. The maximum volume
error in this experiment was 0.000012m3 which occurs in
the dark red regions. The small error value shows that our
volume maps approach gives a good approximation of the
boundary volume even for low map resolutions.

Finally, we performed an experiment where a particle
with radius 0.01 m was moved in small steps towards a
planar boundary until it touches the boundary. In each step
we compared the exact boundary intersection of its sup-
port domain and the boundary volume determined by our
approach. The average volume error was 0.000016m3 for a
low-resolution map (10×10×10). This small error is caused
by the map discretization, which we use to significantly
improve the performance, and the extension function, which
is required to avoid discontinuities.

6 RESULTS AND DISCUSSION

In this section, we present results and compare our volume
maps concept to the particle-based method of Akinci et
al. [22] and the density maps approach [1]. For the compar-
ison we implemented all methods in the open-source SPH
library SPlisHSPlasH [40]. All simulations were performed
using the implicit pressure solver DFSPH with an adaptive
time-stepping scheme based on the CFL condition [17]. In
fluid simulations we further employed a micropolar model
to simulate vorticity [41]. Dynamic rigid bodies are simu-
lated using a position-based method [42], [43]. The perfor-
mance was measured on two Intel Xeon E5-2697 processors
with 2.3GHz.
Comparisons: To compare our method to the particle-based
approach, we performed several experiments. In the first
simulation we dropped a regular grid of fluid particles on an
inclined plane (see Fig. 7). The space between the particles
is larger than the support radius so that the particles do

(a) Akinci et al. (b) Volume Maps

Fig. 7. A regular grid of fluid particles is dropped on an inclined plane. (a)
The particle-based sampling causes a chaotic motion. (b) Our approach
shows the expected smooth motion.

Fig. 8. Sequence of five steps in two simulations of a sliding cube on
a frictionless inclined plane comparing the method of Akinci et al. (left)
and our method (right). While our method shows the expected behavior
(right), the cube simulated using the particle-based approach of Akinci
et al. (left) slightly drifts to the left, starts to rotate and gets slower due
to artificial friction.

not influence each other. The particle-based sampling of
the boundary causes a chaotic movement of the particles
(see Fig. 7a) while the simulation with our volume maps
approach shows the expected smooth motion (see Fig. 7b).

In the second experiment we simulated the motion of a
deformable cube on a frictionless inclined plane (see Fig. 8).
The elastic behavior is simulated using the implicit SPH
formulation for deformable solids of Peer et al. [44]. The
results show that the non-smooth surface of the particle-
based sampling leads to an undesired drift, artificial friction
and a rotational motion. Since the volume maps are better
suited to represent smooth surfaces, we did not experience
any artifacts when using our novel method.

Finally, we simulated another deformable cube that ro-
tates without friction for 100 seconds on a plane (see Fig. 9).
Again the particle-based sampling caused an undesired drift
and artificial damping. The cubes started with an angular
velocity of 5.1 rad/s. At the end of the simulation the cube
which was simulated with the boundary handling of Akinci
et al. lost almost 90% of its angular velocity and the cube’s
center shifted substantially. Using our novel method the loss
of angular velocity was less than 1% and no drift occurred.

To compare our method to the density maps approach of
Koschier et al., we computed the pressure force for a single
fluid particle which is moved along the normal direction to
a planar boundary. The plots in Fig. 10 show the normal
component of the resulting force (the other components are
zero) for both methods. For the density map construction
we solved the integral in Eq. (9) for each grid point which
is close to the boundary using a high-resolution Gauss-
Legendre quadrature with 17.5k sampling points. Since the

9

Fig. 9. Simulation of a deformable cube that rotates on a plane without
friction. Left: In the simulation with the method of Akinci et al. the
cube looses about 90% of its angular velocity and it drifts to the right.
Right: Using our method no undesired drift is noticeable and the angular
velocity is almost maintained.

 0

0 r 2r

(a) density maps (10×10×10)

 0

0 r 2r

(b) density maps (20×20×20)

 0

0 r 2r

(c) density maps (30×30×30)

 0

0 r 2r

(d) density maps (60×60×60)

 0

0 r 2r

(e) volume maps (10×10×10)

 0

0 r 2r

(f) volume maps (20×20×20)

Fig. 10. Pressure force. A single fluid particle is moved in normal
direction towards a boundary plane. The plots show the pressure force
in normal direction (y-axis) for different map resolutions in relation to
the distance to the boundary (x-axis). When using density maps, the
pressure force increases slowly and is not smooth for low resolution
maps (a,b,c,d). The force increases faster when using volume maps and
is smooth even for low resolutions (e,f).

extension function of density maps is not continuously
differentiable, this high resolution of sampling points is
required to get a sufficient approximation when using Gauss
quadrature [37]. Fig. 10 shows that low resolution density
maps lead to discontinuities in the pressure force which in
turn cause visual artifacts in a simulation as demonstrated

in Fig. 11. The volume map construction was also performed
by solving an integral (see Eq. (12)) using Gauss-Legendre
quadrature. However, due to our smooth cubic extension
function 4k sampling points were already sufficient. As
shown in Fig. 10 the resulting force was continuous even for
low resolution maps and no visual artifacts occurred during
the dam break simulation in Fig. 11.

We believe that the kinks in the density maps pressure
forces (see Fig. 10) are caused by small discontinuities be-
tween neighboring cells of the spatial grid (cf. [3]). Since
the density maps approach uses the shape functions of
the spatial discretization to compute the density gradient,
these discontinuities have a large influence on the resulting
pressure force and cause noticeable artifacts (see Fig. 11).
In contrast our volume maps method only determines the
volume using a map while the gradient is computed using
the standard SPH formulation. Therefore, the influence on
the pressure force is only small and neither noticeable in the
graph (see Fig. 10) nor in the simulation (see Fig. 11).

Finally, we compared the construction times and the
memory requirements of the volume and density maps. We
compared the 3D maps of the unit cube that were used to
generate the graphs in Fig. 10. At the same resolution the
requirements are comparable. However, the density map
required a resolution of 60 × 60 × 60 while a volume map
only needed a resolution of 10× 10× 10 to obtain a smooth
result. We observed the same resolution requirements in
our 2D dam break simulation. The corresponding density
map required 78.2 MB while the volume map only needed
392 KB due to its lower resolution. Hence, the memory
consumption of the volume map was 200 times lower. The
density map construction took 175 s while the generation of
the volume map only needed 0.3 s. This yields a speedup
factor of about 580. Naturally the speedup and memory
requirements depend on the geometry that is discretized.
Considering a complex geometry with small features, the
discrete map naturally requires a higher resolution. How-
ever, the density map still relies on a far higher resolution
to avoid the stability issues. At this point we would like
to mention that the current implementation uses a regular
grid to store the map. In the future, we plan to improve
our implementation by using an adaptive grid which will
further reduce the memory requirements.
Complex Boundaries: We performed two simulations to
show that our novel method is able to handle scenarios with
complex static and dynamic boundaries. First, we simulated
a breaking dam in a canyon (see Fig. 1, left). To capture
the detailed canyon surface we used a map resolution of
128× 64× 768 in this scenario. We want to emphasize that
this high resolution map is not required to guarantee a sta-
ble simulation. A realistic fluid-air interaction is simulated
using the method of Gissler et al. [45]. The simulation shows
that our method is able to handle 8 million turbulent fluid
particles that interact with a large-scale complex boundary.

In the second simulation 12M fluid particles, which
were generated by four emitters, interact with three static
dragons and ten dynamic ducks (see Fig. 1, right). This
demonstrates that our method robustly handles coupling
between a turbulent fluid and dynamic bodies.
Combination with Existing SPH Methods: Our novel
boundary handling method can be easily combined with

10

(a) Density Maps 10×10 (b) Density Maps 60×60 (c) Volume Maps 10×10

Fig. 11. Comparison of the density and volume maps using a 2D dam break simulation. (a) Low resolution density maps cause visual artifacts.
(b) We can alleviate this problem by using a high-resolution density map. (c) Volume maps avoid these artifacts by a consistent gradient computation
and do not suffer from visual artifacts even when using a low-resolution map.

Fig. 12. Multiphase simulation where 5 million fluid particles interact with
1.3 million particles of a highly viscous material and multiple dynamic
rigid bodies. The simulation demonstrates that our volume maps bound-
ary handling can be easily combined with an implicit viscosity solver and
an SPH multiphase method.

other existing SPH methods. To demonstrate this we created
a scenario consisting of several emitters, static dragons and
dynamic ducks (see Fig. 12). This time we combined our
method with the multiphase approach of Solenthaler and
Pajarola [46] and the implicit viscosity solver of Weiler et
al. [38] to simulate the interaction of water, highly viscous
material and dynamic and static boundaries. In this exper-
iment the highly viscous material sticks to the boundary.
This effect was simulated using the extension introduced in
Section 4.4. We used 5 million particles for the water phase
and 1.3 million particles for the highly viscous material. The
simulation shows that our novel boundary handling method
can be seamlessly combined in other existing SPH methods.
Boundary Viscosity: In Section 4.4 we introduced exten-
sions of the volume maps approach to simulate sticky
boundaries and tangential friction. We performed three
experiments to test both extensions in complex simulations.

In simulations with highly viscous materials, such as
honey, that typically stick to the boundary, we use the first
extension to simulate the sticking effect. Fig. 12 shows a
highly viscous material that interacts with dynamic rigid
bodies and a static boundary. In this simulation we set the
fluid viscosity coefficient to µ = 1000 kg

m·s and the boundary
viscosity coefficient to µB = 10 kg

m·s . The accompanying

Fig. 13. A viscous fluid is poured over two grids and sticks to them.
This example demonstrates that our extension enables the simulation of
viscous friction between fluids and solids. It also shows that even fine
structures like the grid can be reliably captured using volume maps.

video shows that the viscous material tends to stick to the
boundary which is the effect of our proposed extension.

In a second experiment we demonstrate the sticking
effect without further interaction forces (see Fig. 13). A
viscous fluid was poured over two grids and adhered to
the boundary. Even though the grids were relatively thin,
their interaction with the fluid was accurately simulated
with our method. A map resolution of 100 × 10 × 100
was sufficient to capture their boundary volumes. The fluid
viscosity coefficient was set to µ = 500 kg

m·s while the
boundary viscosity coefficient was µB = 10000 kg

m·s to get
a highly sticky behavior.

In the last boundary viscosity experiment we tested the
tangential friction method introduced in Section 4.4. Six
deformable cubes were simulated with different friction
parameters (see Fig. 14). Again we used the method of Peer
et al. [44] to simulate the elastic behavior. At the beginning
all boxes had the same initial velocity of 5 m

s and tangential
friction was turned off. After two seconds of simulation we
added tangential friction by setting the friction coefficients
of the six cubes to values ranging from µB = 0.0125 kg

m·s to
µB = 0.4 kg

m·s (cf. Fig. 14).
Performance: In our last experiment we simulated a double
dam break consisting of 3 million fluid particles (see Fig. 15).
This scenario was simulated once using the boundary han-

11

Fig. 14. Six deformable cubes with different friction coefficients slide on
a plane. The coefficients µB were set to (from left to right): 0.0125 kg

m·s ,
0.025 kg

m·s , 0.05 kg
m·s , 0.1 kg

m·s , 0.2 kg
m·s , and 0.4 kg

m·s . Note that our tan-
gential friction model only affects the tangential velocity.

Fig. 15. Double dam break simulation with 3 million water particles.

dling of Akinci et al., once using density maps and once
using our novel volume maps formulation to compare the
performance. The average times per simulation step for the
neighborhood search and the pressure and non-pressure
forces are given in Table 1. The results show that the
neighborhood search is faster when using density or volume
maps. The reason for this is that no boundary particles need
to be considered. The computation of the pressure and non-
pressure forces using a map is also slightly faster than for
the particle-based method since instead of a sum over all
boundary neighbors only a lookup in a map is required. The
comparison shows that our novel method has a performance
that is comparable to the other methods and is even slightly
faster than the particle-based approach.

7 CONCLUSION

In this paper we introduced a novel implicit boundary
representation called volume maps. The most popular SPH
boundary handling methods are based on a particle rep-
resentation of the surface. However, the boundary particles
lead to bumpy surfaces and inaccurate pressure forces. Den-
sity maps provide an implicit representation of the surfaces
which avoids these problems. However, high-resolution
maps are required since the density gradient computation
suffers from discontinuities in the map. In contrast to the
density maps approach our method only determines the
overlapping volume of the boundary and the support do-
main of the smoothing kernel. The gradient computation

TABLE 1
Average times per step required for the neighborhood search, the

pressure solve and the computation of the non-pressure forces in a
double dam break simulation (see Fig. 15).

Akinci et al. Density Maps Volume Maps
neigh. search 411 ms 379 ms 369 ms
pressure 1090 ms 1054 ms 1078 ms
non-pressure 357 ms 339 ms 342 ms
total 1858 ms 1715 ms 1789 ms

uses the classical SPH formulation which provides a con-
sistent pressure force even for low resolution maps and
does not suffer from map discontinuities. Therefore, in
comparison to density maps we need about two orders
of magnitude less precomputation time and memory. Since
our method directly fits into the classical SPH formulation,
it can be easily combined with any existing SPH method.
Finally, in contrast to density maps our representation is
independent of a specific kernel function and a single map
can be combined with methods that use different kernels.

Our method has the same limitations as the density
maps approach. A volume map cannot be precomputed for
a deformable solid and it is computationally expensive to
compute the map at runtime. Moreover, the cubic shape
functions that we use for our map smooth out sharp features
in the boundary model. However, this problem can be
alleviated by using an adaptive discretization for the map
which is a goal for our future work. Another future goal is
to combine our volume maps with pressure extrapolation to
further improve the boundary handling.

REFERENCES

[1] D. Koschier and J. Bender, “Density maps for improved sph
boundary handling,” in ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. ACM, 2017, pp. 1–10.

[2] S. Band, C. Gissler, and M. Teschner, “Moving least squares bound-
aries for sph fluids,” in Virtual Reality Interactions and Physical
Simulations. Eurographics Association, 2017, pp. 21–28.

[3] D. Koschier, C. Deul, M. Brand, and J. Bender, “An hp-adaptive
discretization algorithm for signed distance field generation,”
IEEE Transactions on Visualization and Computer Graphics, vol. 23,
no. 10, pp. 2208–2221, 2017.

[4] J. Bender, T. Kugelstadt, M. Weiler, and D. Koschier, “Volume
maps: An implicit boundary representation for sph,” in Motion,
Interaction and Games. ACM, 2019.

[5] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner,
“SPH Fluids in Computer Graphics,” in Eurographics (State of the
Art Reports), 2014, pp. 21–42.

[6] D. Koschier, J. Bender, B. Solenthaler, and M. Teschner, “Smoothed
particle hydrodynamics for physically-based simulation of fluids
and solids,” in EUROGRAPHICS 2019 Tutorials, 2019.

[7] J. Stam and E. Fiume, “Depicting fire and other gaseous phe-
nomena using diffusion processes,” in Proc. Computer Graphics and
Interactive Techniques, 1995.

[8] M. Desbrun and M.-P. Gascuel, “Smoothed Particles: A new
paradigm for animating highly deformable bodies,” in Eurograph-
ics Workshop on Computer Animation and Simulation, 1996, pp. 61–76.

[9] M. Müller, D. Charypar, and M. Gross, “Particle-Based
Fluid Simulation for Interactive Applications,” in ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2003.

[10] M. Becker and M. Teschner, “Weakly compressible SPH for free
surface flows,” in ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 2007, pp. 1–8.

[11] B. Solenthaler and R. Pajarola, “Predictive-corrective incompress-
ible SPH,” ACM Transactions on Graphics, vol. 28, no. 3, 2009.

[12] M. Macklin and M. Müller, “Position Based Fluids,” ACM Transac-
tions on Graphics, vol. 32, no. 4, pp. 1–5, 2013.

12

[13] M. Weiler, D. Koschier, and J. Bender, “Projective Fluids,” in ACM
Motion in Games. New York, NY, USA: ACM, 2016, pp. 79–84.

[14] M. Ihmsen, J. Cornelis, B. Solenthaler, C. Horvath, and
M. Teschner, “Implicit incompressible SPH,” IEEE Transactions on
Visualization and Computer Graphics, vol. 20, no. 3, 2014.

[15] J. Cornelis, J. Bender, C. Gissler, M. Ihmsen, and M. Teschner, “An
optimized source term formulation for incompressible sph,” The
Visual Computer, vol. 35, no. 4, pp. 579–590, 2019.

[16] K. Raveendran, C. Wojtan, and G. Turk, “Hybrid smoothed parti-
cle hydrodynamics,” in ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, 2011, pp. 33–42.

[17] J. Bender and D. Koschier, “Divergence-Free SPH for Incompress-
ible and Viscous Fluids,” IEEE Transactions on Visualization and
Computer Graphics, vol. 23, no. 3, pp. 1193–1206, 2017.

[18] J. Monaghan, “Simulating Free Surface Flows with SPH,” Journal
of Computational Physics, vol. 110, no. 2, pp. 399–406, 1994.

[19] M. Becker, H. Tessendorf, and M. Teschner, “Direct Forcing for La-
grangian Rigid-Fluid Coupling,” IEEE Transactions on Visualization
and Computer Graphics, vol. 15, no. 3, pp. 493–503, 2009.

[20] B. Solenthaler, J. Schläfli, and R. Pajarola, “A unified particle model
for fluid-solid interactions,” Computer Anim. and Virtual Worlds,
vol. 18, no. 1, pp. 69–82, 2007.

[21] M. Ihmsen, N. Akinci, M. Gissler, and M. Teschner, “Boundary
handling and adaptive time-stepping for PCISPH,” in Virtual
Reality Interactions and Physical Simulations, 2010, pp. 79–88.

[22] N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler, and M. Teschner,
“Versatile rigid-fluid coupling for incompressible SPH,” ACM
Transactions on Graphics, vol. 31, no. 4, pp. 62:1–62:8, 2012.

[23] X. He, N. Liu, S. Li, H. Wang, and G. Wang, “Local Poisson SPH for
Viscous Incompressible Fluids,” Computer Graphics Forum, vol. 31,
pp. 1948–1958, 2012.

[24] M. Müller, S. Schirm, M. Teschner, B. Heidelberger, and M. Gross,
“Interaction of fluids with deformable solids,” Computer Anim. and
Virtual Worlds, vol. 15, no. 34, pp. 159–171, 2004.

[25] L. Yang, S. Li, A. Hao, and H. Qin, “Realtime Two-Way Coupling
of Meshless Fluids and Nonlinear FEM,” Computer Graphics Forum,
vol. 31, no. 7, pp. 2037–2046, 2012.

[26] N. Akinci, J. Cornelis, G. Akinci, and M. Teschner, “Coupling elas-
tic solids with smoothed particle hydrodynamics fluids,” Computer
Anim. and Virtual Worlds, vol. 24, no. 3-4, pp. 195–203, 2013.

[27] K. Bodin, C. Lacoursière, and M. Servin, “Constraint fluids,” IEEE
Transactions on Visualization and Computer Graphics, vol. 18, 2012.

[28] M. Huber, B. Eberhardt, and D. Weiskopf, “Boundary Handling at
Cloth-Fluid Contact,” Comp. Graphics Forum, vol. 34, no. 1, 2015.

[29] M. Fujisawa and K. Miura, “An Efficient Boundary Handling
with a Modified Density Calculation for SPH,” Computer Graphics
Forum, vol. 34, no. 7, pp. 155–162, 2015.

[30] S. Kulasegaram, J. Bonet, R. W. Lewis, and M. Profit, “A variational
formulation based contact algorithm for rigid boundaries in two-
dimensional SPH applications,” Computational Mechanics, vol. 33,
no. 4, pp. 316–325, 2004.

[31] T. Harada, S. Koshizuka, and Y. Kawaguchi, “Smoothed Particle
Hydrodynamics on GPUs,” in Comp. Graphics International, 2007.

[32] ——, “Smoothed particle hydrodynamics in complex shapes,” in
Spring Conf. on Computer Graph., 2007, pp. 191–197.

[33] S. Band, C. Gissler, M. Ihmsen, J. Cornelis, A. Peer, and
M. Teschner, “Pressure boundaries for implicit incompressible
sph,” ACM Transactions on Graphics, vol. 37, no. 2, 2018.

[34] S. Band, C. Gissler, A. Peer, and M. Teschner, “MLS pressure
boundaries for divergence-free and viscous SPH fluids,” Comput-
ers & Graphics, vol. 76, pp. 37–46, 2018.

[35] C. Gissler, A. Peer, S. Band, J. Bender, and M. Teschner, “Inter-
linked sph pressure solvers for strong fluid-rigid coupling,” ACM
Transactions on Graphics, vol. 38, no. 1, pp. 5:1–5:13, 2019.

[36] J. J. Monaghan, “Smoothed Particle Hydrodynamics,” Reports on
Progress in Physics, vol. 68, no. 8, pp. 1703–1759, 2005.

[37] B. Müller, F. Kummer, M. Oberlack, and Y. Wang, “Simple multidi-
mensional integration of discontinuous functions with application
to level set methods,” International Journal for Numerical Methods in
Engineering, vol. 92, no. 7, pp. 637–651, 2012.

[38] M. Weiler, D. Koschier, M. Brand, and J. Bender, “A physically con-
sistent implicit viscosity solver for sph fluids,” Computer Graphics
Forum, vol. 37, no. 2, 2018.

[39] J. Bærentzen and H. Aanæs, “Signed distance computation using
the angle weighted pseudonormal,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 11, no. 3, pp. 243–253, 2005.

[40] J. Bender, “SPlisHSPlasH Library,” https://github.com/
InteractiveComputerGraphics/SPlisHSPlasH, 2020.

[41] J. Bender, D. Koschier, T. Kugelstadt, and M. Weiler, “Turbulent
micropolar sph fluids with foam,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 25, no. 6, pp. 2284–2295, 2018.

[42] C. Deul, P. Charrier, and J. Bender, “Position-based rigid-body
dynamics,” Computer Anim. and Virtual Worlds, vol. 27, no. 2, 2014.

[43] J. Bender, M. Müller, and M. Macklin, “Position-based simulation
methods in computer graphics,” in EUROGRAPHICS 2017 Tutori-
als. Eurographics Association, 2017.

[44] A. Peer, C. Gissler, S. Band, and M. Teschner, “An implicit sph
formulation for incompressible linearly elastic solids,” Computer
Graphics Forum, vol. 37, no. 6, pp. 135–148, 2017.

[45] C. Gissler, S. Band, A. Peer, M. Ihmsen, and M. Teschner, “Gen-
eralized drag force for particle-based simulations,” Computers &
Graphics, vol. 69, pp. 1–11, 2017.

[46] B. Solenthaler and R. Pajarola, “Density Contrast SPH Interfaces,”
in ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, 2008, pp. 211–218.

Jan Bender is professor of computer science
and leader of the Computer Animation Group
at RWTH Aachen University. He received his
diploma, PhD and habilitation in computer sci-
ence from the University of Karlsruhe. His re-
search interests include interactive simulation
methods, multibody systems, deformable solids,
fluid simulation, collision handling, cutting, frac-
ture, GPGPU and real-time visualization.

Tassilo Kugelstadt is a PhD student at RWTH
Aachen University. He received his BSc degree
in physics from JGU Mainz in 2013 and his MSc
degree in Computer Science in the Natural Sci-
ences from JGU Mainz in 2015. His research
interests include physically-based simulation of
deformable solids, elastic rods and fluids.

Marcel Weiler is a PhD student at RWTH
Aachen University. He received his MSc degree
in Computer Science from Technische Univer-
sität Darmstadt in 2015. His research interest
include the physically-based simulation of fluids
and deformable solids, rendering and GPU com-
puting.

Dan Koschier has been a research associate in
the Smart Geometry Processing group at Uni-
versity College London until 2019 and has since
moved on to work in the medical technology
industry. He received his PhD in Computer Sci-
ence from RWTH Aachen University in 2018.
His research interests include physically-based
simulation of deformable solids, cutting, fracture,
and fluids and machine learning aided physical
simulations.

