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Implicit Density Projection for Volume
Conserving Liquids

Tassilo Kugelstadt, Andreas Longva, Nils Thuerey, Jan Bender

Abstract—We propose a novel implicit density projection approach for hybrid Eulerian/Lagrangian methods like FLIP and APIC to
enforce volume conservation of incompressible liquids. Our approach is able to robustly recover from highly degenerate configurations
and incorporates volume-conserving boundary handling. A problem of the standard divergence-free pressure solver is that it only has a
differential view on density changes. Numerical volume errors, which occur due to large time steps and the limited accuracy of
pressure projections, are invisible to the solver and cannot be corrected. Moreover, these errors accumulate over time and can lead to
drastic volume changes, especially in long-running simulations or interactive scenarios. Therefore, we introduce a novel method that
enforces constant density throughout the fluid. The density itself is tracked via the particles of the hybrid Eulerian/Lagrangian
simulation algorithm. To achieve constant density, we use the continuous mass conservation law to derive a pressure Poisson equation
which also takes density deviations into account. It can be discretized with standard approaches and easily implemented into existing
code by extending the regular pressure solver. Our method enables us to relax the strict time step and solver accuracy requirements of
a regular solver, leading to significantly higher performance. Moreover, our approach is able to push fluid particles out of solid obstacles
without losing volume and generates more uniform particle distributions, which makes frequent particle resampling unnecessary. We
compare the proposed method to standard FLIP and APIC and to previous volume correction approaches in several simulations and
demonstrate significant improvements in terms of incompressibility, visual realism and computational performance.

Index Terms—Fluid simulation, volume conservation, FLIP, APIC
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1 INTRODUCTION

O VER the last decades, fluid simulation has become
an important tool in the visual effects industry. In

recent years, it has also started to get relevant for interac-
tive applications like games or virtual training simulations
due to advances in algorithms and consumer hardware.
Hybrid methods which combine Eulerian and Lagrangian
approaches, like FLIP and MPM, are very popular as they
combine the advantages of both viewpoints. They have been
successfully used to simulate a large variety of materials
like water, highly viscous fluids, sand, snow, deformable
solids, and they perform especially well when it comes to
interactions between different types of materials.

However, a central challenge for all of these methods is
to enforce the incompressibility constraints of the under-
lying physical models. A major problem of the pressure
projection, which enforces incompressibility, is that large
time steps or large solver tolerances yield numerical volume
errors that cannot be corrected by the pressure solver. These
errors accumulate over time and lead to a visible loss of
volume, resulting in visual artifacts that are obvious and dis-
turbing for viewers. For long-term simulations and interac-
tive scenarios these problems become particularly apparent.
In practice, this forces users to accept tediously long run-
times induced by small time steps and large iteration counts.

In this work, we propose a novel method to track the
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fluid density by using the particles of the hybrid simula-
tor. This enables us to measure the absolute compression
or expansion of the fluid. We use the continuous mass
conservation law to derive a pressure Poisson equation
which enforces not only a divergence-free velocity field,
but also constant density throughout the fluid. In this way
our approach prevents volume loss and therefore improves
the visual quality of the simulation results. Moreover, since
our density projection method can correct errors that oc-
cur in the standard FLIP or APIC simulations, we can
relax the strict solver accuracy and time step requirements.
This speeds up simulations by a factor of up to 8 while
producing visually comparable results without noticeable
volume changes. Another benefit of the proposed method is
that enforcing constant density also leads to more uniform
particle distributions, which further improves the quality
of the simulation results, and makes frequent resampling of
the particles unnecessary. We also propose a way to robustly
handle particles that accidentally enter solid obstacles — a
common problem in FLIP and APIC simulations. It can be
incorporated in the density projection method by applying
Neumann boundary conditions so that the particle distri-
bution is optimized globally and particles leave obstacles
without being projected onto other fluid particles. Finally,
our method can be easily incorporated into existing hybrid
simulation methods like FLIP or APIC by extending the
standard pressure solver.

In several comparisons of our approach with FLIP, APIC,
and previous volume correction methods we demonstrate
significant improvements in terms of incompressibility, vi-
sual realism and computational performance. Moreover,
we show that our method can robustly handle large scale
scenarios with complex boundaries by simulating scenesc© 2019 IEEE. This is the authors’ version of the work. Personal use is permitted. For any other purposes,
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Fig. 1. Our implicit density projection method allows the efficient simulation of large-scale fluid scenarios while preventing undesired volume
changes. Left: A double dam break with 8.8 million particles and 2563 grid cells is hitting statues. Right: A complex river with up to 26 million
particles and 1600 × 400 × 800 grid cells is simulated at large time steps without noticeable volume loss.

with up to 26 million fluid particles. Finally, it enables
us to produce realistic results without noticeable volume
loss, even for large time steps (see Fig. 1) which improves
the performance considerably. To summarize, our method
yields significant quality and performance gains for a wide
range of relevant liquid simulation scenarios, and is simple
to integrate into existing solvers.

2 RELATED WORK

Three-dimensional simulations of fluids were first em-
ployed in computer graphics by Foster and Metaxas [1].
Stam subsequently proposed the Eulerian stable fluids
scheme [2], which was the basis for a popular class of
liquid solvers with particle level sets and second order free
surface boundary conditions [3], [4]. The fluid implicit particle
(FLIP) method likewise combines grids and particles, and
has been especially popular for detailed liquid simulations
and visual effects productions [5]. The stable coupling of
fluids with immersed bodies has been an important di-
rection of work [6], [7]. More recently, generic approaches
for coupling different solvers have also been proposed [8].
The pressure solve is a central part of Eulerian and hybrid
solvers. It typically dominates their performance, and hence
approaches such as dimensionality reduction [9], [10], fast
iterative solvers [11] and efficient methods for grid-based
adaptivity [12] have been proposed to reduce its runtime
impact. For details regarding Eulerian fluid solvers we
recommend the books by Bridson [13] or Kim [14].

The advection step of fluid simulations has received
special attention, for example in the form of error correction
schemes [15], [16] and schemes for conserving mass and
momentum [17], [18]. The latter ones have also been used
by Lentine et al. [19] to simulate liquids with very large
time steps using the particle level set method. We instead
focus on large time steps in hybrid Eulerian/Lagrangian
simulations.

The hybrid algorithms originate from the Particle in Cell
(PIC) method, in the context of which other researchers
have proposed improvements in transferring quantities be-
tween particles and grid, such as the Affine Particle in Cell
(APIC) [20] and Polynomial Particle in Cell [21] methods.

Closely related, the Material Point Method (MPM), targets a
wider range of material behaviors with a hybrid particle-
grid approach similar to the FLIP method. While it was first
proposed for snow simulations in the graphics context [22],
it has since been extended to a wide range of material
behaviors and simulation types [23], [24].

The FLIP algorithm itself has seen numerous extensions
and improvements. For example, a narrow band particle
placement was proposed to speed up calculations [25],
[26]. In addition, researchers have noticed that the particle
distribution of FLIP particles tends to cause problems over
time. Several methods have aimed at alleviating this issue.
Ando et al. [27] have proposed a position correction method
inspired by SPH kernels. This method was extended by
Um et al. [28] to sub-grid corrections. These approaches are
closely related to our method because they can be used to
prevent volume changes by correcting the particle positions.
However, they are applying correction forces using explicit
integration schemes which can cause an unstable behavior
in a simulation with high stiffness values and large time
steps as we show in our experiments. An implicit position
correction has been proposed by Sato et al. [26], who use
position based distance constraints to push particles apart
when they are too close to each other. But their method
is designed to correct the positions of particles in narrow
band FLIP simulations and our experiments show that
it cannot prevent volume loss in regular FLIP or APIC
simulations with large time steps. Another approach for
position correction was recently presented by Takahashi and
Lin [29] which is based on position based fluids [30], an
SPH method that enforces a constant density constraint.
However, it requires costly particle neighborhood searches
which can be avoided by our method where the particles
only communicate indirectly via the grid.

The volume of fluids can be also controlled by adding
divergence to the right-hand side of the Poisson equation in
the pressure solve. This has been introduced by Feldmann
et al. [31] to simulate the expansion of fluids in suspended
particle explosions. Later it was used by Kim et al. [32] to
control the volume of air bubbles. Their approach prevents
a volume change of entire fluid regions, in their case each
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air bubble. However, in the case of FLIP there are no distinct
fluid regions, such as bubbles, so that this approach can be
only applied globally. This is insufficient because the fluid
usually gets compressed in some localized regions but the
volume control will expand the whole fluid leading to worse
particle distributions in formerly uncompressed regions. A
local volume correction was proposed by Losasso et al.
[33] in the context of a hybrid SPH and particle level set
method. They use the mass conservation law to derive an
additional term for the Poisson equation which penalizes
too high particle numbers in local fluid regions. A similar
approach has been proposed in the computational physics
community by Liu et al. [34]. Gerszewski and Bargteil
[35] applied this approach in FLIP simulations and refer
to it as mass-full FLIP. In contrast to Losasso et al. they
do not add an additional term to the right-hand side of
the pressure Poisson equation because in the presence of
strongly compressed fluids this can result in strong oscilla-
tions, popping and even explosions. To avoid these artifacts
they use an additional solve on position-level and directly
correct the particle positions without changing the velocity
field as proposed by Narain et al. [36] for the simulation
of granular materials or Irving et al. [37] for the simulation
of incompressible deformable solids. Similar approaches are
also popular in the SPH community [38], [39]. Our method
is closely related to the one of Gerszewski and Bargteil
who focused on the simulation of large scale splashing
liquids. They use a unilateral incompressibility solve which
is based on costly LCP solves to achieve realistic splashes.
In contrast, our work focuses on the conservation of fluid
volume which enables simulations with large time steps and
lower solver accuracies and does not require expensive LCP
solves.

3 METHOD

First, we briefly review the standard approach for fluid sim-
ulation and then discuss the volume conservation problem
that we address in our work. An overview of our full simu-
lation loop can be found as pseudo-code in Algorithm 1. The
additional steps of our implicit density projection method
are highlighted in blue and are derived and discussed in the
following.

In the continuous theory, incompressible flows are mod-
eled by the Navier-Stokes equation and the incompressibil-
ity condition

∂u

∂t
= −u · ∇u + g + ν∆u− 1

ρ
∇p, (1)

∇ · u = 0, (2)

where u denotes the velocity field, g the acceleration of
gravity, ν the kinematic viscosity, ρ the density and p the
pressure. Further, suitable boundary conditions are assumed
as discussed in detail in the book of Bridson [13].

Most Eulerian methods assume that a divergence-free
velocity field is sufficient to keep the fluid incompressible.
But this only holds as long as ∇ · u = 0 is perfectly fulfilled
at all times and at all positions inside the fluid. In practice,
simulations have limited spatial and temporal resolution,
and the accuracy of the pressure solver is also limited, and
as a result this condition cannot be perfectly fulfilled. This

Algorithm 1 One step of FLIP with Implicit Density Pro-
jection. Additional steps for the density projection are high-
lighted.

1: Advect particles through grid
2: Compute grid density using Eq. (12)
3: If necessary: handle degenerate configurations (see Sec. 3.2)
4: Apply boundary conditions as described in Sec. 3.3
5: Solve constant density PPE (10) with regular pressure solver
6: Compute position change δx using Eq. (11)
7: Correct particle positions by δx
8: Transfer velocity from particles to grid
9: Add velocity change due to body forces

10: Compute RHS of Eq. (9)
11: Apply boundary conditions
12: Solve divergence-free PPE (9)
13: Compute u(t+ ∆t) with Eq. (5)
14: Transfer velocities from grid to particles

can lead to density changes and undesired compression or
expansion of the fluid. An even bigger problem is that the
divergence of the velocity field only gives a differential
view on density changes, but the absolute density error
is invisible to the solver as we discuss below. This means
that density errors which accumulate over time cannot be
corrected by the pressure solver. Therefore, high accuracy
of the linear system solver and sufficiently small time steps
are mandatory to avoid volume errors. However, our experi-
ments show that even when using small time step sizes, that
are determined by a CFL number [13] smaller than 1, and
solving the pressure system accurately, undesired volume
errors in the fluid cannot be completely avoided. This leads
to undesired visual artifacts. Moreover, the time step and
accuracy restrictions are major reasons for the high compu-
tation costs of the simulation.

3.1 Density Projection
While our main goal is to improve the visual quality of the
simulation results by preventing undesired volume loss, we
also want to overcome the strict time step and accuracy
requirements in order to gain speedups. Therefore, we in-
troduce a novel density projection method in this section.
We track the density in the fluid by using the particles of
the hybrid simulator. Density can be computed at each grid
cell center by interpolating the particle mass onto the grid
and dividing it by the cell volume, which is discussed in
more detail in Section 3.2.

To see how this helps us on the theoretical side, we
consider the mass conservation law:

0 =
∂ρ

∂t
+∇ · (ρu). (3)

Here it becomes apparent that the divergence of the velocity
field only measures density changes and not the absolute
density of the fluid as we mentioned above. For incompress-
ible fluids we need the additional constraint that the density
of the fluid is constant

ρ = ρ0 = const, (4)

where ρ0 is the rest density of the fluid. Usually this con-
straint is inserted into Eq. (3) so that the density derivatives
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vanish, which results in the incompressibility condition
∇ · u = 0. In contrast, we continue with the principle of
mass conservation to derive a pressure formulation that
takes absolute density errors into account and is able to
correct them. We discretize the Navier-Stokes equation (1)
using the standard operator splitting approach

u(t+ ∆t) = u∗ −∆t
1

ρ0
∇p, (5)

where u∗ denotes the intermediate velocity field after ap-
plying advection and non-pressure forces. To compute the
pressure, we discretize the time derivative in the mass
conservation law (3) using backward Euler

ρ(t+ ∆t)− ρ∗(t)

∆t
+∇ · [ρ(t+ ∆t)u(t+ ∆t)] = 0, (6)

where ρ∗(t) denotes the intermediate density field. Plugging
the velocity of the next time step from Eq. (5) and the
incompressibility constraint ρ(t + ∆t) = ρ0 into Eq. (6)
results in

ρ0 − ρ∗(t)

∆t
+ ρ0∇ · u∗ − ρ0∆t

1

ρ0
∇2p = 0, (7)

which can be rearranged to

∆t

ρ0
∇2p = ∇ · u∗ +

1

∆t

(
1− ρ∗(t)

ρ0

)
. (8)

This yields a pressure Poisson equation (PPE) with an addi-
tional term on the right-hand side. Instead of only consider-
ing the divergence of the intermediate velocity field, we also
take changes of the intermediate density field into account.
This means that pressure not only counteracts compression
that happens during one time step due to divergence, but
also counteracts compression that already happened in the
past. In the following subsections we will discuss spatial
discretization, how to compute density and how boundary
conditions are applied.

3.2 Discretization

The obvious way to discretize the PPE (8) would be to use
standard MAC grids. However, our observations show that
— especially in the presence of large density deviations —
this can lead to strong oscillations, popping artifacts and
even explosions. This has been reported by other researchers
as well [33], [35], [36] but it becomes especially problematic
in situations with large time steps and inaccurate pressure
solves.
Splitting the PPE: In the context of granular materials
Narain et al. [36] proposed to resolve the aforementioned
issues with an additional solve to correct the densities on po-
sition level by instantaneously moving the particles without
changing the velocity. Mathematically speaking the PPE gets
split into two separate equations using the superposition
principle [40]

∆t

ρ0
∇2p1 = ∇ · u∗, (9)

∆t

ρ0
∇2p2 =

1

∆t

(
1− ρ∗(t)

ρ0

)
, (10)

where Eq. (9) is the usual PPE that eliminates divergence
from the intermediate velocity field. The second PPE (10) re-
sults in correction pressures p2 that counteract compression
and expansion. These two equations are discretized using
standard MAC grids and can be solved with any pressure
solver. Clearly, the sum of the exact solutions to the two
equations solves Eq. (8) which can be easily seen by adding
the equations and substituting p1 + p2 with p (this is also
true when boundary conditions are applied cf. Sec. 3.3).
However, now we have the possibility to treat the results
of both PPEs differently. p1 is used in the standard way
to update the grid velocity field with Eq. (5) such that it
becomes divergence-free. When we plug p2 into Eq. (5),
multiply by ∆t and reorder the terms we get the position
changes on the grid

δx = δu∆t = (u(t+ ∆t)− u∗) ∆t = −∆t2

ρ0
∇p2. (11)

To update the particles, δx gets interpolated at their po-
sitions and the particles are moved without changing the
velocity.

This solves the problem of oscillations and popping ar-
tifacts. We believe the reason is that correcting the positions
directly does not introduce additional divergence to the
velocity field as solving Eq. (8) does. In the latter case the
additional divergence is needed such that the density gets
corrected during one time step. Afterwards the divergence
has to be removed again by the pressure solver. Since this
solve does not exactly remove the divergence completely
due to numerical inaccuracies, this once again leads to
density deviations and oscillations. Similar problems arise
when solving hard constraints in rigid body simulations,
where the strategy of solving constraints on a velocity level
and applying a separate position correction has also been
successfully applied [41], [42].

Details on the implementation of the pressure and den-
sity solve in the simulation loop can be found in Alg. 1.
Since advection is the only step that changes the particle
positions and therefore introduces density errors we correct
the density directly after the advection step.
Density Computation: The density can be computed at the
grid cell centers by mapping the particle mass mp to the
grid and dividing it by the cell volume V so that the density
at grid cell i, j, k becomes

ρi,j,k =
mi,j,k

V
=

1

V

∑
p

mpN(xp). (12)

Here, mi,j,k denotes the mass at the cell center which is
interpolated from the particles at positions xp with the in-
terpolation kernel N(xp). As a default, we use the common
trilinear kernel. We also experimented with higher order
kernels that are often used in MPM [43], but found that
they lead to significant numerical dissipation. We initialize
the particle mass so that we get rest density on the grid for
uniform initial samplings. WithN particles per cell the mass
of each particle is set to mp = ρ0V/N .
Particle Deficiency: The method described above gives
accurate density estimates within the fluid body. But at the
free surface and solid obstacles we have the problem that
air and solid cells do not contain any particles, but they may
be overlapped by the interpolation kernels from fluid cells.
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This means that the density for the outermost fluid layer
gets underestimated, which leads to undesired clumping of
the particles that looks like artificial surface tension. In SPH
this is known as the particle deficiency problem [44]. It can
be overcome by clamping the density so that it cannot get
smaller than the rest density. We only apply this clamping
if at least one neighboring cell contains air. In the fluid,
the particle attraction is actually desired, because there the
density estimates are correct and undesired expansion of the
fluid gets corrected. At solid walls, the particle deficiency
can be overcome by also sampling the solids with particles.
For non-moving objects, the mass has to be transferred to
the grid only once which means that we get accurate density
estimates there without any additional computation costs at
runtime.
Limiting Displacements: We observed that large density
errors can lead to very drastic correction displacements in a
single time step, which can cause oscillations and popping
artifacts. A simple way to avoid this is to clamp the right-
hand side of Eq. (10). The intuition behind this is that the
solver only sees a fraction of the density error which can be
corrected safely in one time step. The remaining error will
be corrected during the next time steps and oscillations are
avoided. Our tests showed that clamping ρ∗/ρ0 to the inter-
val [0.5, 1.5] limits the displacements so that the particles are
not moved more than one cell width in one time step. Note
that such extreme density deviations are rare in real-world
applications.
Handling Degenerate Configurations: Our method can
handle even degenerate particle configurations like very
large numbers of particles in one grid cell (see Fig. 7).
However, it is still possible that several particles are nearly
at the same position so that they cannot be separated be-
cause they get the same interpolated position correction.
To overcome this problem of conincidence we redistribute
the particles in cells that contain far too many particles. As
an indicator for the particle number per cell we use the
density. When it is higher than 1.5ρ0 we redistribute the
particles in the cell. For lower thresholds the redistribution
is done more often and can impact the performance. For
higher thresholds, the chance of missing coincident particles
increases. The redistribution is done by splitting the cell
into uniform subcells. Each particle is placed randomly in a
region close to the center of a subcell to ensure the particles
cover the whole volume of a cell. The new particle velocities
are interpolated from the grid. As the redistribution only
happens rarely and is limited to few cells, the computational
overhead is negligible.

3.3 Boundary Conditions
The boundary conditions (BC) of the density projection are
similar to the ones used in the pressure projection. At the
fluid-air interface, we have the Dirichlet boundary condition
p2 = 0, meaning that the fluid can be moved into the air
without any resistance. At fluid-solid interfaces one can use
the Neumann BC δx · n = 0⇒ ∇p2 · n = 0, where n is the
normal vector of the solid surface. It prevents particles from
being moved into solid obstacles and is identical to the BC
for non-moving solids in the usual pressure solve.
Push-Out Boundary Condition: In addition to improving
the conservation of volume, our formulation can be lever-

p
ghost
s

δx

pf

(δx)y

(δ
x

) x

(δx)y

(δ
x

) x

Fig. 2. Push-out boundary conditions applied to the velocity component
between a solid cell s and a fluid cell f of a MAC grid. Blue cells denote
fluid cells, green cells denote solid cells. The quantity δx is given by the
distance of the particle with the deepest penetration ion the cell. The
velocity boundary conditions at each face of the cell are set such that
particles will tend to move out of the solid.

aged to enhance the treatment of solids in the flow. For
solid walls the Neumann condition is typically used, and
it works well as long as no fluid particles enter the solid
obstacles. It is nonetheless a common problem in hybrid
simulations that particles accidentally enter solid obstacles
due to numerical errors in the advection and the grid-based
velocity field. A standard approach is to project the particles
back to the solid surface [5]. However, this can lead to
particle clumping and volume loss, because the particles are
moved into cells that might already have rest density or
even too much mass inside them (see Fig. 9, top). Moreover,
it is possible that several particles get projected to nearly the
same position such that they cannot be separated because
the interpolations from the grid result in the same velocities
and displacements.

To overcome these problems we adapt the Neumann BC
such that particles are pushed out of solid obstacles. In this
way the density and therefore the particle distribution is
optimized in a global fashion. When particles get moved out
of the boundary into already filled cells, particles in these
cells are also moved so that the density stays constant.

Usually solid objects are represented as signed distance
fields (SDF). This means that the distance to the boundary
d(x) of a particle at position x can be easily determined by
querying the SDF. Further, we can find the direction towards
the closest point on the surface by computing the gradient
of the distance function. Particles can be pushed out of the
obstacle in one time step by the displacement

δx = − ∇d(x)

‖ ∇d(x) ‖
d(x), (13)

where the negative sign comes from the convention that the
distance value inside of objects is negative. If more than
one particle is inside a solid cell, we use the δx of the one
with the deepest penetration. The boundary displacement
δx is set at all MAC faces of the cell (see Fig. 2). When
particles are deeper than one cell inside the obstacle the
displacements are set in the same way. There are no active
pressure DOFs, so the pressure solve is not influenced.
But when the displacements are applied to the particles
afterwards, they get moved closer to the surface so that they
get pushed out of the object in the following time steps. As
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mentioned above, we want to avoid very drastic position
corrections. Therefore, we clamp the displacement δx at the
solid boundary to half of the cell width. This allows particles
to leave solid objects on a stable path over several time steps,
even for very deep penetrations (see Fig. 9, bottom).

The BC can be integrated into the solver by computing
so called ghost pressures pghost for the solid obstacle cells [13].
They are denoted as ghost pressures since usually the pres-
sure field is only defined for fluid and air cells but not for
solid cells. The ghost pressure values can be determined by
considering the pressure update Eq. (11) and discretizing
the pressure gradient using finite differences. For one face
of the MAC grid with index i, where one adjacent cell f
contains fluid and the other cell s is solid, we get

δxi = −∆t2

ρ0

pf − pghost
s

∆x
, (14)

where ∆x is the grid cell spacing. This equation can be
used to apply the BC so that the displacement of Eq. (13) is
applied to push the particles out of the boundary. When we
rearrange the equation, we can compute the ghost pressure
for the solid cell as

pghost
s = pf −

ρ0∆x

∆t2
δxi. (15)

Next we consider the standard finite difference discretiza-
tion of the Poisson equation (10) for the fluid cell f

∆t

∆x2

(
αpf − pghost

s − pn
)

=
1

∆t
(ρ0 − ρf ) , (16)

where α = 4 in 2d and α = 6 in 3d, and pn contains the
values of the remaining neighbors in the discrete 5 point
(2d) or 7 point (3d) Laplacian stencil. Inserting p

ghost
s from

Eq. (15) results in

∆t

∆x2

(
αpf − pf +

ρ0∆x

∆t2
δxi − pn

)
=

1

∆t
(ρ0 − ρf ) . (17)

We can move the displacement term to the right-hand side
yielding

∆t

∆x2
((α− 1)pf − pn) =

1

∆t

(
ρ0 − ρf − ρ0

∆xδxi
)
. (18)

This shows that the push-out Neumann BC can be easily
implemented by subtracting ρ0

∆x∆tδxi on the right hand
side. It is completely analogous to the Neumann BCs for
moving solid obstacles in the pressure projection where we
have to subtract the relative velocity. This means that we
can use the standard pressure solver and only exchange the
right hand side. The benefit of this boundary condition is
evaluated in detail in Section 4.3.

4 RESULTS

In this section we discuss results and compare our method
to FLIP, APIC and previous volume correction methods
in terms of visual quality and computational performance.
Therefore, we implemented our method as a plug-in for the
Mantaflow framework [45] which was used to create all pre-
sented simulations. It was straightforward to integrate our
method into the main simulation loop, and in the same way
it should also be possible to incorporate our method into
any existing FLIP or APIC solver without much effort. In

the following subsections and in the accompanying video,
we present several simulation results to demonstrate the
improvements of our method compared to FLIP and APIC.
If not stated otherwise, we use a solver tolerance of ε = 10−3

for the maximum norm of the residual, which is the default
of Mantaflow. We start with a comparison of the volume
conservation. Then we demonstrate that our approach leads
to improved particle distributions and boundary handling.
Finally, we present a performance comparison of FLIP and
our method.

4.1 Volume Conservation

Incompressibility or conservation of volume is a very im-
portant visual feature of liquids like water. Therefore, we
created several simulations to compare our method to FLIP
and APIC in terms of incompressibility.
Volume Computation: In particle-based simulations vol-
ume is not exactly defined because the fluid is represented
by a sparse set of points in space. Therefore, it is not
possible to have an exact volume measure, and when we
talk about volume, we mean that we computed it using the
following approximation. In our initial sampling we have
Ninit particles in a completely filled fluid cell, which occupy
the cell volume V. In the simulations we used Ninit = 32 in
2d and Ninit = 23 in 3d. This value is used to compute the
portion of volume Vi,j,k of the cell with index i, j, k that is
actually covered by fluid as

Vi,j,k = min

(
Ni,j,k
Ninit

V, V

)
, (19)

where Ni,j,k denotes the number of fluid particles in the
cell. This means that cells with Ninit or more particles inside
are completely filled and cells with less than Ninit particles
are only partially filled.
2d Double Dam Break: To evaluate volume conservation
of FLIP and our method for different time step sizes ∆t
and pressure solver tolerances ε, we simulated a double
dam break scene with a large variation of these solver
parameters. In a first series of simulations we used a fixed
solver tolerance of ε = 10−3. The simulations were run
with fixed time step sizes of 1 ms, 5 ms, 10 ms and 20 ms.
Here, 1 ms is the smallest step size that a CFL number of 1
suggests during the whole scene.

The resulting simulations can be seen in the accompa-
nying video, where deviation of the density from the rest
density is color-coded from white indicating low deviation
to red indicating high deviation. To evaluate the incompress-
ibility quantitatively, we plotted the relative deviation of
the total fluid volume from the initial volume in Fig. 3. As
expected, our method conserves the fluid volume within the
accuracy of the measurement, and the volume changes after
30 seconds of simulation are below 2% for all tested time
step sizes. When using our method and a large time step
size of 20 ms, the graph shows a volume loss during the first
splash which is quickly corrected in the following frames.
Note that the volume loss is not corrected immediately by
our method since we clamped the right-hand side of Eq. (10)
to improve the stability (see Section 3.2). In contrast, FLIP
suffers from significant volume changes, which get worse
when the time step size increases, and which accumulate
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Fig. 3. Comparison of volume errors for FLIP and our method in a 2d
double dam break with 71k particles, 128 × 128 grid cells, and a solver
tolerance of 10−3. The total fluid volume divided by the initial volume
is plotted over time for several time step sizes. Our method keeps the
volume change below 2% for all considered time steps. In contrast, FLIP
suffers from significant volume loss, especially for large time steps.

over time. For 20 ms time steps, nearly 58% of the fluid
volume gets lost during the 30 seconds of the simulation.
For time steps of size 10 ms and 5 ms the fluid loses 26%
and 14% of its volume, respectively. For these step sizes
the volume deviation can be directly observed in the video,
because it leads to lower water levels when the fluid comes
to rest. In the simulation with ∆t = 1 ms the volume also
deviates by 10% compared to the rest volume, but it leads
to a rise in the water level. Here, the change comes from
void regions inside the fluid body where FLIP produces a
very uneven particle sampling (see Fig. 8). We will discuss
the improvements that our method provides in more detail
in Section 4.2. Further, we evaluate the dependence of
the solver tolerance on incompressibility. Therefore, the 2d
double dam break simulation is repeated with ∆t = 5 ms
and solver tolerances of ε = 10−2, ε = 10−3, ε = 10−4

and ε = 10−6. The resulting simulations are shown in
the accompanying video, and the relative volume deviation
over time is plotted in Fig. 4. Our method is able to keep
the volume nearly constant, and the volume change was
less than 1% for all tested tolerances. In contrast to this, the
FLIP simulation suffers from significant volume loss when
the tolerance is too large. For ε = 10−2 one third of the
fluid volume gets lost during the simulation. For the stricter
tolerance values the volume changes by roughly 13%−14%
and does not improve significantly for smaller ε values.
Comparison to Related Work: To compare our approach
to previous volume correction methods we simulated the
2d double dam break with the parameters ε = 10−3 and
∆t = 20 ms with various methods. One frame of the simu-
lations is depicted in Fig. 5. First, we tried to solve Eq. (8)
directly, which results in explosion-like artifacts as reported
by Losasso et al. [33]. We implemented their solution which
reduces the problem by averaging the density deviation on
the RHS of Eq. (8) over a time interval of length τ . For
small values of τ the artifacts are still present. Larger values
reduce the artifacts but then the volume correction is not
strong enough and the volume errors become visible. As
proposed in [33] we use τ = 1s for the scene in the video.
It already suffers from significant volume loss and even for
much larger values of τ there are artifacts.

0 5 10 15 20 25 30
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FLIP (10−6/−4/−3)

Ours (10−6/−4/−3/−2)

Fig. 4. Comparison of volume errors for FLIP and our method in a 2d
double dam break with 71k particles, 128 × 128 grid cells, and a time
step of ∆t = 5 ms. The total fluid volume divided by the initial volume
is plotted over time for several pressure solver tolerances. Our method
keeps the volume change below 1% for all considered tolerances. In
contrast, FLIP suffers from volume loss, especially for large tolerances.

We also implemented the method of Ando et al. [27]
which uses SPH like weak spring forces to push the particles
apart when they come too close to each other. This prevents
volume loss but it suffers from stability issues due to the
explicit integration. This results in undesired high frequency
oscillations in the particle distribution. Decreasing the stiff-
ness of the springs helps with this issue but then the volume
errors become evident. We also compare to the correction
method of Sato et al. [26] which uses implicit position based
distance constraints to push the particles apart. However,
this method was designed to improve the particle distribu-
tions near the surface in narrow band FLIP simulations and
it is not capable of preventing the volume loss. In contrast to
these previous methods, our approach successfully prevents
volume errors without introducing artifacts. Moreover, we
do not need particle neighborhood searches as Ando et
al. and Sato et al.
3d Rotating Cuboid: To also evaluate the incompressibility
in a more complex 3d scenario, we simulate a basin of water
with a rotating cuboid in it. The scene contains 8 million
particles and is simulated on a grid with 1283 cells. The time
step size is determined adaptively by using a CFL number
of 1. The simulation was performed using FLIP and APIC,
each with and without our method. The initial configuration
and one frame after 30 seconds of the APIC simulation with
and without our method is depicted in Fig. 6. In the FLIP
/ APIC simulation the fluid lost 38.5%/38% of its initial
volume, which can be easily observed. With our method,
the volume is preserved up to 0.5%, which is not visually
noticeable.
Stability Tests: To test the stability of our method, we
simulate two test scenarios. In the first one, we take a
fluid basin in which the lower half is filled with 1 million
particles and let the simulation run for a few seconds with
a deactivated pressure solver. In this time, all fluid particles
drop onto the floor. Then we reactivate the pressure solver.
Without our method, nothing happens when the solver is
reactivated, because the velocity field is already divergence-
free and none of the lost volume is recovered. With our den-
sity projection, the entire fluid volume is stably recovered
in less than a second. A side by side comparison of this
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a) FLIP b) Single PPE, Eq. (8) c) Losasso et al. [33] d) Ando et al. [27] e) Sato et al. [26] f) Ours

Fig. 5. Comparison to previous volume correction methods in a 2d double dam break scene. a) - f) show the same frame of simulations with different
approaches. The velocities are color coded from blue (low) to white (high). a): Standard FLIP looses a significant portion of the fluid volume. b):
Solving Eq. (8) results in explosion artifacts. c): The averaging approach of Losasso et al. [33] suffers from popping artifacts (cf. accompanying
video). d): The weak spring position correction of Ando and Tsuruno [27] suffers from high frequency oscillations of the particles (cf. accompanying
video). e): The distance constraints of Sato et al. [26] are not able to prevent the volume loss. f): Our method preserves the fluid volume and
improves the particle distribution without artifacts.

Fig. 6. Comparison of the volume conservation of APIC and our method in a complex 3d scene where fluid gets swirled around by a rotating cuboid.
Left: Initial configuration. Middle: In the APIC simulation the water levels constantly drops during 30 second of simulation such that 38% of the fluid
volume gets lost. Right: When simulated with APIC in combination with our density projection the volume change is below 0.5%.

simulation with and without our method can be found in
the accompanying video.

In a second test we use the same scene, but instead
of deactivating the pressure solver, we move the 1 million
particles into a single grid cell as an initial condition for the
simulation. Without our method, the FLIP simulation is not
able to recover the fluid volume, and after a few seconds the
fluid covers only a one grid cell thick layer on the floor. With
our approach, the entire fluid volume stably recovers in less
than one second. The initial condition and three frames from
the recovering process are depicted in Fig. 7.

Complex Scenarios: We performed two simulations with a
large number of particles and complex boundary geometry
to verify that our method also works in practical scenar-
ios. In the first one, we set up a double dam break with
statues in the fluid basin in order to generate interesting
splashes (see Fig. 1, left). The simulation runs on a 2563

grid, contains 8.8 million particles and the time step is
determined adaptively with a CFL number of 1. The second
scenario is a river which is flowing through a complex
canyon geometry with two waterfalls (see Fig. 1, right). This
simulation is performed on a 100m × 25m × 50m domain
which was discretized with 1600×400×800 grid cells, and it
contains up to 26 million particles. It runs stably with a large
time step of 20 ms. These examples demonstrate that our
approach can handle complex simulations efficiently and
robustly without noticeable volume loss.

4.2 Particle Distribution
Another problem that is solved by enforcing constant den-
sity fields is the uneven particle sampling of regular FLIP
and APIC simulations. This is demonstrated in Fig. 8, where
we have taken one frame of the 2d double dam break
simulation which we discussed in the previous subsection
and zoom in to show the particle distribution. Here, density
errors are color coded, where red refers to high errors,
and white refers to low errors. The left part shows the
regular FLIP simulation which contains particle clusters and
void regions. They reduce the visual quality and lead to
volume errors. The right part shows the simulation with our
method. The particles are more regularly sampled which
improves visual quality. The color coding shows that there
are no observable density errors in the entire fluid volume.

4.3 Boundary Handling
In the following experiment we compare our push-out
boundary conditions with the standard boundary handling
of FLIP [5]. We simulate a basin of water in 2d which has
a solid obstacle in the form of the Stanford bunny inside.
As an initial condition, we sample not only the fluid but
also the bunny with fluid particles. When we start the
simulation using our approach, all particles leave the bunny
in a fraction of a second in a stable way such that they
contribute to the fluid volume and the water level rises. We
also repeat this simulation without our method, in which
case all particles are immediately projected to the surface of
the bunny. However, then they clump together in a narrow
band around the obstacle. This does not lead to a rise in
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Fig. 7. Stability test for our method: We place 1 million particles in a single cell of a 643 grid and then start the simulation. With our method the fluid
recovers its volume stably in less than a second. With regular FLIP the fluid cannot recover its volume.

Fig. 8. Comparison of particle distributions of FLIP (left) and our method
(right) in a 2d double dam break scene after the fluid has settled. The
simulation contains 71k particles on a 1282 grid. Density errors are color
coded, red refers to high and white to low errors. Left: The regular
FLIP simulation suffers from uneven particle distributions with particle
clumping and void regions. This reduces the visual quality and results in
unphysical volume changes. Right: Our method produces more regular
particle distributions which increase the visual quality and avoid volume
errors.

the water level, and the fluid volume inside the bunny gets
lost. The initial condition and three frames of the simulation
with and without our method are shown in Fig. 9. Thus,
our method successfully recovers the liquid volume even
for tough scenarios.

4.4 Computational Performance

We evaluate the computational costs of our method and
compare them to standard FLIP by repeating a 3d double
dam break simulation several times with different time steps
and solver tolerances. It was performed on a 64× 128× 64
grid and contained 275k particles. The simulation was run
on a standard PC with an Intel Core i7 6700k quad-core
CPU.

To evaluate the additional costs of our method, we run
the simulation with the same parameters ε = 10−4 and
∆t = 2 ms once with and without our method. Using
standard FLIP, the simulation requires on average 188 ms
per time step, while with our method it needs 242 ms. This
means that our density projection increases the computation
cost per time step by 29%. However, we can actually achieve
significant speedups by using larger time steps and a lower
solver accuracy without losing visual quality and without
drastic volume changes in the fluid.

Using our method, the simulation runs stably at ∆t =
20 ms and ε = 10−3 with a volume change of 0.9%, which
is visually not noticeable. When using the same parameters

with FLIP, 35% of the fluid volume gets lost in 10 sec-
onds. We repeated the FLIP simulation several times and
decreased the time step and the solver tolerance until we
did not see any improvements in the volume conservation.
For ∆t = 2 ms and ε = 10−4, FLIP still suffers from a
volume change of 10% which did not improve with smaller
time steps and tolerances. A side by side comparison of this
simulation and the one using our method at ∆t = 20 ms
and ε = 10−3 is shown in Fig. 10. Using these settings,
our method produces visually similar results while being
7.8x faster than the standard FLIP simulation. In general,
scenarios can arise where using larger time steps is not
an option because higher numerical damping can dissipate
vorticity or details in the flow. However, in interactive or
real time applications where the computation times are
strictly limited, our method allows for significant speedups
without volume loss. In future work we plan to further
investigate the effect of large time steps on the kinetic energy
and vorticity of the fluid and whether it can be improved,
e.g. with fast energy projections [46] or micropolar models
[47].

5 CONCLUSION

We presented an implicit density projection method which
extends hybrid simulation methods, like FLIP or APIC, so
that constant density can be efficiently enforced. This has the
central advantage that volume errors that accumulate over
time, and which are invisible to the regular pressure solver,
can accurately and efficiently be corrected. In comparison
to previous methods, our approach yields excellent conser-
vation of volume without suffering from visual artifacts.
This enables the use of larger times steps and less accurate
pressure projections, which results in significant speedups.
Further, it improves the particle distributions such that a
frequent particle resampling is not required. Another benefit
is that fluid particles can be pushed out of solid obstacles
using our boundary conditions without introducing particle
clumping and volume loss. In summary, our approach pro-
vides numerous benefits that lead to improved simulation
quality and performance and is applicable to a wide range
of practical scenarios.

Since our method is an extension of FLIP and APIC,
it has the same limitations except for the ones that we
addressed. One of these limitations is that it requires a
dense particle sampling. Therefore, an interesting direction
for future work would be a combination of our method
with the narrow band FLIP approach of Ferstl et al. [25]
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Fig. 9. Comparison of the standard FLIP boundary handling (top row) and our push-out boundary conditions (bottom row). The simulation is done
on a 1853 grid and contains 216k particles. Left column: As an initial condition we also sample a solid obstacle in form of a bunny with fluid particles.
Top row: From left to right several frames of the regular FLIP simulation are depicted. The particles are projected to the surface where they are
clumping together and the entire fluid volume that was inside the bunny gets lost. Bottom row: From left to right several frames of the simulation
with our method are shown. The particle distribution gets optimized globally so that all particles leave the solid obstacle and the fluid volume is
conserved. This can be observed as a rising water level.

Fig. 10. Performance comparison of regular FLIP (left) and our method
(right) in a double dam break with 275k particles and 64x128x64 grid
cells. Our method robustly handles 10 times larger time steps and a
higher solver tolerance than FLIP. It produces visually similar results
without noticeable volume change while being 7.8 times faster.

to decrease the computation times. Moreover, we plan to
investigate the applicability of our method in interactive
applications by considering GPU implementations similar
to the ones proposed by Wu et al. [48] or Gao et al. [49].
Finally, we have focused on liquid simulations in this work,
but we plan to incorporate our approach into the material
point method to simulate volume conserving deformable
solids.
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