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Abstract
We present a novel method to simulate bending and torsion of elastic rods within the position-based dynamics (PBD) framework.
The main challenge is that torsion effects of Cosserat rods are described in terms of material frames which are attached to the
centerline of the rod. But frames or orientations do not fit into the classical position-based dynamics formulation. To solve this
problem we introduce new types of constraints to couple orientations which are represented by unit quaternions. For constraint
projection quaternions are treated in the exact same way as positions. Unit length is enforced with an additional constraint.
This allows us to use the strain measures form Cosserat theory directly as constraints in PBD. It leads to very simple algebraic
expressions for the correction displacements which only contain quaternion products and additions. Our results show that our
method is very robust and accurately produces the complex bending and torsion effects of rods. Due to its simplicity our method
is very efficient and more than one order of magnitude faster than existing position-based rod simulation methods. It even
achieves the same performance as position-based simulations without torsion effects.

Categories and Subject Descriptors (according to ACM CCS): I.6.8 [Computer Graphics]: Simulation and modeling—Animation

1. Introduction

The simulation of elastic rods has been an active research topic in
computer graphics for more than a decade. Its applications reach
from simulation of sutures and catheters in virtual surgery over the
simulation of ropes, cables, hoses and knots to the simulation of
realistically moving vegetation and hair or fur for virtual charac-
ters. Due to the fast development of massively parallel graphics
hardware and GPGPU, simulation of hair and fur in real-time ap-
plications has become very popular recently. Examples from the
games industry are NVIDIA Hairworks and AMD TressFX which
can simulate ten-thousands of hair strands in real-time. These tech-
niques model strands as particles which are connected by distance
constraints or springs. This allows fast and stable simulations. But
one drawback is that twisting effects and rod configurations with
initial twist such as curls or helices cannot be represented by pure
particle systems (at least not without tricks like ghost particles
[USS14] or additional springs [SLF08]).

In contrast to these methods there are models based on Cosserat
theory. There elastic rods are modeled as a continuous one dimen-
sional curve in 3d-space. An orthonormal frame is attached to every
point of the curve and moves along with it (see fig 2). This orienta-
tion information can be used to define deformation energy densities
for the stretch, shear, bend and twist degrees of freedom. Apply-
ing Lagrangian field theory leads to a system of non-linear PDEs
which can be solved using finite elements (FEM) or finite differ-
ence (FDM) methods. This results in a physically accurate simula-
tion of elastic rods which shows non-linear effects like out-of-plane

buckling [LLA11]. The main drawback of Cosserat models is that
simulations of rods with high stretching resistance involves solving
stiff differential equations. They require very small time steps when
integrated with simple explicit schemes or solving large systems of
linear equations when integrated implicitly.

It is a promising idea to combine the particle models and
Cosserat models. Recently Umetani, Schmidt and Stam [USS14]
presented the position-based elastic rods model. They combined the
Cosserat model with position-based dynamics (PBD) [MHHR07].
Their model includes torsion and non-linear effects, is uncondition-
ally stable and computationally cheap enough for interactive appli-
cations. It is implemented in the Nucleus visual effects engine of
Autodesk Maya which underlines the practical relevance of this
technique. In PBD all objects are modeled as particles which are
coupled by constraint functions. Because frames cannot be handled
directly in PBD, the authors fit the Cosserat model into the PBD
framework by representing frames as ghost particles. Constraints
are used to force the ghost particles to move along with the curve
during the simulation process. Bending and twisting resistance is
modeled as constraints between the particles and ghost particles.

Our contribution. Following the ideas of Umetani et al. we pro-
pose an alternative approach to combine the Cosserat rod model
with PBD. Our approach is similar to [USS14] in many aspects
but goes in the opposite direction. We enhance the PBD frame-
work so that it becomes possible to define and solve constraints
between orthonormal frames directly. To achieve this, we repre-
sent the frames as unit quaternions and constraints are defined as
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Figure 1: Slinky walking down a stairway. It has 50 curls and is modeled with 1000 discrete rod elements. It was simulated using 50 solver
iterations and took 7ms per frame (without collision detection) on a single core of an Intel Core i5 CPU.

functions taking particle positions and quaternions as arguments.
During the iterative constraint projection process quaternions are
treated in the exact same way as positions. They only require an ad-
ditional constraint to ensure unit length, because only unit quater-
nions represent proper rotations or frames. This enables us to di-
rectly minimize the strain measures from Cosserat theory with the
position-based solver. Further we can simply work with the stag-
gered grid discretization which is commonly used in Cosserat rod
simulation [GS07, ST07, LLA11] and leads to intuitive geometric
interpretations of our constraints. In order to compute the correc-
tion displacements of particles and quaternions, gradients of quater-
nion functions are needed. We show that they can be found with
little effort by using a matrix-vector product representation of the
quaternion product. The resulting displacement formulas are sim-
ple algebraic expressions which can be implemented easily and are
very cheap to compute. Due to the fact that our constraints couple
relative positions and relative orientations we can also use the rod
constraints to couple the rods endpoints with other systems. For
example they can be attached to triangles, rigid bodies or coupled
with other particle systems.
Our results show that the proposed method is able to produce the
same visual quality and has the same robustness as position-based
elastic rods, but it needs one order of magnitude less computation
time. Another comparison to the simulation of strands in PBD,
which are only modeled with distance and bending constraints,
shows the high performance of our approach. Even in this case our
method is slightly faster. As a challenging benchmark we chose to
simulate a Slinky toy which travels down the stairs (see figure 1). In
this scene torsion effects, anisotropic bending stiffness and robust
collision handling are essential. Because of its simplicity, flexibil-
ity, high efficiency and unconditional stability our approach is well
suited for a broad spectrum of applications in real-time physics and
animation.

Organization. In the following section we discuss related work
in rod simulation and position-based dynamics. To keep our paper
self-contained we recap the main concepts of quaternions, which
are the key component of our technique, in section 3. Thereby we
focus on rotations and the derivatives of quaternion functions which
are needed to solve the constraints. Section 4 summarizes the main
ideas of PBD, including vector constraints [USS14] and shows how
orientation quaternions are introduced in the algorithm. In section

5 we introduce the main concepts of continuous Cosserat rods and
show how they are discretized. This leads to rod constraints which
are presented in section 6. The resulting correction displacements
are derived in full detail. In section 7 we discuss implementation
details and in section 8 we show results of our method. We com-
pare it to position-based elastic rods and to standard PBD strands
with distance and bending constraints. The final section draws a
conclusion and discusses possible future work.

2. Related work

The most closely related work is the position-based elastic rods
model by Umetani et al. [USS14] which was already discussed in
the introduction. Further there is a huge amount of related work in
rod simulation, hair simulation and position-based dynamics.

Implicitly discretized Cosserat rods: The Cosserat rod model
was introduced to the computer graphics community by Pai [Pai02]
who used it to simulate sutures and catheters in virtual surgery. He
simulated unshearable and inextensible rods by using curvature as
minimal coordinates. It results in an efficient and physically accu-
rate simulation. But the centerline is only represented implicitly by
the rod’s curvature and has to be recovered by integrating the cur-
vature from one end to the other. This makes collision handling dif-
ficult. Further his model does not handle dynamics. This approach
was extended by Bertails et al. [BAC∗06] to the super-helix model,
which was designed to simulate the dynamics of helical rods like
curly hair. This method was further improved by Bertails [Ber09]
so that time complexity is linear in the number of discrete rod el-
ements. Due to the fact that these models eliminate all constraints
by using minimal coordinates, it is not clear how to combine them
with PBD.

Explicitly discretized Cosserat rods: Many alternative ap-
proaches use an explicit representation of the centerline. Grégoire
and Schömer [GS07] modeled cables as connected linear elements
which are described by a position and an orientation. The orienta-
tions are represented as unit quaternions. They derive constraint en-
ergies and the corresponding forces. Therewith they can find static
equilibria of cables in a virtual assembly simulation.
This approach was extended to simulate the dynamics of rods by
Spillmann and Teschner [ST07]. For their CORDE model they de-
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rive discrete energies by applying the finite element method to con-
tinuous deformation energies from Cosserat theory. The equations
of motion for the discrete rod are found with the Euler-Lagrange
equations and solved with an explicit Euler scheme. Because of the
explicit representation of the centerline, collisions can be handled
efficiently, which allows them to simulate looping effects and knots
at interactive rates [SBT07,ST08]. But the explicit time integration
requires very small time steps and strong damping to remain stable,
which is the main performance bottleneck of their simulation.
A similar approach was presented in the mathematical engineer-
ing community by Lang et al. [LL09, LLA11]. They use the same
geometric model for the discrete rod. But they derive continuous
equations of motion (PDEs) by applying Lagrangian field theory.
These are solved by using the finite difference method and stan-
dard solvers for stiff differential equations. It results in highly ac-
curate simulations of elastic rods which are crucial in engineering
applications. On the contrary our approach aims for simplicity, vi-
sually pleasing results and high computational performance. But
their work provides an excellent theoretical background of Cosserat
rods and how to use quaternions in this context.
Due to the fact that centerline, elastic energy and constraints are
modeled explicitly, these models are ideal to be combined with
PBD. Basically our approach can be interpreted as a position-based
version of the force-based CORDE model. Thereby we can reach
unconditional numerical stability, eliminate time step requirements
and achieve high computational performance.

Other models: A lot of other rod models have been proposed by
the computer graphics community. Bergou et al. [BWR∗08] pro-
posed a model based on discrete differential geometry, which was
later extended to simulate discrete viscous threads [BAV∗10]. Also
mass-spring models [BW98,CCK05,IMP∗13] are very popular be-
cause they are simple, well-investigated, computationally cheap
and deliver visually plausible results. But torsion effects cannot
be modeled by a serial chain of mass points which are connected
by springs. They can be modeled using additional springs [SLF08]
which goes along with additional computational costs. A further
problem with mass-spring systems is that material properties are
difficult to tune because the only material parameter is the stiff-
ness constant of the springs. Recently Michels et al. [MMS15] ad-
dressed these issues by using cuboidal oscillator networks and an
exponential time integrator. Another approach is to model rods as a
serial chain of rigid bodies which are connected by joints [Had06].
It delivers good results but is too expensive for real-time applica-
tions. A further method that is closely related to PBD is the tridi-
agonal matrix algorithm by Han and Harada [HH13]. It is used in
AMD’s TressFX for real-time simulation of hair in games. Single
hair strands are modeled as a serial chain of mass points which
are coupled by distance and bending constraints. Due to the sim-
ple chain topology all constraints can be satisfied in one step by
solving a tridiagonal linear system. This algorithm can be easily
parallelized on modern GPUs and is fast enough to simulate a head
full of hair in real time, but it does not handle torsion effects.

Position-based dynamics: PBD is a simulation framework
which is well suited for games and computer animation because
it is fast, robust, versatile and easy to implement and parallelize.
It is not accurate enough to reproduce real-world experimental re-
sults but it produces visually plausible effects at low computational

costs. PBD is implemented in many physics engines e.g. NVIDIA
PhysX, Havok Cloth, Bullet and in the Nucleus visual effects en-
gine of Autodesk Maya [Sta09].
Since the first publication by Müller et al. [MHHR07] where PBD
was used to simulate cloth and soft bodies, there have been vari-
ous extensions. The simulation of stiff cloth can be sped up with a
hierarchical solver [Mue08] or long range attachment constraints
[KCMF12]. Further PBD can be used to simulate inextensible
hair/fur [MCK12], real-time fluids [MM13], continuous materi-
als [BKCW14], rigid bodies [DCB14] and elastic rods [USS14]. A
survey on the latest developments in the field of PBD can be found
in [BMOT13]. Due to this wide range of applications PBD can be
used to build a unified physics engine. Recently Macklin et al. pre-
sented two-way coupling of fluids, cloth, rigid bodies, deformable
bodies and gases [MMCK14], which is implemented in NVIDIA
FleX.
A position-based method which is very closely related to our ap-
proach is strain-based dynamics [MCKM14]. They use the PBD
solver to minimize strain of 2d and 3d deformable models. We also
use the PBD solver to minimize strain of the Cosserat rod model.
Another deformable solid animation method which is closely re-
lated to PBD is shape matching [MHTG05]. It can be also used
to simulate hair strands [RKN10]. Oriented particles [MC11] are
a further generalization of shape matching. They are related to
our work because they also use orientation quaternions in PBD.
But they do not couple the oriented particles with orientation con-
straints. The couplings are achieved through shape matching and
the orientations are used to guarantee numerical stability of polar
decompositions.

3. Quaternions

Quaternions will be denoted as 4d vectors q = (q0,q1,q2,q3)
T =

(q0,qqq
T )T ∈ H with the scalar part q0 and the vector part qqq. The

scalar or real part will be also denoted as q0 = <(q) and the vector
or imaginary part as qqq = =(q). The product of two quaternions p
and q is defined as

pq =

(
p0q0− pppT qqq

p0qqq+q0 ppp+ ppp×qqq

)
. (1)

It will be useful to express this product as the matrix-vector product

pq =Q(p)q =

(
p0 −pppT

ppp p01113×3 +[ppp]×

)(
q0
qqq

)
. (2)

The skew symmetric matrix [ppp]× is used to write the cross prod-
uct ppp×qqq = [ppp]× qqq as a matrix-vector product. The matrix Q(p) is
called quaternion matrix. It is also possible to rewrite the product
so that the right quaternion is represented as a matrix

pq = Q̂(q)p =

(
q0 −qqqT

qqq q01113×3− [qqq]×

)(
p0
ppp

)
. (3)

Products with the conjugate quaternion q̄ = (q,−qqqT )T can be writ-
ten using the transposed quaternion matrices

p̄q =Q(p)T q, pq̄ = Q̂(q)T p. (4)

Further useful properties of the quaternion matrix are Q(p) +
Q(q) =Q(p+q) andQ(p)Q(q) =Q(pq).

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.
The definitive version is available at http://diglib.eg.org.

http://diglib.eg.org


T. Kugelstadt & E. Schömer / Position and Orientation Based Cosserat Rods

Rotations: Later on we will use quaternions as an elegant way
of describing rotations of 3d vectors. A unit quaternion q with

length ‖q‖ =
√

q2
0 +qqqT qqq = 1 can be used to rotate a vector ppp

around the normalized axis ααα with the angle ϕ by applying the
product

p′ = qpq̄, q =

(
cos(ϕ/2)

sin(ϕ/2)ααα

)
. (5)

The non-bold notation of p denotes that the vector is embedded into
a quaternion with vector part ppp and scalar part 0. This product can
also be written as the quaternion matrix-vector product

p′ = Q̂(q)TQ(q)p =Q(q)Q̂(q)T p =

(
1 000T

000 RRR

)
p. (6)

Carrying out the matrix product results in the well known Ro-
driguez formula which relates the rotation matrix RRR and the quater-
nion

RRR(q) = 2qqqqqqT +(q2
0−qqqT qqq)111+2q0[qqq]

×. (7)

Derivatives: For our rod model we will define constraints as
functions of quaternions. In order to enforce them in a position-
based fashion we will need some derivatives of quaternion func-
tions which will be computed here. First we need the derivatives
of the quaternion product pq which can be done easily using the
quaternion matrix

∂

∂q
(pq) =

∂

∂q
(Q(p)q) =Q(p), (8)

∂

∂p
(pq) =

∂

∂p
(Q̂(q)p) = Q̂(q). (9)

Further we will need the derivative of a rotated vector qpq̄ w.r.t. q.
Therefore we take the derivative of (7).

∂

∂q
RRR(q)ppp =

∂

∂q

(
2qqqqqqT ppp+q2

0 ppp− pppqqqT qqq+2q0qqq× ppp
)

(10)

=
(

2q0 ppp−2ppp×qqq 2qqqT ppp111+2qqqpppT −2pppqqqT −2q0[ppp]
× )

At first glance this matrix may seem quite arbitrary, but it is actually
the lower 3× 4 block of the quaternion matrix 2Q̂(pq̄) which can
be seen by rearranging the quaternion matrix.

Q̂(pq̄) =
(

· ·
q0 ppp− ppp×qqq pppT qqq111− [q0 ppp− ppp×qqq]×

)
=

(
· ·

q0 ppp− ppp×qqq pppT qqq111−q0[ppp]
×+qqqpppT − pppqqqT

)
Here we used the formula [ppp×qqq]× = qqqpppT − pppqqqT which is a matrix
version of the Grassmann identity. Now a comparison with (10)
shows that

2Q̂(pq̄) =

(
·

∂

∂q RRR(q)ppp

)
. (11)

We will also need the temporal derivative of a quaternion that de-
scribes a frame which rotates with angular velocity ωωω relative to a
world coordinate frame. This derivative is found to be

q̇ = 1
2 qω (12)

which is a standard result from rigid-body dynamics and is derived

in detail in [Bar97] or [SM06]. Here ωωω is expressed in body frame
coordinates. It can be transformed to world coordinates by the ro-
tation ω

(w) = q̄ωq which leads to

q̇ = 1
2 ω

(w)q. (13)

4. PBD with quaternions and vector constraints

In standard PBD all simulated objects consist of point particles.
In order to simulate rods we enhance the algorithm so that objects
are also described by orientations which are represented as unit
quaternions. All interactions between particles and orientations are
modeled as constraints. They are scalar or vector functions which
take positions and quaternions as arguments. Our simulations
system is characterized by the following attributes.

particle i ∈ [1, ...,N] orientation j ∈ [1, ...,Nq]

position xxxi quaternion q j

velocity vvvi angular velocity ωωω j

inverse mass wi inertia matrix III j

constraint k ∈ [1, ...,M]

cardinalities nk, mk

vector function CCCk : R3nk ×Hmk → Rl

set of particle indices I p
k = {i1, ..., ink} , ia ∈ [1, ...,N]

set of orientation indices Iq
k = {i1, ..., imk} , ia ∈ [1, ...,Nq]

stiffness parameter vector kkk = (k1, ...,kl), ka ∈ [0,1]
type unilateral or bilateral

The linear motion of the particles is described by the position xxx,
velocity vvv and inverse mass w. Analogously the rotational motion
of the orientations is described by a unit quaternion q, the angular
velocity ωωω and the inertia matrix III. The constraints are vector func-
tions which map n positions and m quaternions to a vector in Rl .
Therefore each constraint is characterized by a set of particle in-
dices I p with cardinality n and a set of orientation indices Iq with
cardinality m. The stiffness of each constraint component can be
tuned with a stiffness parameter ka with values in the range from 0
(constraint is not enforced) to 1 (constraint is enforces as strictly as
possible). When each component of CCC has to satisfy the inequality
CCCa(xxxi1 , ...,xxxin j

)≥ 0 its type is unilateral and it is bilateral when the
equality CCCa(xxxi1 , ...,xxxin j

) = 0 has to be satisfied.

Given this information for an initial time t0 and a time step ∆t the
simulation works as described in algorithm 1. The main loop can
be divided into three steps. The first one computes predictions of
positions and quaternions with an explicit Euler scheme. Thereby
the constraints are ignored. The second step solves the constraints
iteratively and the predicted positions and quaternions are updated
so that constraint violation is minimized. In the third step velocities
are updated. We will explain these steps in more detail during this
section.

Initialization: First the positions, quaternions, linear and angu-
lar velocities, inverse masses and inertia matrices are initialized
(lines 1-4). Angular motion is described in the frames which are
defined by the quaternions so that all inertia matrices are diagonal
and constant over time.
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Algorithm 1 Position and Orientation Based Dynamics
1: for all particles i do
2: initialize xxxi = xxx0

i , vvvi = vvv0
i , wi = 1/mi

3: for all orientations j do
4: initialize q j = q0

j , ωωω jjj = ωωω
0
jjj , III j = III j

5: loop
6: for all particles i do vvvi← vvvi +∆twi fff ext(xxxi)

7: for all particles i do pppi← xxxi +∆tvvvi

8: for all orientations j do
9: ωωω jjj← ωωω jjj +∆tIII−1

j (τττ j−ωωω jjj× (III jωωω jjj))

10: for all orientations j do
11: u j← q j +0.5 ·∆tq jω j
12: u j← u j/‖u j‖
13: for all particles i do genCollConstraints(xxxi→ pppi)

14: loop solveriteration times
15: projectConstraints(CCC1, ...,CCCM+Mcoll , ppp,u)

16: for all particles i do
17: vvvi← (pppi− xxxi)/∆t
18: xxxi← pppi

19: for all orientations j do
20: ωωω j←= [2q̄u/∆t]
21: q j← u j

Prediction: The simulation loop starts at line 5. It begins with
computing predictions of the positions and quaternions using a
semi-implicit Euler scheme (lines 6-12). Also external forces fff ext
such as gravity and torques τττ are applied. The numerical integra-
tion of angular velocities and quaternions is performed using the
Newton-Euler equations which are derived in detail in rigid body
dynamics literature [Bar97] or [SM06]. The predictions are not as-
signed to x and q directly because the old positions and quaternions
will be needed to update the velocities. The predictions are stored as
ppp and u. In line 13 collision detection is performed and additional
constraints for resolving collisions are generated. These collision
constraints are generated at the beginning of each time step and are
used only for one time step.

Correction: The core component of the algorithm is the itera-
tive constraint solver (lines 14-16). It iterates multiple times over
all constraints and updates positions and quaternions such that the
constraint violation is reduced. Each constraint is considered in iso-
lation. In order to compute correction displacements for the parti-
cles and quaternions which are involved in the constraint the func-
tion CCC gets linearized

CCC(ppp+∆ppp) =CCC(ppp)+∇pCCC∆ppp = 0. (14)

Here the Jacobian of CCC is denoted as ∇pCCC. The vector ppp =
(pppT

1 , ..., pppT
N ,q

T
1 , ...,q

T
Nq
)T which collects all positions and quater-

nions is used to simplify notation. This can be done because the
quaternions are treated exactly in the same way as the positions.
We cannot just use (14) and solve for ∆ppp because the dimension
of ∆ppp will be usually much higher than the dimension of CCC which
means that the problem is under-determined. To solve this problem

the displacements are restricted to the derivative direction

∆ppp =WWW (∇pCCC)T
λλλ (15)

of the constraint function. They are weighted with the mass/inertia
matrix diag(w1111, ...,wN111,WWW 1, ...,WWW Nq) to achieve conservation of
linear and angular momentum. Plugging this into (14) and solving
for λλλ yields

λλλ =−

(
∑
k
(∇pkCCC)WWW k(∇pkCCC)T

)−1

CCC(ppp) (16)

where we sum over all positions and quaternions which are in-
volved in the constraint CCC. Plugging this result back into (15) yields
the displacement for one particle or quaternion with index i

∆pppi =−WWW i(∇pCCCi)
T

(
∑
k
(∇pkCCC)WWW k(∇pkCCC)T

)−1

CCC(ppp). (17)

This equation was first presented in [USS14] and is a general-
ization of the original PBD formula [MHHR07]. It allows the
enforcement of vector constraints or multiple scalar constraints at
once which leads to faster convergence. If CCC is a scalar function,
(17) becomes the original PBD formula. The quaternions have
to be normalized after every update because they only describe
proper rotations if they have unit length. Concrete examples how
to compute the displacements for rod constraints are presented in
section 6.

Velocity update: In the end of the algorithm the corrected posi-
tions ppp and quaternions u are used to update the velocities, positions
and quaternions. Therefore we use the discrete time derivative

vvv = ẋxx≈ (xxxt+∆t − xxxt)/∆t = (ppp− xxx)/∆t (18)

to update linear velocity. In case of angular velocity we use (12),
discretize it and solve for ω yielding

ωωω = = [2q̄q̇]≈=
[
2q̄t(qt+∆t −qt)/∆t

]
= = [2q̄u/∆t] . (19)

5. Cosserat theory

Cosserat rods are described by a smooth curve rrr(s) : [s0,s1] →
R3 in 3d space. An orthonormal frame with the basis vectors
{ddd1(s),ddd2(s),ddd3(s)} is attached to every point of the curve such
that ddd1 and ddd2 span the plane of the rod’s cross section and ddd3 =
ddd1×ddd2 is the normal of the cross section (see figure 2). The vectors

eee1

eee2

eee3

RRR(s)
ddd2(s)

ddd1(s)

ddd3(s)

rrr(s)

Figure 2: The geometry of the continuous Cosserat rod model is
described by the centerline rrr and the directors dddk.

dddk are also called directors. Given a space fixed world coordinate
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system with the basis {eee1,eee2,eee3} the directors can be represented
as rotated basis vectors dk = qekq̄ with the rotation quaternion q(s).

Strain measures for shear and stretch: The tangent vector of
the centerline ∂srrr(s) is not necessarily parallel to the normal of
the rod’s cross section ddd3. If they are not parallel the rod is sub-
ject to shear deformations. If the rod is in the rest configuration the
tangent of the centerline has unit length (arc-length or unit speed
parametrization). Its length is shortened when the rod gets com-
pressed and it increases when the rod gets stretched. This can be
used to define a strain measure ΓΓΓ for the shear and stretch deforma-
tions

ΓΓΓ(s) = ∂srrr(s)−ddd3(s). (20)

It measures how much the rod deviates from its non stretched and
non sheared rest pose. ΓΓΓ vanishes if the centerline’s tangent and the
normal of the cross section are parallel, which means no shear is
applied, and if the length of the tangent vector is 1 because ‖ddd3‖=
1, which means that the rod is not stretched or compressed. The
strain measure ΓΓΓ can also be expressed in the material frame which
moves along with the rod and is spanned by the directors in every
curve point. Therefore it has to be rotated with the quaternion q̄(s)

Γ̃ΓΓ = RRR(q)T
∂srrr− eee3. (21)

Strain measures for bend and twist: Further deformations of
the rod are bending and twisting. To define a strain measure for
those we use the Darboux vector ΩΩΩ. It is defined as

ΩΩΩ = 1
2

3

∑
k=1

dddk×ddd′k, (22)

where ′ denotes the derivative w.r.t. s. This definition is equivalent
to

d′k = ΩΩΩ×dk (23)

which is proved in the appendix of [USS14]. Equation (23) shows
that the Darboux vector is very similar to angular velocity. When
a rigid body and a body-fixed frame rotate with angular veloc-
ity ωωω the temporal derivative of the basis vectors is found to be
ḋk = ωωω×dk (see [SM06]). There ωωω is the rate of change of the ba-
sis vectors when time is varied. In the same way the Darboux vec-
tor ΩΩΩ describes the rate of chance of the directors when the curve
parameter s is varied. Analogously to angular velocity in (12) the
Darboux vector can be expressed in terms of the rotation quaternion

Ω = 2q̄q′. (24)

The proof of (24) is the same as for ωωω which can be found in
[Bar97], except that the temporal derivative ∂t has to be exchanged
with the spatial derivative ∂s. Notice, that the Darboux vector in
(24) is represented in the material frame. This means that the first
and second component Ω1/Ω2 measure the curvature or bending
of the rod in direction of ddd1/ddd2 and Ω3 measures the rod’s twist in
direction ddd3. Now we can define a strain measure for bending and
twisting as

∆Ω = Ω−Ω
0 = 2

(
q̄q′− q̄0q′0

)
(25)

where the superscript 0 denotes that the values are taken in the rod’s
rest shape.

Invariance under rigid body motion: An important feature of
the material frame strain measures is that they are invariant under
rigid body transformations. When the entire rod gets translated or
rotated the strain measures report the same deformation. The trans-
lation invariance is obvious because ωωω depends only on quaternions
and Γ̃ΓΓ takes the derivative of the centerline which eliminates a con-
stant translation vector. When the entire rod gets rotated with the
unit quaternion u, the centerline becomes urū and the quaternions
become uq. This results in the rotated strain measures

Γ̃
∗ = (uq)∂s(urū)uq− e3 = q̄ūu∂srūuq− e3 = Γ̃ (26)

(we used the relation (uq) = q̄ū) and

Ω
∗ = 2(uq)∂s(uq) = 2q̄ūu∂sq = Ω (27)

which proves their rotation invariance.

Discrete rods: In force based simulation deformation energies
are defined as Es = ΓΓΓ

T
κκκΓΓΓ and Eb = ∆ΩΩΩ

T KKK∆ΩΩΩ with the stiffness
matrices κκκ and KKK. These are used to derive forces and the rod can
be discretized with finite elements or finite differences. In contrast
to this approach we will use the discretized strain measures ΓΓΓ and
∆ΩΩΩ as vector constraints in PBD. It is also possible to minimize
the deformation energies with the position-based solver. But it was
pointed out in [USS14] that this approach leads to slower conver-
gence because the required linearization of the purely quadratic en-
ergy function is not a good approximation.
To discretize the strain measures we use the staggered grid ap-
proach which was successfully used by [ST07, BWR∗08, LLA11,
USS14]. The rod is sampled as piecewise linear elements and the
mass is lumped in particles at the endpoints of each element. The
origin of a director frame is attached to the midpoint of each line
element as depicted in figure 3. The particles are numbered with

q
i+ 1

2q
i− 1

2

q
i+ 3

2

xxxi−1

xxxi

xxxi+1

xxxi+2

ΩΩΩ

ΩzΩy

Ωx

Figure 3: The geometry of the discrete rod.

integer indices and the frames or quaternions with half-integer in-
dices. Such a line segment with 2 particles and a quaternion will be
called a rod element. Two adjacent rod elements share one particle
meaning that a rod which is formed by N elements is described by
N+1 particles and N quaternions. The discrete strain measures are
derived using finite differences as proposed in [LLA11]. The dis-
crete tangent vector is ∂srrr(s) ≈ 1

l (xxxi+1− xxxi) where l denotes the
length of the rod element. In order to measure bend and twist at
the particle positions we need values of the quaternions there. They
can be obtained by interpolation of the two adjacent quaternions.
This interpolation is not unique and several choices are presented
in [LLA11]. The simplest way is to use the arithmetic mean of the
adjacent quaternions. This results in the discrete Darboux vector

ΩΩΩ≈ 1
l =
(
(q̄i+ 1

2
+ q̄i− 1

2
)(qi+ 1

2
−qi− 1

2
)
)
= 2

l =
(

q̄i− 1
2
qi+ 1

2

)
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because =(qq̄) = 000 for a unit quaternion q. Taking only the imag-
inary part is important in the discrete scenario because the scalar
part does not necessarily vanish as in the continuous case. For sim-
plicity we assume that all rod elements have equal length l. The
discrete Darboux vector has a simple geometric interpretation. It is
the imaginary part of the rotation quaternion that realizes a rotation
from the frame i− 1

2 to the next frame i+ 1
2 . Finally we obtain the

discrete strain measures

ΓΓΓi+ 1
2
≈ 1

l (xxxi+1− xxxi)−=
(

qi+ 1
2
e3q̄i+ 1

2

)
, (28)

∆ΩΩΩi ≈ 2
l =
(

q̄i− 1
2
qi+ 1

2
− q̄0

i− 1
2
q0

i+ 1
2

)
. (29)

Alternative interpolation: We also tried to use a different inter-
polation of the quaternions. The Darboux vector

ΨΨΨ = 2
l =
(

q̄i− 1
2
qi+ 1

2

)
/<
(

q̄i− 1
2
qi+ 1

2

)
(30)

is equivalent to the modified Darboux vector used in [USS14]. It
points in the same direction as the Darboux vector ΩΩΩ. But it has the
useful property that its magnitude scales with tan(θ/2) where θ is
the angle between the adjacent frames. It follows directly from the
facts that sin(θ/2)= |=(q̄i− 1

2
qi+ 1

2
)| and cos(θ/2)=<(q̄i− 1

2
qi+ 1

2
).

This means that ΨΨΨ and therefore deformation energy diverges when
θ = π. This helps to avoid the undesired and unphysical effect of
completely kinked rods. Further ΨΨΨ is a monotonically increasing
function which means that the relative rotation with θ = 0 becomes
unique so that there is one unique rest pose. From a theoretical
point of view the modified Darboux vector is the better choice.
But our experiments showed that the scaling has no influence on
the correction displacements and the rest pose of the non-modified
Darboux vector can be made unique with a simple quaternion trick
(see section 6). Therefore we will only discuss constraints which
are based on the non-modified Darboux vector ΩΩΩ in the remain-
der of this paper. The projection formulas of the modified Darboux
vector constraint can be found in appendix A.

6. Rod constraints

To simulate rods in PBD we use the discrete strain measures as
vector constraints. The stretch and shear constraint CCCs minimizes
the stretch and shear for a rod element which is formed by two
adjacent particles with positions ppp1 and ppp2 and the quaternion q
between them. The bend and twist constraint CCCb couples two ad-
jacent rod elements with quaternions q and u and minimizes bend
and twist between them.

CCCs (ppp1, ppp2,q) =
1
l (ppp2− ppp1)−RRR(q)eee3 = 0 (31)

CCCb (q,u) = =
(

q̄u− q̄0u0
)
= ΩΩΩ− sΩΩΩ

0 = 0 (32)

s =

{
+1 for |ΩΩΩ−ΩΩΩ

0|2 < |ΩΩΩ+ΩΩΩ
0|2

−1 for |ΩΩΩ−ΩΩΩ
0|2 > |ΩΩΩ+ΩΩΩ

0|2
(33)

Due to the fact that two quaternions +q and −q represent the
same rotation, the rest pose of the bend and twist constraint is not
unique. Therefore +ΩΩΩ

0 and−ΩΩΩ
0 are both valid rest poses. To avoid

artifacts it is important that the quaternions are displaced towards
the nearest rest pose. This can be achieved by setting the sign factor
s =+1 if ΩΩΩ is nearer to ΩΩΩ

0 and s =−1 if ΩΩΩ is nearer to −ΩΩΩ
0.

Stretch and shear displacements: To obtain the correction dis-
placements, the derivatives with respect to the involved positions
and quaternions are needed. For the stretch shear constraint they
are found to be

∇ppp1CCCs =−∇ppp2CCCs =− 1
l 1113×3, (34)

∇qCCCs = 2
(
=(e3q̄) <(e3q̄)1113×3− [=(e3q̄)]×

)
. (35)

The derivative w.r.t. q is the lower 3× 4 block of 2Q̂(e3q̄) which
follows directly from (11). To get the corrections of the positions
and quaternions we need to plug these results in (17). Therefore we
need the products (∇CCC)WWW (∇CCC)T . To simplify things we use scalar
weights wq instead of inertia matrices WWW q which has not much im-
pact on the visual results. Then we only have to compute the prod-
ucts (∇CCC)(∇CCC)T . They can be found with a simple trick: we can
compute the product 4Q̂(e3q̄)Q̂(e3q̄)T instead which contains our
desired result in the lower right 3× 3 block. Due to the fact that
the unit quaternions form a group, the quaternion z = e3q̄ has unit
length. Rearranging the quaternion matrix product leads to

Q̂(z)Q̂(z)T = Q̂(z)Q̂(z̄) = Q̂(zz̄) = Q̂(1) = 1114×4. (36)

This means that we do not have to compute a matrix inversion for
every constraint in each time step. We only have to compute the
inverse of the matrix (w1 +w2 +wq)111. The notation of the correc-
tion displacements can be simplified by noticing that (∇CCCsss)

TCCCsss =
Q̂(e3q̄)TCs =Csqē3 where we embedded the constraint vector into
a quaternion with scalar part 0. The vanishing scalar part cancels
out the first column of the quaternion matrix and the displacements
can be written as quaternion products. This results in the displace-
ments

∆ppp1 =+ w1l
w1+w2+4wql2

(
1
l (ppp2− ppp111)−ddd3

)
,

∆ppp2 =− w2l
w1+w2+4wql2

(
1
l (ppp2− ppp111)−ddd3

)
,

∆q =+
2wql2

w1+w2+4wql2

(
1
l (ppp2− ppp111)−ddd3

)
qē3.

(37)

Bend and twist displacements: For the bend and twist con-
straint we can calculate the derivatives of q̄u and then take only
the lower 3×4 block of the results. This is equivalent to taking the
derivative of the imaginary part. Hence we get ∇u(q̄u) = QT (q)
and ∇q(q̄u) = ∇q(Q̂(u)q̄) = Q̂(u) · diag(1,−1,−1,−1) leading
to the derivatives

∇uCCCb =+
(
−qqq q01113×3− [qqq]×

)
, (38)

∇qCCCb =−
(
−uuu u01113×3− [uuu]×

)
. (39)

The products (∇CCC)(∇CCC)T are found to be 1113×3 with the same trick
as above. Therefore we only have to notice that both derivatives are
lower 3× 4 blocks of the quaternion matrix QT . Again we do not
have to compute any matrix inversions. Here it is also possible to
simplify the notation of the displacements by embedding CCCb into a
quaternion with scalar part 0 and multiplying it with the full quater-
nion matrix. This leads to the correction displacements

∆q =+
wq

wq+wu
u(Ω− sΩ

0),

∆u =− wu
wq+wu

q(Ω− sΩ
0).

(40)
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These displacements are easy to implement and cheap to com-
pute. The main effort is computing the quaternion products and
normalizations. Due to the fact that normalizations can be com-
puted very efficiently on modern graphics hardware (see e.g. [nVi])
or CPUs using the SSE reciprocal square root instruction [Int] our
technique achieves high performance. To speed up simulations of
inextensible rods our constraints can be easily combined with LRA
(long-range-attachment) constraints [KCMF12].

7. Implementation details

We implemented our method in C++ and the presented scenes are
rendered with OpenGL. All experiments and benchmarks were per-
formed on a single core of an Intel Core i5 3450 CPU which runs at
3.1 GHz. To efficiently detect collisions we implemented the spa-
tial hashing algorithm by Teschner et al. [THM∗03]. Collisions are
resolved with edge-edge-distance constraints [Ben]. Further we use
the friction model and the approximate shock propagation method
[MMCK14] to stably simulate large numbers of colliding rod ele-
ments like in figure 1.

The quaternions are initialized such that the directors ddd1 and ddd2
lie on the principal axes of the cross section of the rod. This allows
us to simulate anisotropic bending stiffness. For rods with isotropic
cross section the orientation of ddd1 and ddd2 is arbitrary. But in order
to avoid flipping artifacts the initial quaternions should be chosen
such that they minimize the Darboux vector. This can be achieved
using parallel transport [BWR∗08]. The inverse mass w of the par-
ticles is either chosen to be 0 if the particle is fixed or 1 for moving
particles. In the same way we set the scalar weight factors wq of
the quaternions to 0 for fixed frames and 1 for moving ones. In the
presented examples we used a time step size of 10ms.

Solving the constraints in a sequential order from one end of
the rod to the other one can lead to instabilities as pointed out
by [USS14]. To overcome this problem they used a bilateral in-
terleaving order, which we also use. It is depicted in figure 4.

1

2

3

4

5

6

Figure 4: Bilateral interleaving ordering for fast and stable con-
straint solving.

8. Results

We compare our method to two real-time rod and strand simulation
methods in terms of visual quality and computational performance.

Comparison with position-based elastic rods: The first one
is the position-based elastic rod (PBER) model [USS14] which is
most closely related to our method. We implemented their con-
straint projections exactly as described in [USS14] and the supple-
mental document. Further we repeated their benchmark experiment

Figure 5: Our method (blue) achieves the same visual quality as
position-based elastic rods (yellow). Torsion effects like curls (left)
and coupling of bend and twist are reproduced accurately. The lat-
ter is essential for looping phenomena (right) which occur when
both ends are clamped and one end is twisted.

where they simulated a rod with 30 discrete elements and 10 solver
iterations. Our PBER implementation requires 1.1ms per frame,
which is nearly the same as reported by the authors (1.06ms).
We performed various experiments to show that the visual results
of our method are nearly identical to PBER. Some of them are de-
picted in figure 5 and they are presented in more detail in the ac-
companying video. Further we compare the computation times per
frame of both methods in table 1. Due to the fact that our method
requires only 2 constraints per rod element, it converges with much
less iterations than PBER which needs 4 constraints per element.
Therefore we compare the frame times once with the same num-
ber of solver iterations (scene 1). In further experiments (scenes
2 and 3) we tuned the number of iterations such that we achieved
nearly the same visual results. With the same number of iterations
our method is nearly 12 times faster than PBER. This can be sim-
ply explained by comparing the number of arithmetic operations
per constraint projection. The PBER bending-twisting constraint
couples 5 (ghost) particles and its projection requires roughly one
order of magnitude more arithmetic operations than projecting both
of our constraints. Additionally our method requires only a fraction
of the iterations to produce nearly the same visual results as PBER.
This leads to 60-70 times faster computation times per frame.

Table 1: Computation times per frame for rods with 50 elements.
The number in parentheses denotes the number of solver iterations.
The scenes are shown in more detail the accompanying video.

Scene 1 Scene 2 Scene 3
our method 0.14ms (10) 0.03ms (2) 0.14ms (10)
PBER [USS14] 1.65ms (10) 2.16ms (18) 9.18ms (80)
PBD 0.16ms (10) 0.26ms (18) 1.32ms (80)

Another advantage of our method is that we do not have to worry
about unphysical behavior of the system which can be introduced
by ghost points. Because of the translation and rotation invariance
of the constraints the position-based solver guarantees conservation
of linear and angular momentum (see [MHHR07]).

Comparison with position-based dynamics: Secondly we
compare our method to standard PBD with distance and line-line
bending constraints [MHHR07]. This method is not able to produce

c© 2016 The Author(s)
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twisting effects, but it is one of the fastest methods for simulating
bending resistant strands and is used in many real-time hair simu-
lation frameworks. This comparison is used to underline the high
performance of our approach. We disable torsion stiffness by set-
ting the third component of the bending and torsion stiffness factor
to zero. Then our system behaves like the standard PBD strand but
is again a lot stiffer. This effect is shown in detail in the accompa-
nying video. In terms of computational costs our method is as fast
as standard PBD without torsion effects when the same number of
iterations is used (see table 1). In contrast to normal line-line bend-
ing constraints quaternion constraints do not require any inverse
trigonometric functions, which are much more expensive than the
reciprocal square root intrinsics.

Robustness: To show the robustness of our method we start
the simulation from a random initial pose. This experiment was
inspired by [USS14]. As shown in figure 6 the rod stably converges
to the rest pose in about 100 frames.

Figure 6: Started from a random initial pose the spiral stably re-
covers its rest shape within seconds.

Figure 1 shows that our method can robustly handle complex
scenes. The Slinky spiral consists of 50 curls and is discretized with
1000 elements. Further, friction, anisotropic bending stiffness and
robust collision handling are essential in this scene. It was run with
50 solver iterations and took 7ms (without collision detection) per
frame on a single core of a Core i5 CPU.

9. Conclusion and future work

We presented a fast and robust position-based method for elas-
tic rod simulation by introducing orientation constraints based on
quaternions. This allows us to directly minimize the discrete strain
measures from Cosserat theory without the need for auxiliary con-
structs like ghost points. We showed that the displacement formulas
are simple algebraic expressions which can be computed very ef-
ficiently. An important result is that quaternion constraints can be
solved with standard PBD methods. Only few lines of additional
code are required in the prediction and velocity update steps. Con-
sequently our method can be implemented with the same ease as
standard PBD and can be easily integrated into existing position-
based dynamics solvers.
As a position-based method it is unconditionally stable and large
time steps can be used. Further it can be highly parallelized and
easily coupled with other systems using constraints. But it also in-
herits all limitations of PBD. The main limitation is that PBD can

only produce visually plausible animations but no physically ac-
curate simulations. Another limitation is that material stiffness de-
pends on the time step size, the number of solver iterations and
the sampling density of the rod. In real-time physics and animation
where computational performance is more important than physical
accuracy the drawbacks of position-based methods can usually be
tolerated. Material stiffness can be tuned because the parameters it
depends on are typically constant.
However the limitations give useful hints for possible future work.
We expect that most of the drawbacks can be overcome by using
the projective dynamics solver [BML∗14], which actually solves
an implicit Euler integration scheme. Together with the deforma-
tion energies Es and Eb from section 5 it should result in physically
accurate simulations, in which material stiffness is independent of
the time step size and the rod sampling. The required projection
operators are very similar to our displacement formulas. Being in-
dependent of the rod sampling would also allow for adaptive refine-
ment as described by Spillmann and Teschner [ST08].
Another possibility for future research is the combination of our
constraints with the tridiagonal matrix solver of Han and Harada
[HH13]. Their solver can be interpreted as PBD, but they solve all
distance constraints of one strand as a single vector constraint. A
key observation is that the matrix in eq. (16) is tridiagonal for a
serial chain of particles connected by distance constraints. A sim-
ple direct solver can be used to solve for λλλ and all constraints can
be satisfied in one iteration. Our rod constraints are more complex
than distance constraints, but due to the chain topology the matrix
in eq. (16) will be band diagonal. This idea could lead to further
speedup and guarantees inextensibility of the rod.
Finally we are optimistic that other areas besides rod simulation can
benefit from the possibility to easily solve quaternion constraints in
PBD. For instance they could be used to couple rigid bodies. Fur-
ther we have done first experiments on using quaternion constraints
to simulate thin shells and 3d deformable bodies with promising re-
sults.
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Appendix A: Bend and twist with modified Darboux vector:

Using the modified Darboux vector ΨΨΨ the bend-twist constraint is

CCCb(q,u) =
=(q̄u)
<(q̄u)

− =(q̄
0u0)

<(q̄0u0)
= ΨΨΨ−ΨΨΨ

0. (41)

It is related to the angle θ between the adjacent frames with quater-
nions q and u by cos(θ/2) =<(q̄u) = qT u and sin(θ/2) = |=(q̄u)|.
With the results from section 6 this lead to the displacements:

∆q =+
wq

wq+wu

(
(qT u)u+u=(q̄u)T

)(
1113×3−=(q̄u)=(q̄u)T

)
CCCb,

∆u =− wu
wq+wu

(
(qT u)q−q=(q̄u)T

)(
1113×3−=(q̄u)=(q̄u)T

)
CCCb.
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