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Abstract Incompressible SPH (ISPH) is a promising

concept for the pressure computation in SPH. It works

with large timesteps and the underlying pressure Pois-

son equation (PPE) can be solved very efficiently. Still,

various aspects of current ISPH formulations can be

optimized.

This paper discusses issues of the two standard source

terms that are typically employed in PPEs, i.e. density

invariance (DI) and velocity divergence (VD). We show

that the DI source term suffers from significant arti-

ficial viscosity, while the VD source term suffers from

particle disorder and volume loss.

As a conclusion of these findings, we propose a novel

source term handling. A first PPE is solved with the

VD source term to compute a divergence-free velocity

field with minimized artificial viscosity. To address the

resulting volume error and particle disorder, a second

PPE is solved to improve the sampling quality. The

result of the second PPE is used for a particle shift

(PS) only. The divergence-free velocity field - computed

from the first PPE - is not changed, but only resampled

at the updated particle positions. Thus, the proposed

source term handling incorporates velocity divergence

and particle shift (VD+PS).
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The proposed VD+PS variant does not only im-

prove the quality of the computed velocity field, but

also accelerates the performance of the ISPH pressure

computation. This is illustrated for IISPH - a recent

ISPH implementation - where a performance gain fac-

tor of 1.6 could be achieved.
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1 Introduction

Incompressibility for Lagrangian fluids can be enforced

in various ways. One popular way is to employ an equa-

tion of state (EOS) that relates density deviations to

pressure values, e.g. [1,4,26,27,29,42]. Such EOS solvers

are simple to implement, but choosing and parameter-

izing an appropriate form of the state equation can be

cumbersome. This issue has been addressed by itera-

tive EOS solvers where pressure is iteratively refined,

e.g. [16,36]. Such solvers employ an EOS with an an-

alytically motivated parameterization. In contrast to

standard EOS solvers, iterative EOS solvers are con-

veniently parameterized by a density deviation that

should be enforced and can be extended in various ways,

e.g. for versatile interface handling [43,44]. Further, in-

compressibility formulations for Lagrangian fluids have

been presented in [6,7], where the typical EOS is re-

placed by a constraint equation. The resulting formu-

lations either compute distances [6] that can be related

to pressure forces or Lagrange multipliers [7] that can

be interpreted as pressure values.

Alternatively, pressure can also be computed by solv-

ing a PPE of the form ∇2p = s with s being a source

term, e.g. [10,11,13,21,22,31–33,37]. SPH fluid solvers

that employ such a PPE are typically referred to as
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ISPH. ISPH approaches compute the pressure by solv-

ing a linear system. This results in a rather smooth pres-

sure field that positively affects the stability, i.e. the size

of the time step. ISPH has also proven to ensure incom-

pressibility for adaptive simulations with continuous

particles sizes [40]. As shown, e.g. in [21], PPE solvers

can be implemented in a memory-efficient matrix-free

form. PPE solvers can be realized in various ways. On

the one hand, different discretizations of ∇2p can be

used. On the other hand, the source term s can be com-

puted in different ways.

This paper focuses on the optimization of the source

term in ISPH. Therefore, we use one specific discretiza-

tion of ∇2p and one specific solver for the respective

linear system as proposed in [21]. This choice is mo-

tivated in Sec. 2. Based on this setup, we investigate

three variants of the source term s. This includes the

two standard options, i.e. the divergence of the velocity

that is predicted from non-pressure accelerations (VD),

e.g. [11], and the corresponding predicted density de-

viation (DI), e.g. [24,34]. We further propose a third

variant with combined velocity divergence and parti-

cle shift (VD+PS) that results in an improved quality

of the computed velocity field and also in an acceler-

ated computation of the pressure field compared to the

standard source terms.

Our analyses show that the standard source terms

suffer from specific issues. The DI source term intro-

duces a significant amount of artificial viscosity, while

the VD source term suffers from particle disorder and

volume loss. On the other hand, the DI source term

leads to a high-quality sampling with guaranteed min-

imal density deviation and the VD source term results

in a divergence-free velocity field. These positive prop-

erties motivate a combination of both variants that can,

e.g., be realized by solving two PPEs with different

source terms. Similar combinations have already been

proposed for SPH and position-based fluids, e.g. [5,18,

23]. These combination, however, typically result in in-

consistent particle positions and velocities, i.e. the par-

ticles are not advected with their velocity. Our proposed

combination resolves this issue. A first PPE is solved

with the VD source term to compute a divergence-free

velocity field with minimal artificial viscosity. The par-

ticles are advected with this velocity field, leading to

consistent positions and velocities, a prerequisite for a

Lagrangian framework. As mentioned above, this ap-

proach accumulates local volume deviations that man-

ifest itself in particle disorder and a global volume er-

ror, typically a loss of volume. To resolve this issue,

a second PPE is solved with the DI source term to

compute particle shifts, i.e. small displacements. These

particle shifts resolve particle disorder and volume loss,

but they do not change the divergence-free velocity field

that has been computed from solving the first PPE. As

the corrected final particle positions would be inconsis-

tent with the velocities, the velocity field is resampled

at the final particle positions.

The described combination of two PPEs is novel,

but closely related to local particle shifting, e.g. [30,

35,41]. Similar to our variant, a PPE is solved for a

divergence-free velocity field. The position adjustment,

however, is computed locally by shifting sample posi-

tions from high to low concentrations. A similar strat-

egy is also used in standard constraint approaches that

first remove illegal accelerations with a global Lagrange

multiplier approach, followed by a local Baumgarte sta-

bilization to address the drift problem, e.g. [9]. In con-

trast to these approaches, our method computes the

adjustment of the sample positions in a global way us-

ing a PPE with DI source term.

Our paper focuses on the investigation of the prop-

erties of the three described source term variants in

ISPH. We illustrate artificial viscosity, i.e. diffusion, in

the velocity field when working with the DI term and

we analyze the volume drift when using the VD term.

We show how the proposed combination VD+PS re-

solves both issues which results in an improved quality

of the computed velocity field. We further show that

the proposed source term handling reduces the compu-

tation time of the pressure solver compared to solving

the PPE with one of the standard forms, DI and VD.

The remainder of the paper is organized as follows.

Sec. 2 shows a derivation of a PPE with a VD source

term. The ISPH discretization that is employed for the

Laplacian in the PPE and the ISPH solver for the PPE

are motivated. Sec. 3 derives the three considered vari-

ants of the source term handling: VD, DI, and VD+PS.

Sec. 4 describes implementation details, while Sec. 6

discusses additional properties and aspects of the dif-

ferent source terms and the proposed handling. Sec. 5

illustrates the improved quality of the velocity field

when using our approach. Experiments also show the

improved performance of VD+PS compared to VD and

DI.

2 Pressure Poisson Equation

In order to derive the PPE, non-pressure and pres-

sure accelerations are separated in the incompressible

Navier-Stokes momentum equation

Dv(t)

Dt
= − 1

ρ0
∇p(t) + anonp(t) (1)

with time t, velocity v, rest density ρ0, pressure p and

non-pressure accelerations anonp, in particular gravity
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and acceleration due to viscosity [8]. An intermediate

velocity v∗ is predicted from non-pressure accelerations

with

v∗ = v(t) +∆tanonp(t) (2)

and the final velocity v(t+∆t) is computed with

v(t+∆t) = v∗ −∆t 1

ρ0
∇p(t). (3)

In order to compute the pressure p(t), Eq. 3 is rewritten

as

v(t+∆t)− v∗

∆t
= − 1

ρ0
∇p(t). (4)

Taking the divergence of both sides, we get

∇ ·
(
v(t+∆t)− v∗

∆t

)
= −∇ ·

(
1

ρ0
∇p(t)

)
. (5)

Using the fact that the velocity field v(t + ∆t) should

be divergence-free, i.e. ∇ · v(t+∆t)∆t = 0, we get a first

variant of the PPE

∆t∇2p(t) = ρ0∇ · v∗ (6)

with ρ0∇·v∗ being the VD source term that represents

the divergence of the intermediate velocity field that is

predicted from non-pressure accelerations anonp(t) ac-

cording to Eq. 2.

As mentioned in Sec. 1, we focus our analyses on

different forms of the source term and therefore employ

implicit incompressible SPH (IISPH) [21] as one specific

discretization of ∆t∇2p(t). This choice is motivated by

several reasons. First of all, IISPH addresses the impor-

tant issue of operator inconsistency in SPH. As the SPH
discretization of ∇2p is generally not equal to the SPH

discretization of ∇ ·∇p, i.e. < ∇2p >6=< ∇· < ∇p >>,

IISPH works with < ∇· < ∇p >> rather than < ∇2p >

with < x > denoting the discretized form of a term x.

This is beneficial to the convergence of the solver as

the same discretization < ∇p > is consistently used in

the computation of the pressure force. A second moti-

vation is the performance and memory consumption of

IISPH in combination with a simple implementation.

The experiments in [21] indicate that IISPH is faster

than iterative EOS solvers for complex scenarios, while

the relaxed Jacobi technique for solving the PPE can

be implemented in a matrix-free way that just requires

the storage of seven additional scalar values per par-

ticle. Again, our paper does not discuss different dis-

cretizations of the Laplacian or more efficient solvers of

the discretized PPE. Instead, we focus on optimizing

the source term in order to improve the performance

of the pressure computation and also the quality of the

computed velocity field.

3 Source Terms

VD: This variant of the source term has already been

derived in Sec. 2 leading to a PPE of the following form:

∆t∇2p(t) = ρ0∇ · v∗. (7)

DI: The density invariance form of the source term can,

e.g., be derived from the mass conservation law:

Dρ(t+∆t)

Dt
+ ρ(t+∆t)∇ · v(t+∆t) = 0. (8)

Using a backward difference for Dρ(t+∆t)
Dt , Eq. 3 for v(t+

∆t) and the constraint that the density at the next

timestep should be equal to the rest density, i.e. ρ0 =

ρ(t+∆t), we get

ρ0 − ρ(t)

∆t
+ ρ0∇ ·

(
v∗ −∆t 1

ρ0
∇p(t)

)
= 0 (9)

which can be written as

ρ0 −
(
ρ(t)−∆tρ0∇ · v∗

)
∆t

−∆t∇2p(t) = 0. (10)

The term ρ(t)−∆tρ0∇ · v∗ is an approximation of the

density at particle positions after advection with v∗.

This term is typically denoted as ρ∗, resulting in the

following PPE:

∆t∇2p(t) =
ρ0 − ρ∗

∆t
. (11)

VD+PS: As already outlined in Sec. 1, our proposed

concept first solves for a divergence-free velocity field

using Eq. 7, followed by solving Eq. 11 to compute par-

ticle shifts that result in an optimized particle sampling.

The predicted velocity v∗ is computed with Eq. 2 and

a pressure p∗ is computed with

∆t∇2p∗ = ρ0∇ · v∗. (12)

The pressure p∗ is used to compute a velocity change

that results in a divergence-free velocity field

v′(t+∆t) = v∗ −∆t 1

ρ0
∇p∗. (13)

Consistent particle positions are computed as

x∗∗ = x(t) +∆tv′(t+∆t). (14)

The notation indicates that we have our final velocity

field v′(t+∆t), but sampled at intermediate positions

x∗∗. For the computation of the final positions x(t+∆t),

we estimate the density ρ∗∗ for the sampling x∗∗ with

ρ∗∗ = ρ(t) −∆t · ρ0 · ∇ · v′ and solve a second PPE of

the form

∆t∇2p∗∗ =
ρ0 − ρ∗∗

∆t
. (15)
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The pressure p∗∗ is used to compute a particle shift

that results in an incompressible state of the sample

positions with minimized particle disorder:

x(t+∆t) = x∗∗ −∆t2 1

ρ0
∇p∗∗. (16)

Eqs. 15 and 16 are a global, parameter-free variant of

the particle shifting approach, e.g. [30,35,41]. Its goal

is to resample the final velocity field v′(t + ∆t) at in-

termediate positions x∗∗ to final velocities v(t+∆t) at

particle positions x(t+∆t) with improved sampling. We

resample the velocities v(t+∆t) at positions x(t+∆t)

with

v(t+∆t) =

v′(t+∆t) +∇v′(t+∆t) · (x(t+∆t)− x∗∗). (17)

Please note again that v(t + ∆t) is just a resampled

version of v′(t + ∆t). They both represent the same

divergence-free velocity field. The solution of the sec-

ond PPE with DI source term is only used to improve

the sample positions. The subsequent resampling of the

velocity field restores the consistency of positions and

velocities.

Eq. 17 requires the computation of the velocity gra-

dient ∇v′(t + ∆t) at the intermediate positions x∗∗,

i.e.

∇v′i(t+∆t) =

1

ρi

∑
j

mj

(
v′j(t+∆t)− v′i(t+∆t)

)
⊗∇W ∗∗ij . (18)

As this formulation would require a second neighbor

search per simulation step, we use the sampling x(t)

instead and compute

∇v′i(t+∆t) =

1

ρi

∑
j

mj

(
v′j(t+∆t)− v′i(t+∆t)

)
⊗∇Wij . (19)

Using the current neighborhood to compute ∇Wij in

Eq. 19 is an approximation. Not using the correct neigh-

borhood at intermediate positions x∗∗ to compute∇W ∗∗ij
as indicated in Eq. 18 is simply motivated by perfor-

mance aspects. Both neighborhoods are supposed to be

similar, while working with ∇Wij saves one additional

neighbor search per simulation step.

Approximate neighbor setting are commonly used

in various SPH solvers. E.g., IISPH [21] uses the cur-

rent neighborhood instead of the neighborhood at the

next timestep (see Eq. 3 in [21]). Further, PCISPH [36]

explicitly discusses approximations in the considered

neighborhood, where position changes during the solver

iterations are considered, but in- and out-moving sam-

ples are ignored. Non-SPH particle-based solvers also

employ similar approximations. E.g., PBF [25] bases

on a constraint that is considered at the subsequent

simulation step, while the neighborhood for its compu-

tation is taken from the current simulation step. The

same approximation is introduced in [7].

4 Implementation

We use SPH for interpolations of a physical quantity A

as Ai =
∑
j
mj

ρj
AjWij where m is the mass and ρ is the

density [26]. Wij is a Gaussian-like kernel function. We

use a cubic spline kernel. The sum considers all particles

j within the smoothing length of the particle i. The rest

distance of fluid particles is h whereas the support of the

kernel function we employ is 2h. For the computation

of spatial derivatives we use the approximations ∇Ai =

ρi
∑
jmj

(
Ai

ρ2i
+

Aj

ρ2j

)
∇Wij for the gradient and∇·Ai =

1
ρi

∑
jmj(Aj −Ai)∇Wij for the divergence.

The resulting algorithm is outlined in Algorithm 1.

The implementation of the particle neighbor search is

performed as described in [19], but could also be done

with alternative concepts, e.g. [39]. Boundary handling

is implemented for one-layer boundaries with varying

sampling density, e.g. [3,20]. We employ a viscous force

modeled as in [28]. In free surface scenarios, we employ

surface tension as in [38]. Again, alternative formula-

tions, e.g. [2,4], would work as well.

The pressure value of a particle in the DI solver is

initialized as pi(t+∆t) = 0.5pi(t). The stopping crite-

rion of the DI solver and the PS solve of the VD+PS

solver is defined as an average density error of 0.1%.

The residual of the VD solver and the VD solve of

the VD+PS solver is set to 0.01. All solvers are im-

plemented as a Relaxed Jacobi method with ω = 0.5.

Algorithm 1 VD+PS algorithm
procedure Compute Velocity v∗

compute v∗

compute p∗

procedure Solve Velocity Divergence
compute v′(t+∆t)
compute x∗∗

compute ρ∗∗

procedure Solve Position Shift
compute p∗∗

compute x(t+∆t)

procedure Resample Velocities
compute v(t+∆t)
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5 Results

We have performed various experiments that illustrate

the benefits of the proposed VD+PS method compared

to the standard source term forms VD and DI.

5.1 Shear Wave Decay

We first discuss the so-called shear wave decay, e.g. [14,

17]. Please note, that this setup is named after the ini-

tial sinusoidal velocity wave that is spatially applied

and that the term wave is not indicating oscillation.

The shear wave decay is a 2D scenario that is particu-

larly well suited to illustrate the numerical viscosity of

the DI term and also to show the particle disorder that

occurs with the VD term. The fluid bulk is simulated in

a 2D square area with periodic boundaries, such that

boundary handling does not influence the solution of

the pressure computation. No other forces, in particu-

lar gravity or explicit viscosity, are acting on the fluid.

An initial velocity is applied to the fluid particles as

vi(y, t = 0) =

(
v0 sin

(
2π
L y
)

0

)
, (20)

where y is the position of the particle in y direction, v0
is the amplitude of the sinus function and L is the side

length of the square simulation domain.

Due the absence of other than pressure forces, the

velocity field should not change over time. A potential

decay of the initial velocity is a metric for artificial vis-

cosity introduced by the pressure solver. The velocity

profile is measured in a sensor line positioned in the

median of the square domain. The setup of the sinu-

soidal velocity profile and the sensor line is illustrated

in Figure 1.

We have performed this experiment for all three

source term variants, namely velocity divergence (VD),

density invariant (DI) and the proposed variant which

first solves for the velocity divergence and imposes a

correction of the particle sampling by restoring the den-

sity invariance afterwards (VD+PS - divergence free

particle shift).

The comparison of the velocity decay at time t =

10s of the velocity profile as shown in Figure 2 indicates

that DI results in a noisy and locally divergent velocity

field with significant numerical diffusion. In contrast,

VD and the proposed VD+PS method almost maintain

the initial velocity profile at this time which indicates

less numerical diffusion.

However, comparing the decay of the amplitude over

time as shown in Figure 3, VD+PS clearly outperforms

both DI and VD in terms of preserving the initial ve-

locity. After 30 physical seconds, the amplitude in the

Fig. 1 Setup of the 2D shear wave scene.
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Fig. 2 Velocity profile measured in the median of the square
domain at time t = 10s.
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Fig. 3 Shear wave. Maximum velocity amplitudes. DI suffers
from large numerical viscosity. VD suffers from less numeri-
cal viscosity. The particle disorder in VD, however, leads to
additional errors in the velocity field. The proposed VD+PS
variant minimizes the numerical viscosity.

VD simulation suddenly decreases and the curvature

gets unsteady due to the increasing irregularity of the

particle distribution.

This issue is emphasized by the maximum density as

illustrated in Figure 4. While DI and VD+PS preserve

the maximum density, the density using VD increases

due to the local clustering of particles.

While numerical diffusion in DI is introduced by the

divergent velocity field, VD is suffering from the in-

creasingly irregular sampling of the simulation domain.
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Fig. 4 Shear wave max densities with rest density ρ0 = 1000.
The particle disorder in the VD variant results in large local
density errors as indicated by the maximum density. VD and
VD+PS do not suffer from particle disorder.

VD+PS addresses both limitations and results in a di-

vergence free velocity field while maintaining a homoge-

nous particle distribution. Like this, VD+PS outper-

forms the compared source term variants by introduc-

ing the least numerical diffusion while preserving the

fluid volume and a robust spatial discretization. The

visual comparison of the different variants is shown in

Figure 5.

5.2 Breaking Dam 2D

We demonstrate the properties of the different source

term variants with a 2D simulation of a breaking dam.

The initial volume of fluid is 58.8 litres. The simula-

tion has been performed for a physical time of 5s. For

an increased visual comparability, the fluid surface is

meshed using Preon Mesher [12]. The simulation out-

come is very similar for the initial phase of the simula-

tion, as illustrated in the comparison in Figure 6.

However, the results start to significantly differ after

only short physical time. As depicted in Figure 7, after

3.56s the surface of the fluid computed with DI is very

unsteady and shows many splashes, that do not occur in

the respective VD and VD+PS simulations. The reason

for this behavior is the local divergence in the velocity

field that becomes obvious especially at the surface of

the fluid, when incoming droplets introduce sudden ve-

locity changes that the DI solver is not directly resolv-

ing. The VD solver results in a very smooth velocity

field but is suffering from the increasing compression

of the particles that is not sufficiently representing the

fluid volume and leads to severe volume loss. Due to the

volume loss, the VD solver is not able to represent the

actual fluid behavior after only a few physical seconds.

At the end of the simulation at t = 5s, as shown

in Figure 8, the average density of the fluid simulated

with the DI solver is 1800 kg
m3 which corresponds to a

volume loss of 45%. The behavior of fluid on a macro-

scopic scale of both, the DI and the VD+PS solver, is

Fig. 5 Shear Wave Decay after 6 seconds simulated with
(from top to bottom) DI, VD and VD+PS. The particle ve-
locity is color-coded. The DI variant suffers from larger nu-
merical viscosity compared to VD+PS. The VD variant suf-
fers from particle disorder which does not occur with our
proposed VD+PS variant.

very similar. Both solvers are able to preserve the initial

fluid volume. However, DI suffers from artifacts that are

introduced by the locally divergent velocity field, while

VD+PS is not prone to such anomaly. Additionally, the

performance of VD+PS is superior to the DI variant.

This is analyzed in detail Section 5.3 and discussed in

Section 6.

5.3 Breaking Dam 3D

The performance is compared using a corner breaking

dam in a 3 × 3 × 3m box with 3m3 water initialized

in one corner of the respective box. The setup is illus-
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Fig. 6 2D breaking dam at t=0.74s. From left to right: DI,
VD, VD+PS. The results of all variants are very similar.

Fig. 7 2D breaking dam at t=3.56s. From left to right: DI,
VD, VD+PS. DI is suffering from local divergence that be-
comes obvious in splashes and a unsteady behaviour at the
free surface. For VD the increasing volume loss gets obvious.
VD+PS both conserves volume and keeps a smooth velocity
field preserving the vorticity.

Fig. 8 2D breaking dam at t=5.0s. From left to right: DI,
VD, VD+PS. DI still suffers from the unsteady surface com-
ing from the divergent velocity field, while VD has lost 45% of
its original volume and cannot resemble the correct velocity
anymore, due to the irregularity of the particle distribution.
VD+PS still serves stable velocity conditions and preserved
fluid volume.

trated in Figure 9. We compare the DI implementation

using the density invariant source term as described in

[21] with the proposed VD+PS variant in terms of con-

vergence and performance using the maximum density

and divergence as residual. We do not consider the VD

variant in the following comparisons and analyses since,

while being the fastest approach, the result severely suf-

fers from volume loss up to 50% after only 3 physical

seconds.

The performance of the solver is mainly affected by

the number of iterations the solver takes. Please note,

that in terms of VD+PS, the number of iterations is

consisting of the iterations of both, the velocity di-

vergence source term solve and the density deviation

source term solve as shown in Figure 10.

For the comparison with DI, the total number of

iterations and the total computation time for solving

the system is taken into account. Figure 11 shows, that

VD+PS takes less iterations than DI during the com-

plete simulation. This results in less computational ef-

Fig. 9 Breaking dam simulated with VD+PS.

fort per simulation step, as shown in Figure 12. This

results in faster computation of VD+PS compared to

DI by the factor of 1.6 while suffering less from numer-

ical diffusion leading to higher vorticity.

0 1 2 3

20

40

60

time

PS iterations

VD iterations

Fig. 10 VD+PS iterations per PPE solve for the breaking
dam scenario in Fig. 9.
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Fig. 11 Number of solver iterations for the breaking dam
scenario in Fig. 9.
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time
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DI

Fig. 12 Pressure computation time in ms for the breaking
dam scenario in Fig. 9.

5.4 Production Example

We have used VD+PS to simulate a waterfall consisting

of 1.1 million fluid particles as shown in Figure 13. The

simulation lasts 20 physical seconds and was computed

on a Dual-CPU XEON E5 computer with 32 cores in

36 hours. The rendering was performed using Preon

Renderer [12].

6 Discussion

Contribution: Solving PPEs with DI our VD source

terms is well-accepted. Also, the particle shift concept

is well-established. Now, we propose to interpret the

solution of a PPE with DI source source term as a vari-

ant to realize particle shift in a global way. And, we

propose to combine a VD PPE solver with the pro-

posed global particle shift. So on one hand, we use and

combine well-established, well-accepted concepts in our

proposed VD+PS solver. On the other hand, however,

the proposed scheme is novel and unique. We also pro-

vide an analysis that illustrates issues of the DI and

VD source terms, namely significant artificial viscosity

and volume loss, respectively. We further show that the

proposed VD+PS scheme improves the quality of the

Fig. 13 Waterfall simulated with VD+PS.

computed velocity field which manifests in an improved

visual quality and also in an improved performance of

the PPE solver.

Relation of VD+PS to existing PPE solvers with

DI source term: PPE solvers with DI source term ap-

ply the computed pressure accelerations to update the

sample velocity which is used to advect the samples.

We move the samples in exactly the same way, but we

do not update the velocities using the solution of the

PPE solver with the DI source term. Instead, we keep

the previously computed velocity field from the PPE

solver with VD source term unchanged. So, our goal is

to preserve the velocity field from the VD step due to

minimal artificial viscosity, but we would like to sample

this field at positions that we have computed from the

PPE solver with DI source term due to optimal sam-

pling quality. Although we update the sample velocities

after the position update from the DI step, this veloc-
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ity update does not constitute a change in the velocity

field. Instead, it is just a resampling of the VD velocity

field which is in contrast to standard DI PPE solvers.

Relation of VD+PS to existing particle shift PS ap-

proaches: Our PS differs to all existing PS variants.

Existing variants compute local so-called concentration

gradients and apply a position shift from high concen-

tration to low concentration to improve the particle

sampling. We use the same concept, but we compute

optimal position shifts in a global way by solving a

PPE with DI source term. At first, it sounds expen-

sive, but the solver requires very few iterations. On the

other hand, our global approach does not require a user-

defined parameter to scale the particle shift that is used

in all local approaches. If this user-defined parameter is

too small, the resulting sampling quality is not as good

as it could be. On the other hand, if the parameter

is too large, over-correction occurs which can result in

even worse sampling qualities after the particle shift.

So, in contrast to all existing PS variants, we compute

a global, parameter-free, stable and optimal solution to

the PS problem.

Artificial viscosity due to the resampling of the ve-

locity field: The resampling of the velocity field in the

second solver step is a regular SPH interpolation which

introduces artificial viscosity. So, why dont we see this

artificial viscosity, e.g. in Fig. 2? First of all, the vis-

cosity levels of VD and VD+PS are very similar as

both variants constitute the same velocity field that

is sampled at different sample sets. Although the PPE

solver with DI source term introduces a comparatively

large amount of artificial viscosity, this viscosity is not
transferred to the VD+PS solver. The VD+PS solver

only uses the final positions computed by the DI PPE

solver, but not the respective velocities due to the large

amount of introduced artificial viscosity. Instead, the

original DF velocity field with minimal artificial viscos-

ity is resampled at the positions we got from the DI

PPE solver step. Still, this resampling introduces ar-

tificial viscosity which should be visible in the graph

in Fig. 2. We speculate that this is not the case for

the two following reasons. First, the artificial viscosity

introduced by resampling the velocity field with an in-

terpolation is much smaller compared to the artificial

viscosity that is introduced to the velocity field as a re-

sult of the PPE solver with DI source term. Second, it

even looks like VD+PS has slightly less numerical vis-

cosity than VD. This can be attributed to the different

sampling qualities in VD and VD+PS. The sampling

quality in VD degrades with time, while the sampling

quality in VD+PS is rather constant over time. This

can result in the fact that the small amount of artifi-

cial viscosity introduced by the PS step is finally not

perceivable due to the improved sampling in VD+PS.

Performance of the VD+PS solver: It is not possi-

ble to show that VD+PS is always faster than other

VD PPE solvers or DI PPE solvers. This is simply due

to the fact that there exist simple scenarios where VD

or DI solvers are definitely faster than our combined

VD+PS solver. If one has, e.g., one layer of fluid parti-

cles, VD and DI solvers require the minimum number

of solver iterations which can obviously not be reduced

by solving two PPEs instead. The main motivation for

the proposed combined solver is actually the combina-

tion of positive aspects of both solver types, i.e. com-

bining minimal artificial viscosity from the VD solver

with optimal sampling from the DI solver. The experi-

enced performance gain is a remarkable side effect for

complex scenarios.

We can speculate why the combined VD+PS re-

duces the overall iteration count in complex scenarios.

PPE solvers with DI source term compute a perfect

particle sampling, but the divergence of the final ve-

locity field is not necessarily zero. This might be due

to the fact that small density deviations are corrected

by the DI solver which requires the introduction of di-

vergence in the computed velocity change due to pres-

sure. While this divergence is perfect for the current

simulation step, it has unknown effects for the sub-

sequent simulation step. The subsequent step assumes

that it starts with a divergence free velocity field which

is not the case. So, the DI solver has to handle two

error sources. The sampling quality of predicted posi-

tions, i.e. the predicted density, has to be preserved,

but previously introduced velocity divergences have to

be corrected as well. This can lead to increased solver

iterations in the DI case. This issue is addressed by the

VD+PS scheme. At the end of the respective simulation

step, we do not only have a perfect sampling, but we

also have a divergence free velocity field which makes

it easier and faster for the solver to find the solution

of the subsequent simulation step. Again, this discus-

sion is speculative and might be incomplete. We do not

rule out that other aspects and phenomena contribute

to the performance differences.

In general, all complex solvers only improve the per-

formance compared to simplistic EOS solvers in case of

complex scenarios. Again, think of one layer of fluid

particles on a solid plane. Even, if one has millions or

billions of such particles, an EOS solver will always

outperform any other iterative solver. An EOS solver

can successfully handle such a scenario very efficiently.

Pressure is just computed within in one iteration, e.g.

Becker et al. [4] use P = B(( ρρ0 )y − 1).
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All alternative iterative solvers require a certain min-

imal number of iterations, e.g. PCISPH and IISPH state

a minimum of three iterations. DFSPH requires at least

two iterations, LPSPH [15] requires three iterations. So,

all these solvers are less efficient than an EOS solver,

e.g. [4] in the outlined scenario. Practically however,

the outlined scenario with one layer of fluid particles

is not relevant. Instead, we are interested in flow phe-

nomena that involve certain fluid depths. For such sce-

narios, PCISPH showed a huge performance gain over

WCSPH[36], IISPH showed a performance gain over

PCISPH [21] and DFSPH showed a performance gain

over IISPH [5]. But, none of the respective publications

showed a general proof that they are always faster for

arbitrary scenarios, because that is simply not the case.

7 Conclusion

We have presented an analysis of source terms in ISPH.

Based on shortcomings of the standard forms VD and

DI, we have proposed a novel form VD+PS with mini-

mal artificial viscosity, while a density-invariant particle

sampling is preserved. The proposed concept requires

the solution of two PPEs. We propose to interpret the

solution of a PPE with DI source source term as a vari-

ant to realize particle shift in a global way. We further

propose to combine a VD PPE solver with the proposed

global particle shift. It is particularly remarkable that

solving the two PPEs does not only improve the quality

of the computed velocity field and the visual quality of

the simulation, but can also be is faster than solving

one PPE when using VD or DI. Our measurements in-

dicate that the improved convergence of the solver in

VD+PS is due to the improved combined quality of the

velocity field and its sampling as a result of the pressure

computation.

The implementation of the source term is not the

only degree-of-freedom when realizing an incompress-

ible SPH fluid solver. The pressure Laplacian could be

implemented in various ways and there exist also vari-

ous options for the boundary handling. E.g., Cummins

and Rudman [11] discuss various SPH discretizations of

the Laplacian that could by analyzed and compared in

terms of the resulting velocity field and also in terms of

performance.
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