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Figure 1: Left: The Slinky model shows the performance of our solver in presence of a high number of collisions and self-collisions. Right:
Our method is able to simulate tree-like structures. The white birch model represents a typical deciduous tree.

Abstract
In this paper, we present a novel direct solver for the efficient simulation of stiff, inextensible elastic rods within the Position-
Based Dynamics (PBD) framework. It is based on the XPBD algorithm, which extends PBD to simulate elastic objects with
physically meaningful material parameters. XPBD approximates an implicit Euler integration and solves the system of non-
linear equations using a non-linear Gauss-Seidel solver. However, this solver requires many iterations to converge for complex
models and if convergence is not reached, the material becomes too soft. In contrast we use Newton iterations in combination
with our direct solver to solve the non-linear equations which significantly improves convergence by solving all constraints
of an acyclic structure (tree), simultaneously. Our solver only requires a few Newton iterations to achieve high stiffness and
inextensibility. We model inextensible rods and trees using rigid segments connected by constraints. Bending and twisting
constraints are derived from the well-established Cosserat model. The high performance of our solver is demonstrated in
highly realistic simulations of rods consisting of multiple ten-thousand segments. In summary, our method allows the efficient
simulation of stiff rods in the Position-Based Dynamics framework with a speedup of two orders of magnitude compared to the
original XPBD approach.

CCS Concepts
•Computing methodologies → Physical simulation;
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1. Introduction

The simulation of slender, rod-like structures has been an active re-
search area in computer graphics over the last decades and is still
of high interest. There are various applications like the simulation
of ropes, threads, hair and fur of virtual characters as well as veg-
etation like trees or other plants. Such models are used for special
effects in movies and in interactive virtual environments like games
or surgical simulations. Recently, several methods for the fast and
stable simulation of elastic rods have been developed. However, the
stable and interactive simulation of very stiff objects like a trunk or
branches of a tree, which are very common in nature and every-day
life, remains a challenging problem.

Many real world materials like wood and hair are nearly inex-
tensible and they can have a large spectrum of bending and tor-
sion resistance. This poses high demands on the numerical inte-
grator. Simple explicit methods require very small time steps to
remain stable, which leads to high computational costs. Further-
more, numerical stability cannot be guaranteed, but this is crucial
in many interactive applications. Lately, Position-based dynamics
(PBD) [BMM14] has become very popular, because it is simple to
implement, numerically stable and very versatile, while it can han-
dle arbitrary position-based constraints. A major problem of PBD
is that material stiffness depends on the number of iterations and on
the time step size. Recently, Macklin et al. [MMC16] published an
extended version of PBD, called XPBD, that solved this problem
and supports physically meaningful material parameters. However,
when it comes to simulations of very large and stiff structures with
thousands of segments and constraints like the tree in Figure 1, the
solver of XPBD requires a large number of iterations to converge.
Moreover, the material becomes softer, when too few iterations are
used.

In this paper we address the convergence problem of iterative
solvers for rod simulations by exploiting their special acyclic struc-
ture (in the rest of the paper called tree). This structure allows for
using a direct solver with linear-time complexity to solve all con-
straints in the tree simultaneously. Baraff [Bar96] proposed such a
solver for trees of articulated rigid bodies. More recent works, e.g.
of Hernandez et al. [HGCO11] or Aubry and Xian [AX15], solved
the drift problem of Baraff’s method (c.f. [BET14]) by formulat-
ing implicit position constraints at the end of the time step. Nev-
ertheless, a rod modeled with one of these approaches might suf-
fer from jitter in high tension cases [GHF∗07, TNGF15]. Han and
Harada [HH13] proposed a linear time algorithm for particle dis-
tance constraints with PBD. However, they only support distance
constraints and no elastic potentials and only handle linear chains
and no trees.

The position-based approach avoids the numerical drift problem
by solving the time integration with an implicit constraint evalu-
ation. Moreover, the discretization with an implicit constraint di-
rection (ICD) reduces instabilities in tension situations (see Gold-
enthal et al. [GHF∗07]). In general, the constraint formulations of
XPBD lead to a non-linear system with equalities and inequalities.
The system is not easy to solve and needs special treatment. There-
fore, XPBD applies a non-linear Gauss-Seidel solver. This solver
computes individual Newton steps for each position constraint in an
iterative process. The individual solutions of the constraints influ-

ence each other through an immediate position update of the con-
strained generalized coordinates. As such, constraint corrections
travel only locally from constraint to constraint. Thus, in case of
a chain of constraints (e.g. a rod) the solver needs many iterations
to converge. However, the system for a single rod does not include
inequalities. Therefore, in contrast to the original XPBD approach,
we solve this system with Newton’s method, where the solution to
the subproblems is solved with a linear-time solver. This increases
convergence significantly.

Furthermore, we employ the physically accurate Cosserat rod
model to achieve realistic bending and torsion resistance. We show
how to discretize inextensible and unshearable rods as chains of
rigid segments that are connected by a combination of zero-stretch,
bending and twisting constraints.

Our method provides a significant speedup of two orders of mag-
nitude compared to the non-linear Gauss-Seidel solver. Thus, it
greatly reduces the time taken to realistically simulate complex
scenes with rods consisting of several ten-thousands rigid segments
and very high bending and torsion stiffness in the Position-based
dynamics framework. The material stiffness of the tree in Figure 1
can be easily tuned by using Young’s modulus and torsion modulus
and it realistically depends on the varying thickness of the trunk
and the branches by using the Cosserat model. The Slinky scene
shows that collisions are naturally handled by constraints (see Sec-
tion 4). Moreover, we compared our model to the analytic solution
of the bending of a cantilever beam that was fixed at one end that
demonstrates the accuracy of our method (see Section 5). Finally,
our method is easy to implement and can be easily integrated into
existing Position-based dynamics frameworks.

2. Related Work

In this section we discuss the most closely related work in strand
and rod simulation as well as Position-based dynamics. Many ap-
proaches for the simulation of elastic rods or strands have been
proposed in computer graphics, including mass spring models,
Cosserat models, multi-body strands and position-based methods.

Mass spring models: Mass spring models are very popular in
computer graphics due to their simplicity and computational perfor-
mance and are widely used in cloth and strand simulation [BW98,
CCK05, IMP∗13]. However, mass spring models cannot naturally
handle torsion effects of rods. Therefore, Selle et al. [SLF08] used
additional altitude springs for the simulation of curly hair. But these
springs lead to increased computational costs. Another problem is
that the only material parameters of mass spring models are the
stiffness constants of the springs. Therefore, tuning the material
behavior is difficult. Michels et al. [MMS15] solved this issue by
using special cuboidal mass spring elements for the discretization
of the rod. These elements allow the mapping of real world ma-
terial parameters like the Young’s or torsion modulus to the spring
constants. Yet their employed exponential integrator makes it math-
ematically unclear how hard constraints and non-smooth contacts
are handled. They also report that practical time step sizes for their
simulations are in the range of 10−3s, while our method runs well
for step sizes larger than 10−2s for similarly sized objects.
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Cosserat rods (implicit discretization): The Cosserat model de-
scribes elastic rods which can undergo stretch, shear, bend and twist
deformations. An introduction to the Cosserat theory can be found
in the book of Antman [Ant05]. Pai [Pai02] introduced the Cosserat
model to the computer graphics community in order to simulate
sutures and catheters in virtual surgery applications. He modeled
rods with an implicit discretization of the centerline by using cur-
vature as generalized coordinate. This allowed him to find qua-
sistatic solutions for inextensible and unshearable rods. However, it
is complicated to handle interaction forces and contacts due to the
implicit discretization of the centerline. Bertails et al. [BAC∗06]
extended this approach to the super-helix model, which also han-
dles dynamics and was used for simulations of curly hair. Later,
Bertails [Ber09] presented the linear time super-helix model, which
reduced the computational complexity to linear time. The implic-
itly discretized Cosserat models remove all constraints by using
reduced coordinates. Hence, they cannot be directly integrated into
the PBD framework.

Cosserat rods (explicit discretization): A further approach is to
use an explicit centerline representation. For instance Gregoire and
Schömer [GS07] discretized the centerline explicitly as linear el-
ements, which are described with position and orientation. These
were used to formulate constraint energies for computing the static
equilibrium of cables in virtual assembly simulations. Spillmann
and Teschner [ST07] extended this approach to achieve dynamic
simulations with their CoRdE model. They used the finite ele-
ment method to discretize the continuous deformation energies.
The equations of motion of the rod elements were derived using
the Euler Lagrange equations and solved with explicit Euler inte-
gration. The explicit centerline representation allows for efficient
contact and collision handling, which was used to simulate looping
phenomena and knots at interactive rates [SBT07, ST08]. A ma-
jor drawback of the CoRdE model is the explicit time integration,
which demands small time steps to remain numerically stable. Lang
et al. [LL09, LLA11] used a similar approach to simulate cables in
mechanical engineering applications. They formulate the Cosserat
rod model as a Lagrangian field theory and derive partial differ-
ential equations for the dynamics of the centerline and the frames.
The PDEs are discretized with finite differences on a staggered grid
and solved with standard solvers for stiff differential equations. In
our work we also use an explicit centerline discretization, by rep-
resenting the centerline as rigid segments and the frames with the
rigid segment orientations. Similar to [ST07, LLA11] we use the
finite difference approach to discretize the bending and torsion en-
ergy. Our big advantage over [ST07] is that we use implicit time
integration and have no stability issues regarding the time step size.
In contrast to [LLA11], we do not rely on a band structure in our
system matrix and, thus, can simulate models with junctions, like
trees, as well.

Discrete differential geometry formulation: Bergou et
al. [BWR∗08] introduced a discrete elastic rod model based
on an explicit discretization of the centerline and generalized
coordinates for the frames. For unshearable rods the director d3
(see Figure 2) is always aligned with the corresponding edge
of the centerline. Hence, the frame can only rotate around the
edge, while the angle which measures the distance to a reference

frame is sufficient to describe the frame. The reference frames
are constructed by parallelly transporting the reference frame
from one end along the rod. This construction leads to dense
energy Hessians, which makes implicit time integration expensive
and therefore explicit integration was used. Later, Bergou et
al. [BAV∗10] extended this model to simulate discrete viscous
threads by shifting the reference frame construction to the time
domain. This results in banded energy Hessians, which also allows
efficient implicit integration of elastic rods. However, branching
structures like plants are only supported by dividing a rod into two
rods and introducing a rigid body between the rods that couples
the branch to the parent rod. In cases with lots of branches this
increases the degrees of freedom and the computational costs. In
contrast our model supports branching that is independent of the
parent branch discretization.

Multi-body systems: Another approach is to simulate strands as
chains of articulated rigid bodies. A reduced coordinate formula-
tion of the multi-body chain is used by Hadap [Had06]. While this
formulation handles high bending and torsion stiffness well, it is
rather hard to define interacting constraints like contacts. More-
over, this approach is computationally too expensive for real-time
applications. The method of Servin and Lacoursière [SL08] applies
weakly relaxed kinematic constraints to simulate cables with very
high mass ratio between the end segment and the cable segments.
Bending and twisting constraints stabilize the system of cable seg-
ments, which is solved with a direct solver. To support large de-
formations of the flexible cables, the twisting constraints are for-
mulated in terms of the angle between vectors fixed to the dis-
cretization of the centerline. As such, the method does not support
anisotropic cross sections. In constrast, our model of bending and
twisting resistance with the help of the Darboux vector allows us
to choose different stiffness values along the main axes of the local
frame. Quigley et al. [QYH∗17] proposed a linear-time algorithm
for the interactive simulation of trees, which are represented by ar-
ticulated rigid bodies. Bending is modeled with rotational spring
constraints. Each spring constraint is solved analytically while the
dynamics of a whole tree is solved in a reduced coordinate fash-
ion. This results in linear time complexity. However, the choice of
constraints sacrifices the freedom to simulate arbitrarily compliant
joints. Another approach to model geometric deformations of sur-
faces by embedding them into rigid prisms that are connected by
elastic joints was presented by Botsch et al. [BPGK06]. The elas-
tic joints could also be used to simulate stretching, bending and
twisting behavior of elastic rods. However, as a geometrically mo-
tivated method which was tailored for geometric shape modeling it
does not use real world material parameters and bending and tor-
sion stiffness cannot be tuned independently.

Position-based dynamics: Due to its simplicity, performance and
numerical robustness Position-based dynamics is widely used in
computer graphics [BMM14]. In PBD objects are modeled as parti-
cles which are coupled by positional constraints. These constraints
are solved iteratively in each time step. Originally it was used to
simulate cloth and soft bodies [MHHR07], but it was also extended
to simulate straight hair strands [MCK12] in real-time. Umetani et
al. [USS14] simulated elastic rods with bending and twisting de-
formations in PBD by representing the material frames implicitly
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with the help of ghost particles. This requires multiple constraints
to keep the frame attached to the centerline. In a constraint graph,
where constraints and bodies are represented as nodes which are
connected by an edge if a constraint acts on a body (see [Bar96] for
details), this setup leads to loops. Therefore, the method is not well
suited to be combined with a direct solver which often requires a
loop-free constraint graph. Recently, Deul et al. [DCB14] presented
an approach to simulate rigid bodies with orientation constraints in
PBD. In our work we transfer their ideas to the discretization of
rods into rigid segments that are connected by our combined zero-
stretch, bending and twisting constraint. Similar orientation con-
straints were used by Kugelstadt and Schömer [KS16] to simulate
Cosserat rods within PBD. Their constraints are modeled with a fi-
nite difference approximation of the strain measures from Cosserat
theory. We use a comparable formulation in our new combined
stretch, bending and twisting constraint, which increases conver-
gence and allows us to employ a direct solver.

3. Cosserat Model

The Cosserat theory models a rod as a smooth curve r(s) : [s0,s1]→
R3, called centerline. To describe the bending and twisting degrees
of freedom, an orthonormal frame with basis {d1(s),d2(s),d3(s)}
is attached to each point of the centerline. In the following, the
vectors di will be denoted as directors. The first and second di-
rector span the cross section of the rod, while the third director is
the cross section normal, as depicted in Figure 2. The directors can

e1

e2

e3

d1

d3d2

r(s)

q(s)

Figure 2: Geometry of a continuous Cosserat rod.

be parameterized with a rotation quaternion q(s), which computes
the directors by rotating a frame that is initially parallel to the world
coordinate basis {e1(s),e2(s),e3(s)}. The frame spanned by the di-
rectors of the initial rod configuration is called material frame.

Strain measures and deformation energies: The Cosserat theory
defines the strain measure ΓΓΓ that determines stretch and shear as

ΓΓΓ(s) =
∂

∂s
r(s)−d3(s), (1)

where r(s) is a unit-speed parametrization for the rod’s rest pose.
It follows that the tangent of centerline ∂sr has unit length and ΓΓΓ

vanishes for the rest configuration because d3 also has unit length.
Stretching or compression directly corresponds to length changes
of the centerline tangent, such that ΓΓΓ measures stretch. Further-
more, ΓΓΓ measures how far the direction of the tangent and the direc-
tor d3 deviate, which is denoted as shear. However, we aim for un-

shearable and inextensible rods, i.e. ΓΓΓ = 0. Therefore, we use a dis-
cretization of the rod which guarantees unshearability and enforces
inextensibility with zero-stretch constraints (see Section 3.1).

The strain measure for bending and twisting is determined using
the Darboux vector ΩΩΩ which is defined as

∂

∂s
di(s) = ΩΩΩ(s)×di(s). (2)

This equation shows the close relationship between the Darboux
vector ΩΩΩ and the angular velocity ωωω of a rigid body. For ωωω the
same equation holds, except that the spatial derivative has to be
exchanged with the time derivative. Analogously to the angular ve-
locity the Darboux vector can be expressed in terms of the rotation
quaternion

ΩΩΩ(s) = 2q̄(s)
∂

∂s
q(s), (3)

where q̄ denotes the conjugate quaternion. In Equation (3) the Dar-
boux vector is expressed w.r.t. the material frame, which allows
simple interpretations of its components. The first and second com-
ponent ΩΩΩ1 and ΩΩΩ2 measure local bending or curvature in d1 and d2
direction and the third component measures torsion around d3. In
the following we will allow rods with initial bending and torsion
and we denote the rest pose Darboux vector as ΩΩΩ

0. We define the
strain measure of bending and torsion as

∆ΩΩΩ = ΩΩΩ−ΩΩΩ
0 = 2q̄

∂

∂s
q−2q̄0 ∂

∂s
q0, (4)

which locally measures bending and torsion as the deviation of the
Darboux vector from the rest-pose Darboux vector. An important
property of the strain measure ∆ΩΩΩ is that it is invariant to rigid
body motion.

The continuous deformation energy can be defined as a quadratic
form of the strain measure. We define the bending and torsion en-
ergy as

Eb =
1
2

∫
∆ΩΩΩ

T KKK∆ΩΩΩds, K =

EI1 0 0
0 EI2 0
0 0 GJ

 , (5)

where K is a 3×3 matrix with material parameters for bending and
torsion stiffness, E is Young’s modulus and G is the torsion mod-
ulus of the material. In classical mechanics the shear modulus is
used to define the stiffness with respect to torsion. However, since
in our work we aim for unshearable rods, we speak of the torsion
modulus to emphasize that only torsion is affected by this param-
eter. The moments of inertia of the cross section I1 in direction d1
and I2 in direction d2 as well as the polar moment of inertia J are
given by:

I1 =
∫
A

x2
2dx1dx2, I2 =

∫
A

x2
1dx1dx2, J = I1 + I2, (6)

where A is the cross section area. In the special case of a circular
cross section the inertia can be computed as I1 = I2 =

1
4 πr4.

3.1. Discretization

We aim for the simulation of inextensible and unshearable rods.
Therefore, we discretize the centerline as a chain of rigid segments
that are connected by a combination of zero-stretch, and bending
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qi−1 qi
qi+1

ΩΩΩi−1

ΩΩΩi

Figure 3: The rod is discretized as a chain of rigid segments that
are connected by a combined zero-stretch, bending and twisting
constraint.

and twisting constraints (see Figure 3). This guarantees that the
rod cannot be stretched. Furthermore, in contrast to methods us-
ing particles and a staggered constraint distribution, we solve the
combined constraints between two segments simultaneously. As a
result, the convergence is increased and it is much easier to com-
bine the constraints with a direct solver.

We use the rigid segment orientations to discretize the direc-
tors, which also guarantees that the frames are aligned with the
centerline and shear deformation is not possible. Therefore, our
discretization of the rod automatically satisfies the hard constraint
ΓΓΓ= 0. Each rigid segment i is described by the position of its center
of mass pi and a rotation quaternion qi.

In order to formulate a discrete bending and torsion energy,
we need to discretize the Darboux vector at constraint position i.
The derivative of the quaternion is discretized as finite difference
approximation ∂sqi =

1
li (qi+1− qi), where li denotes the average

length of segment i and segment i + 1. Furthermore, we need to
evaluate the quaternion, which is only known at the center of the
segments, at the segment position. Therefore, we interpolate the
quaternion using the arithmetic mean of the adjacent quaternions
as proposed by Spillmann and Teschner [ST07], such that the dis-
crete Darboux vector becomes

ΩΩΩi =
1
li
= [(q̄i+1 + q̄i)(qi+1−qi)] =

2
li
= [q̄iqi+1] . (7)

Here we have to take the imaginary/vector part of the quaternion,
which is denoted as =[·]. This results in the discrete bending and
torsion energy

Eb =
1
2 ∑

i
∆ΩΩΩ

T
i Ki∆ΩΩΩiii. (8)

In the following we will also need the Jacobian of the Darboux
vector. It can be computed by writing the quaternion product as
matrix-vector multiplication

q̄iqi+1 =

(
< [qi] = [qi]

T

−= [qi] < [qi]13×3− [= [qi]]
×

)(
< [qi+1]
= [qi+1]

)
, (9)

where < [·] takes the real/scalar part of a quaternion, [·]× denotes
the skew symmetric matrix, which can be used to write the cross
product as matrix-vector product and 13×3 is the 3× 3 identity
matrix. The Darboux vector is the imaginary part of Equation (9)
scaled by the inverse of the average segment length (see Equa-

tion (7)), which means the Jacobian of ΩΩΩi w.r.t. qi+1 is

∂

∂qi+1
ΩΩΩi =

2
li

(
−= [qi] < [qi]13×3− [= [qi]]

×) . (10)

The derivative w.r.t. qi can be found analogously by using ΩΩΩi =
2
li=[q̄iqi+1] =− 2

li=[q̄i+1qi], which results in

∂

∂qi
ΩΩΩi =−

2
li

(
−= [qi+1] < [qi+1]13×3− [= [qi+1]]

×) . (11)

4. Constraint Solver

In this section we introduce an extension of the XPBD algorithm
proposed by Macklin et al. [MMC16] in order to simulate stiff
Cosserat rods. We first give a brief overview of XPBD, then present
our extension of XPBD with a direct solver, and finally introduce
our combined zero-stretch, bending and twisting constraint in de-
tail.

4.1. XPBD

Our constraint solver is based on the XPBD algorithm of Macklin
et al. [MMC16]. XPBD is an extension of Position-based dynamics
which allows to apply physically meaningful material parameters
by using compliance constraints. In this section we will summarize
the core ideas of XPBD and present the system of equations that
we have to solve.

The goal is to solve Newton’s equation of motion

Mẍ =−∇U(x)+ fext , (12)

where M is the mass matrix, x = (x0,x1, ...,xn)
T denotes the vec-

tor that collects all generalized coordinates of the physical system,
U denotes the elastic potential and fext collects external forces like
gravity or wind forces. In our case x contains all mass centers and
quaternions and the block diagonal of M contains the masses and
inertia tensors of the rigid segments. Using an implicit Euler dis-
cretization yields:

M
(

x(t +∆t)−2x(t)+x(t−∆t)
∆t2

)
=−∇U(x(t +∆t))+ fext .

(13)
The elastic potential U(x) has the form

U(x) = 1
2

C(x)T
ααα
−1C(x), (14)

where C(x) = (C0,C1, ...,Cm)
T is a vector of constraint functions

and ααα is the diagonal compliance matrix describing the inverse
stiffness. In case of the Cosserat bending and torsion potential we
identify C with ∆ΩΩΩi and ααα with K−1

i which is defined by Equa-
tions (5) and (6). This means that the compliance matrix ααα de-
scribes the material properties in terms of Young’s modulus, tor-
sion modulus and the cross section geometry. Taking the negative
gradient of the potential results in the elastic forces

fel =−∇U(x) =−JT
ααα
−1C = ∆t2JT

λλλ, (15)

where J =∇C denotes the constraint Jacobian. The elastic forces
are decomposed into direction and magnitude by introducing the
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Lagrange multiplier λλλ = (λ0,λ1, ...,λm)
T = −α̃αα

−1C(x) with α̃αα =
ααα

∆t2 . Plugging this into Equation (13) yields

M(x(t +∆t)− x̃)−J(x(t +∆t))T
λλλ(t +∆t) = 0, (16)

C(x(t +∆t))+ α̃ααλλλ(t +∆t) = 0, (17)

where x̃ = 2x(t)−x(t−∆t)+∆t2M−1fext . Note, that in contrast to
many other implicit integration methods, like for example the ones
of Hernandez et al. [HGCO11] or Aubry and Xian [AX15], Equa-
tion (16) contains an implicit constraint direction (ICD) J(x(t +
∆t))T evaluated at the end of the time step. The inclusion of the
ICD helps in reducing jitter that occurs in high tension situations
when enforcing length preserving constraints like our zero-stretch
constraints (see Goldenthal et al. [GHF∗07] for a detailed discus-
sion). A different approach to avoid instabilities while enforcing
length preserving constraints is to introduce a geometric stiffness
term to the system matrix (see Tournier et al. [TNGF15]). How-
ever, our method is based on an algorithm which already employs
an ICD. As such, using the geometric stiffness term is not devel-
oped further in our paper.

The system of equations (16) and (17) is in general non-linear
and can be solved with Newton iterations. Macklin et al. [MMC16]
linearize these equations and propose several simplifications, re-
sulting in the following KKT system for the i-th iteration:(

M −J(xi)T

J(xi) α̃αα

)(
∆x
∆λλλ

)
=−

(
0

C(xi)+ α̃ααλλλ
i

)
, (18)

where the vector
(

∆xT ,∆λλλ
T
)T

is the root update of the Newton

step
(
(xi+1)T ,(λλλ

i+1
)T
)T

=
(
(xi)T ,(λλλ

i
)T
)T

+
(

∆xT ,∆λλλ
T
)T

. The
number of equations in (18) can be reduced by applying the Schur
complement, which results in[

J(xi)MJ(xi)T + α̃αα

]
∆λλλ =−C(xi)− α̃λλλ

i
. (19)

The updates of the positions are determined by

∆x = M−1J(xi)∆λ. (20)

Macklin et al. solve Equation (19) with a non-linear Gauss-
Seidel solver. This solver iterates over all constraints and computes
solutions for each constraint in isolation. Hereby, the solution ∆λ j
to a single constraint equation with index j is computed as

∆λ j =
−C j(xi)− α̃ jλ

i
j

∇C jM−1∇CT
j + α̃ j

. (21)

Immediately, after computing ∆λ j position updates ∆x are com-
puted using Equation (20) and applied to the positions xi. As such,
the non-linear system in Equation (19) is never build completely.
It follows, that at no point in time there exists a subproblem in
the sense of Newton’s method. To sum up, the non-linear Gauss-
Seidel solver computes individual Newton problems per constraint
and the solutions of the constraints influence each other through the
immediately updated positions. For infinitely stiff constraints with
α̃ j = 0, Equation (21) reduces to the Lagrange multiplier formula
of standard Position-based dynamics [MHHR07]. This shows, that
XPBD is a generalization of PBD that allows for using physically
meaningful material stiffness parameters. However, the non-linear

Gauss-Seidel solver is not well-suited for the simulation of stiff ob-
jects with many degrees of freedom like natural trees, because it
requires many iterations until it converges.

4.2. Direct Solver

To overcome the problem of slow convergence, we solve the non-
linear system for a rod and all its constraints with Newton’s method.
We compute solutions to the linear KKT subproblems with a sparse
direct solver. For general tree structures, the matrix in Equation (19)
is not necessarily sparse. However, the problem can also be solved
in linear time by considering Equation (18), which is always sparse
for trees. This system of equations can be solved by a modified ver-
sion of Baraff’s linear-time solver [Bar96], where the compliance
factors must be considered. To simplify the notation we multiply
the second row in Equation (18) with −1, denote the matrix as H
and define C(xi)+ α̃λλλ

i
=−b, yielding

(
M −JT

−J −α̃αα

)(
∆x
∆λλλ

)
= H

(
∆x
∆λλλ

)
=

(
0
−b

)
. (22)

This system equals the notation in [Bar96] with compliance α̃αα

added in the lower right submatrix of matrix H. It can be solved in
linear time by reordering the equations as described in [Bar96]. The
reordering can be done once during initialization because it remains
constant as long as the constraint topology does not change. After
that the system can be solved using a sparse LDLT decomposition.
In typical scenarios of computer graphics simulated objects often
interact with each other by collisions. However, a rod that collides
at two points with the environment forms a loop. Furthermore, a rod
representing a rope, e.g. a clothes line, is usually fixed at both ends
to the environment and therefore also forms a loop. But, our direct
solver only supports acyclic structures and no loops. Therefore, we
alternate the computation of our rod solver with the computations
of the non-linear Gauss-Seidel solver for loop-closing constraints
and collision constraints. Thus, the position corrections of the direct
solver and the position corrections due to collisions or loop closing
constraints are transferred immediately from the one solver to the
other. Algorithm 1 presents the alternation of direct solver and non-
linear Gauss-Seidel solver, which from now on will be called KK-
T/GS solver, in the context of the XPBD time step. At the beginning
of the time step the unconstrained positions are predicted by inte-
grating the velocities and external forces (lines 1 and 2). Next, the
initial values of the KKT/GS method are defined. Beginning from
line 5 the rod, collision, or loop-closing constraints are solved iter-
atively. The iterations are stopped if the residual maximal error in
the constraint functions is smaller than a predefined threshold η. In
each iteration, first the KKT subproblems for the simulation of the
rods are solved using our linear-time solver and the positions of the
corresponding rigid segments as well as the Lagrange multipliers λλλ

are updated (lines 6 to 9). Then, the collision and loop closing con-
straints are solved successively in non-linear Gauss-Seidel fashion
(lines 10 to 14). After the solver iterations are finished the position
at the end of the time step is set and the velocity is updated.
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Algorithm 1 Time Step
1: for all rigid segments do
2: x̃← x(t)+∆tv(t)+∆t2M−1fext

3: x0← x̃
4: λλλ

0← 0
5: while

∥∥∥C(xi)+ α̃ααλλλ
i
∥∥∥
∞

> η do
6: for all rods do
7: solve Equation (22) using our linear-time solver
8: update xi+1← xi +∆x
9: update λλλ

i+1← λλλ
i
+∆λλλ

10: for all collision or loop-closing constraints do
11: compute ∆λ with Equation (21)
12: compute ∆x with Equation (20)
13: update xi+1← xi +∆x
14: update λλλ

i+1← λλλ
i
+∆λλλ

15: i← i+1
16: x(t +∆t)← xi

17: v(t +∆t)← 1
∆t (x(t +∆t)−x(t))

4.3. Rod Constraint

In the following we define the constraint functions and their Jaco-
bians for the zero-stretch, bending and twisting constraints, which
we use to simulate elastic rods.

We combine the zero-stretch, bending and twisting constraints
that couple two rigid segments into one six-dimensional constraint
with the constraint function

C(x1,q1,x2,q2) =

(
R(q1)p1 +x1−R(q2)p2−x2

2
li=
[
q̄1q2− q̄0

1q0
2

] )
. (23)

The first three rows connect a point p1 on segment 1 with a point
p2 on segment 2. These points are given in the local coordinates
of the corresponding segment and are transformed to world coor-
dinates by applying the rotation matrix R(q) and translation x of
their segment. The last three rows constrain bending and twisting
(see Section 3.1). The stiffness of each constraint is given by a 6×6
compliance matrix

α̃αα =
1

∆t2

(
σσσ
−1 0
0 K−1

)
. (24)

The diagonal matrix σσσ is the zero-stretch stiffness matrix. Further-
more, the bending and torsion stiffness K is the same as in Equa-
tion (5). Due to stability considerations of the solver and to avoid
bad conditioning of the system matrix we weaken the inextensibil-
ity of the zero-stretch constraint slightly by setting the diagonal of
σσσ
−1 to values between 10−8 and 10−10 in our simulations.

Further, we need the constraint Jacobians w.r.t. segment 1 and
segment 2, which are defined by

J1 =

(
∂C
∂x1

,
∂C
∂q1

G(q1)

)
=

(
13×3 − [R(q1)p1]

×

0 ∂ΩΩΩ

∂q1
G(q1)

)
(25)

J2 =

(
∂C
∂x2

,
∂C
∂q2

G(q2)

)
=

(
−13×3 [R(q2)p2]

×

0 ∂ΩΩΩ

∂q2
G(q2)

)
(26)

with

G(q) =
1
2

(
−= [q]T

< [q]13×3 +[= [q]]×
)
, (27)

where G(q) describes the relationship between the quaternion ve-
locity q̇ and the angular velocity ω as q̇ = G(q)ω and can also be
used on the orientation level.

The mass matrix of each segment is given by

M =


m13×3 0

0
ρliI1 0 0

0 ρliI2 0
0 0 ρliJ

 , (28)

where li is the length of segment i, ρ denotes the mass density, m is
the mass of the segment and the moments of inertia I1, I2 and J are
given by Equation (6). In our examples, we assume an isotropic rod
with circular cross-section. As such, we approximate the geometry
of a single segment with a cylinder and set the values for m, I1, I2
and J accordingly.

5. Results

We tested the performance of our method in various experiments.
All experiments in this section were performed on a single core of
an Intel Core i7-2600, 8GB of memory.

Cantilever beam: To validate our approach we fixed a rod of
length 10m and a radius of 0.5m at one end. At the other end
we applied a force F of 1000N. The rod is discretized into 50
segments and has a Young’s modulus E of 1GPa. In the follow-
ing we compare the deflection δC at the end of the rod with the
analytical solution computed as δC =

(
FL3

)
/(3EI), where I is

the moment of the cross section (see Equation (6)). The simu-
lated deflection is 6.7949 · 10−3m whereas the analytical solution
is 6.7906 · 10−3m. As a result, we have a deviation of only about
4.3 · 10−6m. For small deformations the elastic potential is nearly
linear, which means that this result could be reached after one KK-
T/GS iteration as expected.

Wilberforce pendulum: We underpin the physical plausibility of
our approach with the simulation of a Wilberforce pendulum (see
Figure 4). The pendulum consists of a helical spring that is fixed at
its upper end. A mass is attached to the lower end. At the beginning
of the experiment the mass is moved out of the resting position.
The accompanying video as well as Figure 5 show that the mass al-
ternates between translational and rotational movement. This phe-
nomenon is the result of coupled oscillations which are faithfully
reproduced by our approach.

Slinky: We simulated a Slinky walking down a stairway (see Fig-
ure 1). Using this scenario we tested the performance of the rod
solver in presence of a high number of self-collisions and colli-
sions with the environment. The Slinky consists of 500 rigid seg-
ments and was simulated with a time step size of 10ms at three
iterations of the alternating KKT solver for rods and non-linear
Gauss-Seidel approach for collisions (see Section 4.2). We used
an approach based on signed distance fields [KDB16] for collision
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Figure 4: First image: At the beginning of the simulation the pen-
dulum bob of the Wilberforce pendulum is raised and then falls
down. Second image: The bob moves up and down and begins to
rotate around the vertical axis. Third image: After the first 12 sec-
onds the translational up and down movement of the bob changes
almost entirely to a rotation around the vertical axis. Fourth im-
age: After about another 12 seconds the rotational movement has
completely disappeared and the bob moves only upward and down-
ward.
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Figure 5: Translation z and rotation θ of the pendulum bob as a
function of time for our Wilberforce pendulum experiment.

detection. The result of the simulation is shown in Figure 1 and the
accompanying video. The Slinky descends five stairs before stop-
ping at the floor, while the solver handles hundreds of collisions per
time step.

Knot: To demonstrate that our method is not only applicable to
stiff rods, but to soft elastic rods as well, we simulated a strand un-
der torsion. The rod is fixed at both ends. During the simulation,
the left fixture is translated towards the right, while it performs ten
full rotations. Figure 6 and the accompanying video show the ex-
pected formation of plectonemes. These confirm the soundness of
our material model and show that self-collisions are handled well.

Figure 6: An elastic rod under torsion shows the formation of plec-
tonemes.

Figure 7: The weeping willow model represents a tree with thick,
as well as long, slender branches with many segments.

Tree simulation: The simulation of natural trees is one of the
most demanding applications of rod simulation. Many approaches
[BWR∗08,Ber09,HKW09,ZB13,AX15] applied some kind of rod
or beam model to tree simulation. In this paragraph we show how
our approach performs in this complex simulation task. Our rod
model was tested with three tree models with different topology,
which were generated with Blender 2.78a’s sapling tree generator.
A white birch represents a typical deciduous tree (see Figure 1).
The second tree is a weeping willow (see Figure 7) with long slen-
der branches. Conifers with many small leaves are represented by
a pine model (see Figure 8). Besides the trunk and the branches,
we also represent each leaf of the tree with a single rigid segment
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Figure 8: An example for conifers, which contain a huge number
of small leaves, is given by this pine model.

Model Segments Avg. pos. corr. time
Birch 29973 658.08ms

Willow 38825 870.31ms
Pine 49548 1048.74ms

Table 1: Number of segments and average time required for the
position correction in the respective tree simulations.

connected with the combined zero-stretch, bending and twisting
constraint to the tree. As such, our model can capture the subtle
movement of leaves in the wind. Wind is modeled by a procedural
wind field. We first start with a subtle wind force which is succes-
sively increased to stormy conditions. Then we stop the wind to
show that the model comes to rest. Each tree was simulated with
a large time step size of 40ms and three iterations per time step to
guarantee a upper bound for the residual error of 10−6. The tree
models consist of 29973, 38825, and 49548 rigid segments for the
birch, the willow, and the pine, respectively. The Young’s modulus
is set to 12.5GPa and the torsion modulus to 6.5GPa for the trunk
and the branches. For the leaves, which are more flexible, we chose
a Young’s modulus of 1.2GPa and a torsion modulus of 0.6GPa.
The density was set to 1000kg/m3. Our results show a convincing
movement of the tree geometry in the wind. Furthermore, the sim-
ulation stays stable even under large wind forces. The average time
taken by the position correction for the tree simulations is given in
Table 1. Besides the fast simulation, a big advantage of our model
compared to previous rod simulation approaches for Position-based
dynamics is that we can use physically meaningful material param-
eters. The thickness of a branch automatically changes its stiffness.

There is no need for tuning parameters for each branch by hand and
simulations naturally show plausible behavior.

Comparison of the KKT/GS solver to the non-linear Gauss-
Seidel solver: We compared the performance of the KKT/GS
solver to the solution computed with the non-linear Gauss-Seidel
solver of Macklin et al. [MMC16] in two scenes. In the first scene
we tested the cantilever beam example from above with differ-
ent discretizations. We ran the simulation for 60s to let the beam
swing out of the initial state and come to rest. This part of the
the simulation was performed using our direct solver at three it-
erations per time step. Thereafter, we ran 500000 KKT/GS itera-
tions as well as 500000 non-linear Gauss-Seidel iterations (one GS
iteration means one traversal through the whole matrix) and mon-
itored the Chebyshev norm of the residual error in b (see Equa-
tion (22)). The results are depicted in Figure 9. After one iteration
the error of the KKT/GS solver is about 2.2 · 10−13, 2.8 · 10−16,
and 4.4 ·10−18, and the error of the non-linear Gauss-Seidel solver
is 10−1, 5 · 10−3, and 3.5 · 10−4 for a discretization of 1000, 50,
and 8 segments, respectively. In the first three iterations the error
of the KKT/GS solver decreases even further to about 4.4 · 10−16,
9.4 ·10−19, and 5.9 ·10−19. However, the non-linear Gauss-Seidel
solver needs about 1000 and 50000 iterations for the beams with
8 and 50 segments, respectively, to arrive at an error value which
is comparable to the error after only one KKT/GS iteration. The
smallest error for the non-linear Gauss-Seidel solver with a 1000
segment beam is about 1.3 · 10−4 after 500000 iterations. How-
ever, the direct solver used to compute the KKT subproblems in-
creases the computational cost of one KKT/GS iteration compared
to one non-linear Gauss-Seidel iteration. In the case of the can-
tilever beam, one iteration of the KKT/GS solver is 3.1 times more
costly than one iteration of the non-linear Gauss-Seidel solver. To
find out if the improved convergence is worth the increased cost,
we compare the error after one KKT/GS step with the error af-
ter four Gauss-Seidel iterations. While the Gauss-Seidel solver still
has an error of 1.4 ·10−3, the error of our KKT/GS solver remains
at merely 2.8 · 10−16. It follows that the increased convergence of
the KKT/GS solver outweighs the computational overhead by far.

The second test scene is the birch simulated in an increasing
wind field. We simulated the scene in several runs. For each suc-
cessive run we decreased the threshold for the Chebyshev norm of
the residual error in b. Note, that the stiffness of the simulated ob-
ject decreases if the residual error in b is too large. Thus, a threshold
that is too high will result in a perceptually wrong animation. Our
own experiments have shown that an error threshold of η = 10−6

is sufficient to reach a relative change in stiffness of about 3%. The
best threshold value would be 10−9 after which the measured de-
viation in stiffness does not change significantly. Table 2 shows the
required KKT/GS iterations and non-linear Gauss-Seidel iterations
at different threshold values. The iteration count of the KKT/GS
solver stays in a range of 1 to 5 iterations. The Gauss-Seidel solver
on the other hand requires more than 200 iterations even for a
threshold of 10−2. Though, at this threshold the residual errors lead
to a significant deviation of the simulation to the expected result.

For this scene one iteration of the KKT/GS solver is 5.6 times
more costly than one iteration of the non-linear Gauss-Seidel
solver. This factor is higher than for the cantilever beam due to the
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Figure 9: Convergence of the Gauss-Seidel solver (GS) and
KKT/GS (KKT) solver in the cantilever beam scene, plotted on a
log-log scale. Measurements are shown for discretizations of the
beam with 1000, 50, and 8 segments.
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Figure 10: Convergence of different simulation methods for the
cantilever beam discretized with 50 segments, plotted on a log-log
scale. The methods in comparison are Position-Based Elastic Rods
(PBER), Position and Orientation Based Cosserat Rods (PaOBCR),
the Gauss-Seidel (GS) solver and our KKT/GS (KKT) solver.

increased complexity of the birch. The branching of the tree results
in an increase of matrix-matrix products in our direct solver. De-
spite the even higher costs per iteration compared to the cantilever
scene, the increased convergence leads to a speedup of two orders
of magnitude for the birch scene (see Table 2 for the exact values).

Average iterations Pos. corr.
Error threshold η KKT/GS Gauss-Seidel speedup

10−2 1.49 208.73 25.5
10−6 2.98 2055.23 124.8
10−9 4.15 3629.69 164.6

Table 2: Even for large error thresholds our KKT/GS solver needs
significantly fewer iterations than the Gauss-Seidel solver. Not only
does this compensate for the cost of the KKT/GS iterations, but it
also speeds up the position correction by multiple orders of magni-
tude. Measurements are taken from the birch example.

Comparison to previous methods: We compared our method to
Position-based Elastic Rods (PBER) by Umetani et al. [USS14]
and Position and Orientation Based Cosserat Rods (PaOBCR) by
Kugelstadt and Schömer [KS16]. In order to make the comparison
as fair as possible, we exchanged the PBD-stiffness parameter of
both approaches with a compliant implementation for bending and
twisting. Furthermore, we lumped the segment masses of our model
to the particle masses of these approaches. In case of the approach
of Kugelstadt and Schömer we applied the part of the inertia tensor
of our segments which corresponds to a rotation around the axis
orthogonal to the rod centerline to their quaternion weighting wq.
However, the approach of Umetani et al. describes no direct rep-
resentation of inertia. Inertia is indirectly modeled by the weight
distribution between particles and ghost particles. We distributed
the lumped segment mass evenly between the two particles and
one ghost particle representing a segment of the rod. For the fol-
lowing comparison we solved all constraints of the three different
approaches with the non-linear Gauss-Seidel solver, even our own
combined zero-stretch, bending and twisting constraint, to present
convergence properties and mathematical effort. Furthermore, we
compared these results to the performance of our KKT/GS solver
approach. For this test we also employed the cantilever beam with
50 segments. As shown in Figure 10 PBER and PaOBCR con-
verge slower than our combined zero-stretch, bending and twisting
constraint. However, our combined constraint solved with the non-
linear Gauss-Seidel solver is 13.9 times computationally more ex-
pensive than its cheapest competitor, PaOBCR. Even after compar-
ing the cost of both methods after they reach the same error thresh-
old PaOBCR ist cheaper. However, PaOBCR would loose its essen-
tial advantage of avoiding matrix inversions in a combination with a
direct solver in a KKT/GS method. Furthermore, it is not clear how
to combine the staggered distribution of kinematic values like posi-
tion and orientation of the PaOBCR model with a direct solver for
trees. Even though, PaOBCR is faster than our combined constraint
solved with non-linear Gauss-Seidel, the KKT/GS method with our
direct solver is by far the fastest approach. PaOBCR needs over
100000 iterations to decrease the order of magnitude in the residual
error to a value that is reached by the KKT/GS method after only
one iteration. Thereby PaOBCR is about 5890 times more expen-
sive. Another advantage of our direct solver is that all constraints
are solved at once, which means that instabilities arising from cer-
tain constraint orderings as reported by Umetani et al. [USS14] and
Kugelstadt and Schömer [KS16] are completely avoided.
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6. Conclusion

We presented a KKT/GS approach for the efficient simulation
of stiff, inextensible elastic rods in the Position-based dynamics
framework. It allows the simulation of hard constrains and elas-
tic potentials with physically meaningful material parameters in
a unified framework. Even though the solution of our KKT sub-
problems has higher computational costs than one iteration of non-
linear Gauss-Seidel, this is outweighed by the huge increase in
convergence, so that large and stiff objects can be simulated with
a speedup of two orders of magnitude. By using XPBD and the
KKT/GS solver, our method does not have the major drawbacks
of PBD, namely that the material stiffness does not depend on the
number of iterations, the time step and the ordering of the con-
straints.

Our main drawback compared to some other methods in rod or
tree simulation is that we often have to solve more than one system
of linear equations per time step. This is a result of the particu-
lar time discretization of XPBD which, however, leads to increased
stability. Furthermore, we chose XPBD intentionally to achieve a
tight coupling of our rod simulations with the vast amount of solu-
tions for different physical effects that have been published for the
Position-based dynamics framework. In order to reduce the compu-
tational effort, we want to work on improving the performance of
our direct solver. One of the most time consuming parts is the fac-
torization of the system matrix. We want to develop an optimized
solver in the future.

A minor limitation of our approach is that XPBD makes some
simplifications in formulating the system for the KKT subprob-
lems. Nevertheless, our method is numerically stable and delivers
plausible results, like our comparison to the analytical solution has
shown. In many interactive applications, like games, these features
are more important than the highest physical accuracy. For the fu-
ture we plan to investigate if we can modify our method, so that it
works without the simplifications made in XPBD.
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