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An hp-Adaptive Discretization Algorithm for
Signed Distance Field Generation

Dan Koschier, Crispin Deul, Magnus Brand, and Jan Bender

Abstract—In this paper we present an hp-adaptive algorithm to generate discrete higher-order polynomial Signed Distance Fields
(SDFs) on axis-aligned hexahedral grids from manifold polygonal input meshes. Using an orthonormal polynomial basis, we efficiently
fit the polynomials to the underlying signed distance function on each cell. The proposed error-driven construction algorithm is globally
adaptive and iteratively refines the SDFs using either spatial subdivision (h-refinement) following an octree scheme or by cell-wise
adaption of the polynomial approximation’s degree (p-refinement). We further introduce a novel decision criterion based on an
error-estimator in order to decide whether to apply p- or h-refinement. We demonstrate that our method is able to construct more
accurate SDFs at significantly lower memory consumption compared to previous approaches. While the cell-wise polynomial
approximation will result in highly accurate SDFs, it can not be guaranteed that the piecewise approximation is continuous over cell
interfaces. Therefore, we propose an optimization-based post-processing step in order to weakly enforce continuity. Finally, we apply
our generated SDFs as collision detector to the physically-based simulation of geometrically highly complex solid objects in order to
demonstrate the practical relevance and applicability of our method.

Index Terms—Signed distance field, adaptive discretization, higher-order polynomials, physically based simulation, collision detection.
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1 INTRODUCTION

S IGNED distance fields are a frequently used tool in the
field of computer graphics and serve a wide range of

applications including surface reconstruction [1], render-
ing [2], geometrical modeling [3] or collision detection [4].
For a three-dimensional spatial domain B ⊂ R3 the distance
function is usually defined as the Euclidean distance from a
given point ξ = (ξ, η, ζ)T in space to the nearest point on
the boundary ∂B of the domain. The sign of the distance
function additionally provides information about whether
the point in question lies inside or outside the domain.
Mathematically, the signed distance function Φ : R3 → R
is defined as

Φ(ξ) = s(ξ) inf
ξ∗∈∂B

‖ξ − ξ∗‖,

s(ξ) =

{
−1 ξ ∈ B
1 otherwise.

(1)

Signed distance functions can be evaluated efficiently if an
analytic form exists for the associated object. This is the case
for simple geometric shapes such as spheres, tori, boxes, etc.
For arbitrary polyhedral shapes the evaluation of the signed
distance function is, however, computationally very expen-
sive. For that reason, it is common practice to discretize the
signed distance function in order to evaluate the function
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more efficiently. In the rest of the paper, a discretized signed
distance function is referred to as a Signed Distance Field
(SDF).

Most commonly, an SDF is constructed by sampling
the signed distance at the vertices of a regular hexahedral
grid and by trilinearly interpolating within each cell, as
e.g. proposed by Xu and Barbič et al. [5]. However, for
complex objects this discretization strategy either consumes
a large amount of memory or is not sufficiently accurate.
The sampling may additionally suffer from aliasing effects.
More elaborate approaches sample the function adaptively
in order to increase the accuracy in regions with fine details
and to reduce the overall memory consumption. The adap-
tive sampling can be realized, e.g. as an octree-like scheme,
as proposed by Frisken et al. [6]. Especially in regions near
curved or sharp features, strong subdivision is required
resulting in very memory consuming SDF representations.

In this paper, we propose a novel method to effi-
ciently construct a grid-based SDF using hierarchical hp-
refinement based on piecewise polynomial fitting. Besides
spatial adaption using octree subdivision to refine the cell
size (h), we adapt the polynomial degree (p) of the local
discretization. We employ an orthonormal polynomial ba-
sis using shifted, normalized Legendre polynomials. This
enables us to hierarchically construct higher order polyno-
mials without having to discard and recompute any of the
previously computed coefficients. Using a novel hp-decision
criterion our algorithm estimates whether h- or p-adaption
is more beneficial in each individual refinement step. By
constructing SDFs for complex surfaces, we demonstrate
that our method generates highly accurate discretizations
while memory consumption remains at a minimum. Using
our novel nearness weighting approach, the user can choose
to focus the refinement efforts on regions close to the sur-
face of the associated object. Finally, we show in severalc© 2017 IEEE. This is the authors’ version of the work. Personal use is permitted. For any other purposes,
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Fig. 1: Left: Collisions of 1000 marbles dropped into a bowl with highly complex structures are accurately resolved using
our SDF representation. Right: A sheet of cloth represented by 320k triangles is dropped on the Stanford dragon. The
mesh’s characteristic features are outlined due to our accurate SDF representation serving as collision detector.

experiments that our hp-adaptive SDFs are well-suited for
the robust detection of collisions in dynamic simulations (cf.
Figure 1). In addition to the detection of contacts, the SDF
also provides information about the penetration depth and
contact normals. Our method is however not limited to this
application.

2 RELATED WORK

Since the introduction of SDFs by Rosenfeld and Pfaltz [7] to
the computer graphics community, numerous approaches to
construct and use SDFs have been proposed. For a general
overview, we would like to refer the reader to the survey of
Jones et al. [8].

Signed Distance Fields. In recent years, many methods
have been presented to accelerate the exact evaluation of
signed distance functions based on polygonal representa-
tions (see e.g. [9]). Even though the computational efficiency
was drastically improved, the computation time still can
not fulfill the strict time constraints of applications such
as interactive simulation or haptic rendering. Moreover,
approximations to signed distance functions using precom-
puted SDFs can be efficiently queried and, therefore, serve
as an excellent alternative. Due to the fact that discretiza-
tions of increasingly complex surfaces are very memory
consuming, various methods focusing on a reduction of
memory consumption were developed. One of the most
popular methods is the adaptively sampled distance fields
(ADFs) approach introduced by Frisken et al. [6]. During the
ADF construction the underlying signed distance function is
first sampled on a coarse grid and recursively refined using
octree subdivisions as long as the deviation of trilinearly
interpolated signed distance samples from the exact value
exceed a certain threshold. The method was later improved
in terms of memory consumption and construction time by
Perry and Frisken [10]. As a consequence of the refinement
strategy, a large number of cells is required in regions
where a trilinear discretization does not accurately represent
the signed distance function. In order to further reduce
the memory requirements narrow band approaches were
proposed by Bærentzen [11] and Erleben and Dohlmann [12]

that discretize only regions close to the object surface. A
very cache efficient narrow-band discretization approach for
volumetric data on grid-structures has been presented by
Museth [13]. This method is tailored to very large sparse
data sets with grid resolutions of at least 81923 cells. In
order to handle large data sets the approach uses a structure
similar to a B+-tree to find the cells containing data. At this
point, we would like to mention that a narrow band con-
struction is directly applicable to our proposed hp-adaptive
SDFs. However, we are generally interested in a high quality
representation of the SDF on the whole domain in order
to quickly exclude possible contacts in the demonstrated
application.

In contrast to using purely scalar valued SDFs several
approaches were proposed that augment the discretization
by additional geometric information. Huang et al. [14] pro-
pose a hybrid approach for distance field representation of
polygonal meshes. Using a regular hexahedral grid, they
store a list of triangles and the respective scalar distance
value from the cell center to each triangle for each individual
cell. This allows for an exact signed distance computation
without any discretization errors as the polygonal represen-
tation is explicitly stored within the data structure. How-
ever, it is still necessary to perform expensive computations
to evaluate distances to explicit polygons when querying
the SDF. Moreover, explicitly storing the triangle lists results
in a substantial memory overhead. Mitchell et al. [4] present
multivalued signed distance fields where several cells might
occupy a single volume of space. This allows to repre-
sent non-manifold features that cannot be represented by
standard grid-based representations. As such, the approach
is orthogonal to the aforementioned methods to represent
more detail with less memory. Therefore, the method should
also be compatible with our grid-based method. In order to
improve the representation of sharp features such as corners
or hard edges while avoiding unnecessary refinement, sev-
eral approaches were proposed. Ju et al. [15] store additional
hermite data on the grid that represents exact intersection
points and normals. Using an additional curvilinear offset
grid Qu et al. [16] align the mesh features with the second
grid to improve the discretization. Similarly, Bærentzen [17]
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uses an additional point cloud when reconstructing a mesh
from an SDF in order to recover sharp features.

As opposed to discretizing the signed distance function
using an axis-aligned hexahedral grid, Wu and Kobbelt [18]
present a discretization approach based on binary space
partitioning (BSP-tree). In each subdivision step the splitting
planes are aligned with geometric features in the input
data in order to optimize the approximation. Jones [19]
completely avoids spatial subdivision but transforms the
distance field with a vector distance transform using a spe-
cially defined predictor in order apply entropy compression
to the distance data. By reducing the SDF data to a 2D height
field projected onto a proxy geometry Otaduy et al. [20] as
well as Moustakas et al. [21] reduce the consumed memory.
The main problem of both approaches is to define a suitable
proxy geometry.

SDF-based Collision Handling. In the field of physics-
based animation, SDFs allow for rapid distance queries
between potentially colliding objects and are therefore espe-
cially well-suited for collision detection. Moreover, a contact
normal for collision response can be directly deduced by
computing the SDF’s gradient as it points in the direction of
the closest point on the object surface. Several works adopt
the concept of SDF-based collision detection for rigid body
simulations, i.e. Kaufman et al. [22], Glondu et al. [23], and
Xu and Barbič [24]. Bridson et al. [25] as well as Fuhrmann
et al. [26] use SDFs to resolve collisions between cloth and
rigid objects. Barbič and James [27] presented a method for
haptic rendering involving data provided by SDFs. Image-
based volume contacts proposed by Faure et al. [28] and
Allard et al. [29] are an alternative approach of captur-
ing detailed contact geometry but require high resolution
sampling for precise contact handling. Therefore, Wang et
al. [30] apply, similar to our method, an error estimation
based on polynomials to guide the refinement of the spatial
sampling. In order to improve efficiency and robustness of
rigid body collision handling Xu et al. [31] developed an
SDF-based continuous collision detector. In this paper, we
demonstrate the applicability of our new SDF representation
in rigid body simulations with contacts. Please note, that
our collision handling using our SDF representation is not
limited to rigid body simulations and can also be applied
for rigid-deformable and deformable-deformable collision
detection when considering the modifications presented by
McAdams et al. [32].

Similar to several aforementioned methods, we propose
an adaptive construction algorithm for SDF generation. In
contrast to all previous approaches, we fit polynomials to
the underlying signed distance function and are the first to
not only spatially subdivide (h-adaption) the grid but also
improve the discretization by hierarchical augmentation of
the polynomial basis with higher order polynomials (p-
adaption). As a consequence, our globally-adaptive, error-
driven construction algorithm is able to generate memory
efficient but highly accurate SDFs as we show in our results.

hp-Adaptivity in Numerical Methods for PDEs. While this
paper is, to the best of our knowledge, the first approach
on hp-adaptive generation of SDFs, hp-adaptivity is well-
investigated in the field of numerical methods for partial
differential equations (PDEs), especially in the context of

finite element solvers. In an early work, Babuška et al. [33]
introduced the concept of p-adaptivity for a finite element
solver for one- and two-dimensional PDEs and proved that
its convergence rate is not worse (and in some cases even
better) than h-adaptive approaches. The concept was then
combined with an h-adaptive approach and analyzed by
Babuška and Suri [34] building the first hp-adaptive method
in finite element analysis. For a discussion on further de-
velopments in the field until 1994 we would like to refer
the reader to the survey of Babuška and Suri [35]. As
hp-adaptive approaches refine the approximation in two
distinct dimensions a suitable criterion is required to decide
whether to refine in h- or p-direction. In this regard, Mitchell
and McClain [36] compare several strategies to guide the
hp-refinement. A very effective strategy to decide which
refinement direction is likely to improve the approximation
best was first proposed by Schmidt and Siebert [37] for
one-dimensional problems. They apply a refinement in p-
and h-direction and choose the refinement direction that
reduces the estimated remaining error the most. Unfor-
tunately, for higher-dimensional problems this strategy is
computationally very expensive as the numerical approxi-
mation has to be recomputed for each refinement step on
the whole domain. In the application of SDF generation this
problem is not present as the (discretized) field has only
to be reconstructed in the currently considered cell which
makes this strategy effective yet efficient. Similar to the
basis polynomials in our approach, Houston et al. [38] use
Legendre polynomials as shape functions in an hp-adaptive
finite element solver for hyperbolic conservation laws. They
analyze the decay rate of the polynomial’s Legendre expan-
sion coefficients to estimate local regularity of the PDE’s
solution in each finite element and use this information to
guide the refinement directions.

In contrast to methods for numerical solvers for PDEs
our approach is targeted towards construction of SDFs. We
employ a normalized, shifted Legendre polynomial basis
for discretization. The orthonormality property of the basis
enables us to efficiently fit the basis functions to the exact
input signed distance function without the requirement to
solve a (usually required) linear equation system. Using
the proposed polynomial basis we also develop an effi-
cient degree-based error estimator and propose a novel
refinement direction criterion by estimating the individual
improvement of an h- or p-refinement step.

3 SIGNED DISTANCE FIELD CONSTRUCTION

In this section, we present our novel hierarchical hp-
adaptive SDF construction algorithm. Given an initial grid
on an axis-aligned bounding box representing a rectangular
domain Ω the method aims to discretize a signed distance
function Φ (cf. Equation 1) implied by a corresponding
surface descriptor, e.g. a polygonal mesh. The algorithm
can be divided into the following steps. In the first step, a
coarse SDF is constructed by fitting low-order polynomials
to Φ on each individual cell serving as an initial guess.
In the second step, we estimate the error contributed by
each cell by computing the quadratic distance between the
approximating polynomial and its embedded lower order
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polynomial. Following a globally-adaptive top-down strat-
egy, we select the cell that contributes the largest residual as
candidate for refinement in the third step and and apply our
novel decision criterion in order to determine whether to
apply h- or p-refinement. Finally, the third step is repeatedly
performed until the aggregate residual of all cells tracked
over the refinement process falls below the target error
threshold. In the following sections we will give a detailed
explanation of each step and discuss the mechanisms and
mathematical foundations to perform the discretization.

3.1 Exact Signed Distance Computation

Given a triangular input mesh we require a method to
determine the exact signed distance to the surface. There-
fore, we first compute the unsigned distance by finding the
closest triangle of the mesh and subsequently evaluating
the distance to the individual polygon. As a naı̈ve search for
the nearest triangle has linear complexity, we accelerate the
procedure by construction of a bounding sphere hierarchy
with a special traversal algorithm as proposed by Sanchez et
al. [9]. In order to determine the sign of the minimal distance
we follow the approach of Bærentzen and Aanæes [39] by
using the angle-weighted pseudo-normal test which only
requires the evaluation of a single dot product with a
precomputed surface normal.

3.2 Polynomial Fitting

In order to locally discretize the signed distance function
we fit a multivariate polynomial of degree p to Φ on a
single cell. Given an arbitrary polynomial basis, we mini-
mize a quadratic distance measure between the polynomial
approximation and the underlying signed distance function
in order to find an optimal coefficient set for the basis
polynomials. Mathematically, this results in the following
quadratic minimization problem:

min
ce

Re(ce)

Re =

∫

Ωe

1

2
(fe − Φ)2dξ, fe = ce ·Pe
Pe = {Pρ

e }, ce = {cρe}
ρ = (ρξ, ρη, ρζ), 0 ≤ ρξ + ρη + ρζ ≤ p,

(2)

where Re represents the half squared error to the exact
signed distance function, Ωe the domain of the eth cell,
fe the polynomial approximation of order p, respectively.
Furthermore, the Pe and ce denote the polynomial basis
vector and cell coefficient vector, respectively. Furthermore,
ρ describes the polynomial degree in each direction of
the corresponding basis polynomial. The solution to the
quadratic minimization problem corresponds to the solution
of the linear equation system

Aece = be,

Ae =

∫

Ωe

Pe (Pe)
T
dξ, be =

∫

Ωe

PeΦdξ.
(3)

which yields the desired coefficient set ce. The SDF can then
be queried at point ξ by evaluating the fitted approximation
fe(ξ).

3.3 Polynomial Basis and Hierarchical p-Refinement

Obviously, the underlying polynomial basis affects the
structure and condition number of matrix A. Moreover, the
dense linear equation system grows when the degree of the
polynomial basis is increased. For these reasons, we aim
to employ a basis that is orthogonal on the corresponding
cell which diagonalizes the matrix in Equation (3). The
fact that Legendre polynomials have the property to be
orthogonal on the interval [−1, 1] makes them attractive for
the construction of a higher-dimensional orthogonal basis.
In order to generalize the Legendre basis to be orthogonal
on an arbitrary interval we shift the coordinates accordingly.
Consequently, we construct a polynomial tensor-product
basis based on shifted normalized Legendre polynomials
that keeps the system well-conditioned and diagonalizes the
generally dense linear system. The polynomial basis is then
defined by

Pρ
e (ξ) =

∏

x∈{ξ,η,ζ}

√
2ρx + 1

bxe − axe
Lρx(x′)

Lp(x) =
1

2p

p∑

l=0

(
p
l

)2

(x− 1)p−l(x+ 1)l

=
1

p
((2p− 1) x Lp−1(x)− (p− 1) Lp−2(x)) ,

(4)

where axe and bxe are the minimum and maximum coor-
dinate of the cell e in x-direction with shifted coordinate
x′ = 2

bxe−axe
x − bxe+axe

bxe−axe
. The one-dimensional portions of the

Legendre basis are depicted in Figure 2. Due to the orthonor-
mality of the basis, i.e.

∫
Ωe
Pρ
e P

ρ∗

e δξ = δρξρ∗ξ δρηρ∗ηδρζρ∗ζ ,
the solver matrix becomes the identity matrix, i.e. Ae = I,
where δij denotes the Kronecker-δ. Consequently, the linear
equation system (3) reduces to

ce =

∫

Ωe

PeΦdξ. (5)

Besides the fact that the requirement to compute and as-
semble Ae vanished, the diagonality implies that there
is no coupling between the coefficients. This is especially
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advantageous as only new coefficients have to be computed
when the approximation’s polynomial degree is increased.
As the approximation’s polynomial degree can simply be
augmented by computation of desired coefficients in ce we
consider the basis hierarchical. By definition of Equation (2),
the number of entries contained in vectors Pe and ce is
nc(p) = 1

6 (6 + 11p+ 6p2 + p3). Please note that instead of a
polynomial basis fulfilling 0 ≤ ρξ+ρη+ρζ ≤ p the complete
set of polynomials such that 0 ≤ max(ρξ, ρη, ρζ) ≤ p can be
used for discretization. However, this strategy turned out
to be less efficient as the number of resulting vector entries
then grows faster (nc(p) = (p+1)3) resulting in less granular
refinement steps.

In order to finally fit the basis polynomials to the
underlying signed distance function the integral equation
describing the coefficient vector (cf. Equation (5)) has to
be evaluated. Unfortunately, the only information on the
properties of the integrand we have is that it is a continuous
(but not necessarily smooth) function. Common approaches
for the numerical integration of a-priori unknown functions
include locally or globally adaptive, multi-dimensional nu-
merical integration rules, e.g. adaptive Gauss quadrature or
Monte-Carlo integration using importance sampling. How-
ever, the convergence of these methods for the application
to Equation (5) may suffer from two major issues. The
first issue is the smoothness of the integrand. While the
polynomials are smooth and therefore infinitely often dif-
ferentiable, Φ is only guaranteed to be continuous for two-
manifold geometries and usually contains discontinuities in
its derivatives. Possible sources for these ’kinks’ are sharp
features in the underlying geometry or ambiguities in the
signed distance function when the closest point on the
surface is not unique. An example for the second case is
the non-differentiability in the signed distance function at
the center of a sphere where all surface points have the
exact same distance to its center. This, finally, results in a
large number of expensive Φ evaluations during numerical
integration. In order to compute the integral sufficiently
well and in an acceptable amount of time, we heuristically
approximate it using multi-dimensional Gauss-Legendre
quadrature of order 4p, where p is the highest polynomial
degree contained in Pe. Using this heuristic, we experienced
no artifacts or major issues. Moreover, our results demon-
strate that we are able generate very accurate SDFs using
the described strategy.

3.4 Hierarchical h-Refinement

In contrast to increasing the polynomial order of the ap-
proximation spatial subdivision can be an effective alter-
native for refining the SDF. Especially in regions where
the underlying signed distance function is not smooth and
therefore has low regularity h-adaption is known to be more
effective (cf. [36]). A simple but very reasonable explanation
for this is that the very smooth polynomials are not suitable
to represent ’kinks’ in the function while more low-order
polynomials are better at capturing these features. In order
to realize the spatial subdivision we maintain an octree for
each of the base cells. After subdividing a cell into eight
subcells corresponding to the next octree level we again fit
polynomials to the exact signed distance function by means

of solving Equation (5) and reject the coarse approximation.
At this point we would like to stress the fact that the coarser
approximation was not unnecessary as it is essential for
error estimation and the decision whether to apply h- or
p-refinement in the further process.

3.5 Error Estimation
In order to steer the error-driven refinement process we
need to compute the discretization error εe over the domain
of each individual cell e. Theoretically, it is possible to
directly approximate the exact quadratic error Re(ce) using
numerical integration since we are able to evaluate Φ at any
point on the domain. This, however, results in a significant
computational effort for two reasons. Firstly, exact signed
distance evaluations are expensive because they require
to traverse the acceleration data structure and to compute
geometric distances to multiple triangles. Therefore, we
aim to keep the number of Φ evaluations to a minimum.
Secondly, a numerical computation of Re(ce) with sufficient
accuracy is hard as the integrand is general locally non-
smooth. Therefore, static numerical integration rules result
in poor accuracy while adaptive techniques require an unac-
ceptably large number of function evaluations. Please note
that we initially intended to approximate the exact error,
but discovered that neither accuracy nor performance were
acceptable.

As a robust alternative, we estimate the cell-wise error
using the currently available approximation. More specif-
ically, our estimation is based on the difference of the
current degree p approximation compared to a lower order
approximation of degree p− 1:

εe =

∫

Ωe

(ce ·Pe − c∗e ·P∗e)2
dξ

=

∫

Ωe


 ∑

i+j+k=p

c(i,j,k)
e P (i,j,k)

e




2

dξ

=
∑

i+j+k=p

∑

α+β+γ=p

c(i,j,k)
e c(α,β,γ)

e

∫

Ωe

P (i,j,k)
e P (α,β,γ)

e dξ

=
∑

i+j+k=p

|c(i,j,k)
e |2,

(6)

where c∗e = {cρ∗

e } and Pe = {Pρ∗

e } are coefficient and
polynomial vector of the embedded approximation of order
p − 1 of cell e with 0 ≤ ρ∗ξ + ρ∗η + ρ∗ζ ≤ p − 1. Due to
the hierarchical basis the p − 1 approximation is directly
embedded in the current approximation. Moreover, the
integral error measure can be evaluated analytically as all
coefficients can be factored out while the remaining integral
factors become either exactly one or zero as a consequence
of the orthonormal basis. This finally results in a simple sum
over the squared constant coefficients of the degree p basis
polynomials. Please note that using smaller p approxima-
tions for a-posteriori error estimation is common practice
in the finite element community and has proven to be an
effective approach (cf. [36]).

3.6 Construction Algorithm
In this section we will present our novel construction algo-
rithm based on the previously introduced error estimator
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Algorithm 1: hp-adaptive SDF construction.
Data: Φ, nξ, nη, nζ , τ,Ω, pmax , lmax

1 ε← 0
2 n← nξnηnζ
3 pending← priority queue{}
4 for e← 0 to n do
5 fit polynomial(e, Φ, 2) // Fit

polynomial
of order 2
to each
base
cell e.
Eq. (5)

6 εe ← estimate error(e) // Eq. (6)
7 ε← ε+ εe
8 pending.push({e, εe})
9 end

10 while not pending.empty() and ε > τ do
11 {e, εe} ← pending.pop()
12 {p, l} ← {degree(e), level(e)}
13 µe ← estimate improvement p(e)

// Eq. (8)
14 νe ← estimate improvement h(e)

// Eq. (9)
15 refinep ← p < pmax and ( l == lmax or µe > νe )
16 refineh ← l < lmax and not refinep
17 if refinep then
18 fit polynomial(e, Φ, p+ 1) // Eq. (5)
19 ε← ε− εe
20 εe ← estimate error(e) // Eq. (6)
21 ε← ε+ εe
22 pending.push({e, εe})
23 end
24 if refineh then
25 children← subdivide(e) // Octree

subdiv.
26 ε← ε− εe
27 for j ∈ children do
28 fit polynomial(j,p) // Eq. (5)
29 εj ← estimate error(j) // Eq. (6)
30 ε← ε+ εj
31 pending.push({j, εj})
32 end
33 end
34 end

and refinement strategies. In general, the approach can be
interpreted as an error-driven globally adaptive construc-
tion following a top-down strategy. The abstract procedure
is outlined in Algorithm 1 and we will guide the reader
through each step of the construction process.

The algorithm expects the exact signed distance function
Φ, an initial grid consisting of nξ × nη × nζ cells on a
rectangular domain Ω, the maximum refinement degree
pmax, the maximum octree depth lmax, and the target error
threshold τ as input. Further, the global error on the domain
will be tracked using the total error ε in the course of the
construction (cf. line 1).

The main idea of the construction algorithm is to main-
tain a priority queue which yields the index of the cell
contributing the largest individual error in each iteration

as a candidate for refinement. In line 1 to 3 we initialize the
total error variable ε and the priority queue and compute
the total number of base cells in the coarse initial grid. In the
initialization loop (lines 4 to 9) we fit a polynomial of degree
two to the underlying signed distance function on each
individual cell, estimate the contributed error, accumulate
the error in the total error variable and insert the cell index
based on its error contribution into the priority queue. The
core part of the algorithm is the refinement loop described
in lines 10 to 34. The loop refines the discretization until
the error falls below the target error threshold τ and as
long as refinable cells exist. After retrieving the element
contributing the highest individual error from the priority
queue, we have to decide whether to spatially subdivide the
cell or to increase its approximation’s polynomial degree.
If the cell has reached its maximum refinement level, only
the degree may be increased and vice versa, such that no
further criterion is required. Otherwise, we estimate the
improvement that either p- or h-adaption yields. This is
done by individually applying both refinement strategies
and estimating the remaining error on the h-adaption in-
duced subcells. Following this strategy, we developed the
following hp-decision criterion:

{
adapt p if µe > νe
adapt h otherwise,

(7)

µe =
1

nc(p+ 1)− nc(p)
(
εe − α εp+1

e

)
, (8)

νe =
1

7nc(p)

(
εe − 8 max

c∈Ce
εc

)
, (9)

where Ce is the set of child cells resulting from the octree
subdivision of e and α > 0 an error scaling parameter. The
error improvement per additional degree of freedom µe for
p-refinement is computed based on the scaled error of the
(p + 1)-polynomial defined on the coarse cell. Analogously,
a measure νe for the improvement corresponding to h-
refinement is computed based on the scaled maximum error
of the spatially subdivided order p polynomial measured
on each of the subdomains on the finer octree level. The
criterion decides in favor of a p-adaption if the former
improvement is greater than the latter. The reason for pre-
ferring the criterion over simply measuring which adaption
would result in the greater improvement is the following.
We aim to favor an h-adaption if the approximation on
any of the potential subcells gains more accuracy from h-
adaption compared to p-adaption. Moreover, as the used
error measure is degree based the algorithm tends to un-
derestimate the remaining error for p-refinement. Therefore,
we additionally bias the decision towards h-adaption using
α = 8 in order to counteract over-refinement in p-direction.
Otherwise, the algorithm tends to drastically increase the
polynomial degree in the first few steps as this improves
the approximation on average over the coarse cell very well
while there is potentially only a small improvement on some
of the octree subdomains. This would force at least the
same degree on the subcells resulting from subsequent h-
adaptions. Consequently, many unnecessary degrees of free-
dom arise leading to high memory consumption and com-
putational effort for both construction and interpolation. At
this point we would like to point out that the strategy to



7

scale the p-error estimate for balancing the refinement is also
common practice in the field of hp-adaptive finite element
analysis (cf. [36]). Finally, lines 18-22 and 25-32 describe how
we increase the polynomial degree and spatially subdivide
the current cell, respectively. Furthermore, the total error is
updated and the resulting cells’ indices with the respective
individual errors are inserted into the priority queue.

Please note that we accumulate the total error over the
whole construction process. To avoid numerical errors due
to the accumulation we store the error estimate of each
individual cell and recompute the total residual ε =

∑
e εe

every 1000 iterations.

3.7 Nearness Weighting
For some applications of SDFs a comparably higher accu-
racy near the object’s surface may be desired while regions
far away from the surface are less interesting. We propose
a weighting factor to compute a new transformed nearness
weighted error estimate

ε∗e = κeεe (10)

that will artificially decrease the hp-refinement in regions
far away from the object’s surface. In order to find a suitable
cell-wise coefficient κe a measure encoding the distance to
the object surface is required. Building on the fact that Φ
provides the point-wise shortest distance to the surface the
average distance represented by a cell e is (1/Ve)

∫
Ωe

Φdξ
where Ve denotes the cell volume. As we aim to avoid
expensive Φ evaluations we use the current approximation
fe instead. On this basis we model a polynomial weighting
factor

κe =

(
1− 1

Ved

∣∣∣∣
∫

Ωe

fedξ

∣∣∣∣
)θ

, (11)

where d and θ denote the construction domain’s diagonal
and weighting exponent, respectively. Additionally dividing
the distance measure by d normalizes it and ensures that
κe ∈ [0, 1] as long as the domain fully contains the object
surface, i.e. B ⊆ Ω. However, due to potentially strong
deviations of the approximation, κe may lie outside of the
interval. In this case we simply clamp the factor to [0, 1].
If an even stronger decreasing weighting is desired an
exponential factor can be used instead:

κe = exp
(
− θ

Ved

∣∣∣∣
∫

Ωe

fedξ

∣∣∣∣
)
. (12)

Please note that if nearness weighting is used, the criterion
described by Equations (7)-(9) must be modified accord-
ingly.

4 ENFORCING WEAK CONTINUITY

The previously presented algorithm describes a method
to fit multivariate polynomials to the underlying signed
distance function for each individual cell such that the
global error is minimized efficiently. However, we have no
guarantee that the resulting SDF is continuous over shared
faces (interfaces) of neighboring cells. This is usually not
a problem if the target error τ is chosen sufficiently small.
If, however, a rather coarse approximation is desired the
jumps in the discretization may pose a problem. Therefore,

we present an approach using quadratic programming to
enforce weak continuity over cell interfaces, in this section.

Generally, it is possible to project the discontinuous dis-
cretization onto a conforming discrete space. A method for
the construction of a conforming hp-adaptive discretization
was for example proposed by Di Stolfo et al. [40]. Our cell-
wise decoupled approximation could be projected onto such
a conforming discrete space, e.g. using an L2 projection.
But since the polynomials are already optimally fit to the
signed distance function with respect to the quadratic error
measure Re, we aim to stick to the initial discretization
as much as possible. Therefore, such a projection would
potentially result in an uncontrollable loss of accuracy in
order to directly enforce continuity. In contrast, we gain
control of how much of the initial accuracy is lost to improve
continuity by weak enforcement of continuous transitions.

4.1 Interface Error Measure

We first define an integral error measure in order to quantify
the discontinuity of the SDF between two neighboring cells.
Let i be an interior face of the adaptive grid with il and ir
denoting the indices of its incident cells. Then, we define the
integral error measure as

Ei(cil , cir ) =

∫

Γi

1

2
(fil − fir )

2
dA

=
1

2

(
cTil

cTir

) ∫

Γi

(
PilP

T
il

−PilPTir
−PirPTil PirP

T
ir

)
dA

︸ ︷︷ ︸
Mi

(
cil

cir

)
,

(13)

where Γi = Ωil ∩ Ωir and where dA denotes the integration
variable for surface integration. The matrix integral Mi

in Equation (13) can be exactly evaluated using Gaussian
quadrature of corresponding order. Moreover, due to the
chosen polynomial basis Mi can be evaluated analytically
when the cells adjacent to an interface have the same cell
size and therefore correspond to the same h-refinement
depths. For an elaboration on how the analytic solution to
the integral can be computed in this case we would like to
refer the reader to Appendix A. Further, we define the global
discontinuity error as sum of the cell-individual errors, i.e.
E =

∑
i∈I Ei where I denotes the set of all inner faces.

4.2 Regularization

It is obvious that an minimization of the error energy E
in the global coefficient vector c minimizes the ”jumps” in
the discretization. However, the solution of the optimiza-
tion problem is not unique as there is an infinite num-
ber of global coefficient vectors minimizing the function.
Therefore, we need to regularize the problem to guarantee
uniqueness and to moreover find a meaningful solution.

In order to regularize the problem, we want to keep
the optimized solution as close to the initial discretization
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as possible. Therefore, we define a per-cell regularization
energy

Ψe(ce, c
′
e) =

∫

Ωe

1

2
(fe − f ′e)

2
dξ

=
1

2
(ce − c′e)

T
∫

Ωe

PeP
T
e dξ

︸ ︷︷ ︸
I

(ce − c′e)

=
1

2
(ce − c′e)

T
(ce − c′e) ,

(14)

where f ′e, c
′
e and I denote the initial (discontinuous) ap-

proximation, the according initial coefficient vector and
the identity matrix, respectively. Once again, choosing an
orthonormal polynomial basis pays off as the integral part
of the regularization energy vanishes. The regularization
energy over the whole domain is then defined by Ψ =∑
e∈E Ψe = 1

2 (c − c′) · (c − c′) where E denotes the set
of cells contained in the grid.

4.3 Optimization

Using the previously defined interface error measure and
regularization energy we formulate a convex minimization
problem in the coefficient vector c in order to compute an
SDF with improved continuity

min
c

(E(c) + βΨ(c, c′)) (15)

⇔
(M + βI) c = βc′, (16)

where β > 0 denotes a regularization parameter and c′

the coefficient vector of the discontinuous approximation.
Furthermore, M = ∂2E/∂c2 is the second derivative of the
interface error term and can be assembled from the block
matrices Mi. An interpretation of β is simple as we get
a more or less arbitrary (but continuous) SDF for β → 0
whereas we converge towards the initial discretization in-
duced by the initial coefficient vector c′ for β → ∞. As the
objective function is quadratic in the coefficient vector c and
convex, the (unique) solution to the minimization problem
is equivalent to the solution of the linear equation system
given by Equation (16). The problem can finally be solved
using an arbitrary (sparse) linear solver. As the number
of coefficients, i.e. degrees of freedom, is very large for
detailed SDFs the memory requirements for direct solvers
using matrix factorization can easily exceed the available
memory capacity. Therefore, we used a conjugate gradient
descent solver in combination with an incomplete Cholesky
factorization for preconditioning in our results.

5 RESULTS AND DISCUSSION

All computations in this section were carried out on two
Intel Xeon E5-2697 processors with 2.7GHz, 30MB Cache,
12 cores per processor and 64GB RAM. We parallelized the
SDF construction with Intel TBB and used 48 threads in all
computations. All deformable and rigid body simulations
with contacts are based on the approaches proposed by
Bender et al. [41] and Deul et al. [42] implemented in the
open-source library PositionBasedDynamics [43].

In summary our results cover four types of experi-
ments. Firstly, we analyzed the convergence of the pro-
posed method with respect to the number of coefficients.
Secondly, we generated SDFs for a variety of meshes and
summarized the key data in Table 2. Thirdly, we simulated
various scenarios including rigid and deformable objects
demonstrating the practical applicability of our approach
for physically-based simulation. Finally, we measured the
average time required to compute distance values with our
SDFs. In the following paragraphs each of these experiments
will be described in detail.
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Fig. 3: Comparison of the convergence for a torus model
of our hp-adaptive method with a pure octree-subdivision
using linearly and quadratically fitted polynomials. #DOF
encodes the number of polynomial coefficients required to
enforce the corresponding residual.
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Fig. 4: Convergence study of SDF construction for a skeleton
hand.

Convergence and Refinement Analysis. Figures 3 and 4
illustrate the convergence graph during SDF construction
for a torus and a skeleton hand model. The number of
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Fig. 5: Torus degree plot. Visualization of octree cells with
corresponding polynomial degrees according to the legend
depicted in the figure.

Fig. 6: Skeleton hand degree plot. Visualization of octree
cells with corresponding polynomial degrees according to
the legend depicted in the figure.

required coefficients (#DOF ) is shown on the abscissa
while the estimated error (residual) from Equation (6) is
displayed on the ordinate in logarithmic scale. We compared
our hp-adaptive approach to pure octree-subdivision with
linear (h1-adaptive) and quadratic (h2-adaptive) polynomi-
als. Both examples show the superiority of our approach as
we require a fraction of the number of coefficients compared
to the other methods. The curves’ ’kinks’, most visible in
the curve of the h1-adaption, appear when all cells of a
certain octree level are subdivided such that the decrease
in the residual becomes suddenly smaller. We would like

Fig. 7: Skeleton hand degree plot of exponentially nearness
weighted SDF with θ = 30.

to stress the fact that we constructed the polynomials in
all cases using the fitting approach (cf. Equation (2)) which
yields the optimal solution in terms of the measured error.
Using the traditional approach of sampling distance values
within each cell would yield even worse results for the h1-
and h2-adaptions. For further investigation, we visualized
the leaf cells and their polynomial degree for an example
slice as depicted in Figures 5 and 6. It can be noticed that
h-refinement with low-order polynomials was primarily
used in regions where Φ is non-differentiable while smooth
regions are mainly represented by large cells with high
polynomial degree. This exactly correlates with our assump-
tions about the refinement behavior and demonstrates the
meaningfulness and applicability of our hp-decision crite-
rion (cf. Equation 7).

In order to demonstrate the effect of nearness weighting
we additionally constructed an SDF for the skeleton hand
with exponential nearness weighting with θ = 30. The
according degree plot is illustrated in Figure 7. The result
clearly shows how regions close to the object surface are
strongly refined while regions far away correspond to a
coarse discretization in comparison to the unweighted result
in Figure 6. Moreover, the reduced field required approx-
imately 72% less memory compared to the unweighted
result.

Construction Statistics. Table 2 summarizes statistics on the
input triangle meshes and the according SDF construction
results. All input meshes were scaled to the unit box [−1, 1]3

and the construction domain was enlarged by 10% while we
globally chose pmax = 30 and lmax = 10. Additionally, we
used polynomial nearness weighting with θ = 4 for all ex-
amples. The mesh column shows the name of the mesh and
its number of vertices and faces. The SDF column further
contains the resolution of the initial construction grid, the
time required for construction, the number of the resulting
octree leaf cells, the distributions of degree and octree depth,
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Fig. 8: Complex rigid and deformable bodies slide down an
inclined plane with obstacles.

Fig. 9: 800 rigid bodies fall onto a set of 64 poles having
several thousand contacts per simulation step.

the target error and the final memory consumption as well
as a visualization of an exemplary slice of the SDF. We
store the SDF in a data structure which essentially consists
of four arrays. The first two arrays contain the polynomial
coefficients in double-precision and a prefix-sum stating at
which index in the coefficient array the coefficients of each
cell start and how many coefficients belong to the respective
cell. The remaining two arrays represent a child node index
list containing the indices of the corresponding octree nodes
stored in the last array.

Collision Detection. We used our novel SDF representation
in several physics-based simulations as collision detector
in order to demonstrate the practical relevance of our ap-
proach. To realize the collision detector we additionally
point-sampled the involved objects’ surfaces and organized
the samples in a bounding-sphere hierarchy (BSH). The
BSH was constructed and traversed similar to the approach
described by Sanchez et al. [9]. As the SDF construction
process can be interpreted as preprocessing step all gener-
ated SDFs were serialized. Finally, the relevant SDFs were
loaded prior to each simulation scenario and tested against
the point samples of the other objects. We conducted two
experiments, depicted in Figures 8 and 9, where several
dynamic bodies collide with a static grid of poles. Each

Fig. 10: Dynamic simulation of a marble run with subse-
quent armadillo bowling.

body was sampled with approximately 10k sample points
in order to perform the distance queries. In order to reduce
the number of distance queries we implemented a bound-
ing volume hierarchy (BVH) with bounding spheres. We
further accelerated the collision tests by parallelization of
the collision test for each object pair. In the first scenario
(Figure 8) deformable and rigid bodies slide on an inclined
plane. While SDFs for the rigid dragons and bunnies was
used, collisions of the deformable armadillos were only
detected using the distance fields of the other bodies and
obstacles. In the second experiment 800 rigid armadillo,
bunny and dragon models were dropped onto a set of 64
poles. After simulating a time interval of 25 seconds the
average and maximum number of contacts per step were
8007 and 15050, respectively. More than 11600 contacts per
time step were observed in the finally resting state. The
collision detection including signed distance field queries
and BSH traversal required a computation time of 158 ms
on average per time step. Here, we would like to stress the
fact that an accurate detection based on geometric vertex-
triangle and edge-edge tests would not have been feasible in
a comparable computation time on the CPU as the scenario
manages models with a total number of more than 132M
triangles. In a further scenario, we simulated two finely
structured bowls as illustrated in Figure 11 and 1 (left). In
the first bowl a marble rolls on a helical groove whereas 1000
comparably small marbles were dropped into the second
bowl. In both scenarios the contact information between the
marbles and the bowls is very accurate while the highly-
detailed surfaces are flawlessly represented by the SDF.
Figure 10 shows a marble rolling on a marble run. Please
note that the geometry is very thin and small compared to
its bounding box. Our method was still able to construct
a very accurate SDF that required only a small amount of
memory (cf. Table 2). Finally, we simulated a sheet of cloth
covering the Stanford dragon as depicted in Figure 1 (right).
The features of the dragon surface are still clearly visible as
they are silhouetted against the sheet.

Continuity Optimization. We performed the post-
processing optimization step for enforcing weak continu-
ity on an SDF of the Stanford dragon (τ = 5 × 10−7,
exponential nearness weighting θ = 20). As depicted in
Figure 12 (left) we first generated the SDF with a moderate
target error. While the discretization captures the macro-
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Fig. 11: Dynamic simulation of a marble following a highly-
detailed, helix shaped groove in a bowl.

scopic shape of the underlying geometry well, especially
regions with high-frequent features may suffer from the
generally discontinuous piecewise approximation. In order
to improve the continuity of the field we optimized the
SDF as explained in Section 4 with regularization parameter
β = 3. The SDF consisted of 1.3M coefficients and the
sparse solver matrix contained 178M non-zero entries. The
construction of the matrix took 47s and the incomplete
Cholesky decomposition took 58s. Both procedures were
not parallelized. The actual solve of the equation system
with a conjugate gradient solver took 44s with 88 iterations
using a parallelized implementation of the matrix vector
product. The result illustrated in Fig. 12 (right) clearly shows
that the approximation continuity is greatly improved while
the general shape and features are maintained.

Improving the continuity of the field can also be ben-
eficial when the SDF is applied in collision handling. The
marble run scenario described in the previous paragraph
was simulated using an unoptimized but very accurately
discretized SDF (cf. entry in Table 2). We resimulated the
scenario using a less accurate but optimized SDF (τ = 10−8,
#cells = 22.3k, 4.36MB, β = 8, exponential nearness weight-
ing with θ = 20). Using this more compact but post-
processed representation we were able to reproduce the
scenario with the marble rolling smoothly until it reaches
the end of the track and finally resulting in a dynamic
simulation of comparable quality.

Distance Query Performance. We measured the time to
query the distance using our discrete SDF. Therefore, we
randomly sampled the field with several thousand points
and averaged the resulting measured values. For the ar-
madillo and structured bowl this resulted in approximately
4.76 × 10−4 ms and 7.16 × 10−4 ms, respectively. If the
SDF-gradient was additionally requested, the queries took
7.34 × 10−4 ms and 7.84 × 10−4 ms on average. In order to
analyze the individual effect of h- or p-refinement on the
query performance we measured the required query time
for an SDF initially consisting of a single cell with linear
polynomials that was zero to eight times h-refined or up to
nine times p-refined. The results are depicted in Tables 1a
and 1b. Thanks to the recursive form of the Legendre poly-
nomials (cf. Equation (4)) their evaluation can be accelerated
by reusing redundant terms from order 0 to order p during

h-level Query time [ns]

0 169
1 202
2 226
3 245
4 276
5 322
6 380
7 611
8 1157

(a)

p-level Query time [ns]

1 169
2 194
3 238
4 276
5 336
6 397
7 483
8 577
9 697

(b)

TABLE 1: Performance measurements. A single cell was uni-
formly refined using either p- or h-adaption. The resulting
discrete SDF was then queried using random samples and
the average time for a single query was computed.

the distance evaluation as well as the gradient computation.

6 CONCLUSION

In this paper, a novel method to hierarchically construct
higher-order SDFs was presented. The approach efficiently
fits shifted, orthonormalized Legendre polynomials to the
exact signed distance function in a hierarchical manner.
Spatial adaptivity was implemented using octree subdi-
vision. We developed a new hp-decision criterion using
degree-based error estimation in order to steer the adaption
in the refinement process. By comparing our method to
traditional purely spatially adaptive approaches we demon-
strated that our criterion-controlled refinement algorithm
greatly improves convergence. We further introduced a
nearness weighting approach modifying the estimated error
in order to focus the refinement on regions close to the
surface of the underlying object. Moreover, an optimization-
based post-processing step was proposed that weakly en-
forces continuity over element interfaces. We demonstrated
that our method is able to produce very accurate SDFs for
complex geometries while consuming only a small amount
of memory. Moreover, the SDFs were shown to be very
well-suited for the detection of contacts and collisions in
physically-based simulations as they implicitly contain in-
formation about the penetration depth and contact normal.

The proposed technique also has limitations. In its cur-
rent version the method only features isotoropic refinement.
However, we think that anisotropic adaption strategies
could significantly reduce the memory requirements while
still maintaining an accurate approximation. This could
potentially be realized by using a k-d-tree for spatial refine-
ment and axis-dependent degree adaption for p-refinement.
A fundamental problem is that for two-dimensional objects
embedded in three dimensions, such as cloth or shells,
inside and outside cannot be distinguished. For that reason
our method is not useful for handling cloth-cloth contacts
or self-intersections of cloth. Collisions between touching
surfaces – a scenario which occurs in cutting or fracture sim-
ulations – cannot easily be handled by simply discretizing
the signed distance. For that reason, we plan to investigate
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Fig. 12: Discretization of the Stanford dragon (approx. 5.4MB) with target error τ = 5 × 10−7 and exponential nearness
weighting (θ = 20). Left: SDF with subtle artifacts due to discontinuities on element interfaces. Right: SDF after continuity
optimization with regularization parameter β = 3.

if the proposed method can be extended to a non-manifold
representation similar to the work of Mitchell et al. [4].

APPENDIX A
ANALYTIC EVALUATION OF THE INTERFACE ERROR
MATRIX

The matrix integral Mi introduced in Section 4.1 can be
evaluated analytically when the two neighboring cells corre-
spond to the same h-refinement depth. Each block contained
in Mi consists of the outer product of two polynomial basis
vectors.

Let P = {Pi} and P∗ = {P ∗j } be the normalized, shifted
Legendre polynomial basis vectors of two neighboring cells,
respectively. Since the polynomial basis vectors were con-
structed using a tensor-product, each component can be
multiplicatively decomposed into factors only dependent on
a single coordinate, i.e. Pi(ξ, η, ζ) = Pi,ξ(ξ)Pi,η(η)Pi,ζ(ζ).
Without loss of generality, let us assume that the normal
of the common face points in ξ-direction. Let us further
assume that both cells have the same size and are aligned
with each other in η- and ζ-direction. Each block entry in
Mi is constructed using an integral over the outer product
of the basis vectors (cf. Equation (13)):

∫

Γ
PP∗T dA =

∫ bη

aη

∫ bζ

aζ
PP∗T dηdζ.

Given the previously stated assumptions, we can analyti-
cally evaluate the entry in the ith row and jth column of the

matrix block as follows:
[∫

Γ
PP∗T dA

]

ij

=

∫ bη

aη

∫ bζ

aζ
Pi,ξPi,ηPi,ζP

∗
j,ξP

∗
j,ηP

∗
j,ζdηdζ

= Pi,ξP
∗
j,ξ

∫ bη

aη
Pi,ηP

∗
j,ηdη

︸ ︷︷ ︸
=δij

∫ bζ

aζ
Pi,ζP

∗
j,ζdζ

︸ ︷︷ ︸
=δij

= Pi,ξP
∗
j,ξδij .
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Mesh Signed Distance Field

Name #Vert. #Faces Base
Grid

Constr.
Time #Cells Degree Depth ε, τ Memory Field

Armadillo 173k 346k 63 270s 71k 10−6 10.6MB

Bunny 34.8k 69.6k 63 301s 55k 10−6 8.4MB

Dragon 40k 80k 103 1245s 299k 10−7 46.9MB

Hand 66.2k 132.5k 103 833s 159k 10−7 25MB

Helix
Bowl 164.9k 329.8k 43 423s 159k 5× 10−9 34.9MB

Marble
Run 27k 53k 43 312s 87k 5× 10−9 18.4MB

Structured
Bowl 2.05M 4.1M 43 4121s 1.25M 5× 10−9 250 MB

TABLE 2: Construction statistics. The mesh columns show object names and corresponding number of vertices and faces.
The SDF columns contain initial grid resolution, required time for construction, number of octree leaf cells, normalized
histograms capturing the volume-fraction of the domain occupied by cells of the corresponding degree or octree depth, the
(enforced) target error and the final memory consumption as well as a slice image of the SDF.
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