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Fig. 1. Left: Plate with attached objects consisting of 159k tetrahedra is cut by long, bumpy cut surface. Right: A groove is carved into the Stanford bunny
(18.5k tetrahedra) rotating around a fixed axis. Subsequently, the groove itself is peeled off by a second cut.

In this paper we present a robust remeshing-free cutting algorithm on the
basis of the eXtended Finite ElementMethod (XFEM) and fully implicit time
integration. One of the most crucial points of the XFEM is that integrals
over discontinuous polynomials have to be computed on subdomains of
the polyhedral elements. Most existing approaches construct a cut-aligned
auxiliary mesh for integration. In contrast, we propose a cutting algorithm
that includes the construction of specialized quadrature rules for each dis-
sected element without the requirement to explicitly represent the arising
subdomains. Moreover, we solve the problem of ill-conditioned or even
numerically singular solver matrices during time integration using a novel
algorithm that constrains non-contributing degrees of freedom (DOFs) and
introduce a preconditioner that efficiently reuses the constructed quadrature
weights.

Our method is particularly suitable for fine structural cutting as it de-
couples the added number of DOFs from the cut’s geometry and correctly
preserves geometry and physical properties by accurate integration. Due
to the implicit time integration these fine features can still be simulated
robustly using large time steps. As opposed to this, the vast majority of
existing approaches either use remeshing or element duplication. Remesh-
ing based methods are able to correctly preserve physical quantities but
strongly couple cut geometry and mesh resolution leading to an unnecessary
large number of additional DOFs. Element duplication based approaches
keep the number of additional DOFs small but fail at correct conservation
of mass and stiffness properties. We verify consistency and robustness of
our approach on simple and reproducible academic examples while stability
and applicability are demonstrated in large scenarios with complex and fine
structural cutting.
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1 INTRODUCTION
The animation of cutting of deformable bodies has been an active
research topic for several years and is an essential tool in applica-
tions such as virtual surgery, special effects in feature films and
computer games. Particularly challenging is the robust treatment of
complex cut surfaces while maintaining physical plausibility at all
times. Moreover, it is crucial to keep the computational overhead
minimal even in highly complex cutting scenarios.
Most mesh-based approaches for the animation of cutting rely

on element deletion, element duplication or adaptive remeshing in
order to capture the cut’s geometry within the simulation mesh.
On the one hand, pure deletion or duplication of elements leads
to a very robust simulation and is easy to implement but does not
correctly represent the underlying cut geometry and introduces
physical inconsistencies due to unintended loss or addition of mass
and stiffness. On the other hand, proper remeshing of the affected
regions correctly models the cut geometry and maintains a physi-
cally correct behavior. However, this class of approaches typically
adds a large number of additional degrees of freedom (DOFs), in
order to sufficiently embed the cut’s geometry into the simulation
mesh. This in turn leads to a substantial rise of computational cost
especially when equation systems have to be solved for implicit time
integration. Moreover, all persistent physical quantities, e.g. plastic
deformation, temperature etc., stored on the elements have to be
transferred to the new mesh. Besides the extra computational effort
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associated with the transfer process, this usually leads to unwanted
diffusion effects, as discussed by Wicke et al. [2010].
In order to overcome these issues, we present a novel method

for the physical simulation of cutting based on the eXtended Finite
Element Method (XFEM) with fully implicit time integration. With-
out the requirement to apply any topological changes to the sim-
ulation mesh, we capture the cut geometry with subcell accuracy
using an appropriate enrichment function. This means that even
for highly complex cuts, no additional geometry has to be created
using our algorithm, and thus, geometric processing overhead is
kept at a minimum. Following this strategy the overall algorithm
is greatly simplified, as we only need to consider the enrichments
during the assembly of the linear equation system for implicit time
integration.
One of the key problems associated with the XFEM is the eval-

uation of integrals over discontinuous integrands on polyhedral
domains. These are required to compute discretized force vectors
as well as mass and tangent stiffness matrices. In order to solve the
problem we propose a remeshing-free method to construct special-
ized quadrature rules for a particular cut surface. Using these rules
we are able to accurately compute the desired integrals. Due to the
accurate integration, we are able to completely maintain physical
properties, i.e. mass and stiffness properties, during cut insertion.
Moreover, we keep the simulation numerically robust by intro-

ducing an algorithm that constrains nearly non-contributing DOFs
and by introducing a method to precondition the solver matrix by
direct use of the constructed quadrature weights. We demonstrate
our method’s consistency and advantages over existing approaches
on the basis of easily reproducible, academic examples. Additionally,
we thoroughly test robustness and applicability of our approach in
highly complex scenarios with fine-structural cuts (see Figure 1).

2 RELATED WORK
The physically-based simulation of virtual cutting has been inves-
tigated for several years. Moreover, most methods are based on
simulation methods for deformable solids which have been an ac-
tive research topic for nearly three decades. For a general overview
over simulation methods for deformable solids we would like to
refer the reader to the survey of Nealen et al. [2006]. A state-of-the-
art report for physically based cutting of deformable objects was
presented by Wu et al. [2015].
In this section methods related to the presented approach will

be reviewed. As our method is targeted towards applications in the
field of computer graphics but based on XFEM originating from
mechanical engineering, we organized the discussion respectively.

Cutting and Fracture in Computer Graphics. Methods for physi-
cally based simulation of cutting and fracture are strongly related as
both applications require modeling of discontinuities within a solid.
In this paragraph, we will therefore review recent developments in
both areas.

In the pioneering work of O’Brien and Hodgins [1999] on brittle
fracture, discontinuities are modeled by explicitly embedding the
cut surface into the underlying tetrahedral discretization by static
local remeshing rules. The concept was then adopted by O’Brien et
al. [2002] for the animation of ductile fracture. A similar tetrahedral

mesh based concept was developed by Bielser et al. [1999]. They
embed the cut surface by static local remeshing using tetrahedral
subdivision followed by topological disconnection of the subtetra-
hedra due to lookup-table entries. The concept was first improved
by Bielser and Gross [2000] by introducing case-specific subdivi-
sion rules to reduce the number of added tetrahedra and was later
generalized using a state-machine [Bielser et al. 2004]. Kaufmann
et al. [2008] split cut elements, and continue the simulation directly
on the resulting polyhedra. Moreover, they correctly account for
volume integrals over polynomials on the polyhedra by applying the
divergence-theorem and integrating over element faces and edges.

A particular disadvantage of all previously mentioned approaches
is that the mesh quality can easily deteriorate due to the static
remeshing. Therefore, Steinemann et al. [2006] decouple visual rep-
resentation and simulation mesh and split the former only on exist-
ing faces. Following the same splitting strategy, Yeung et al. [2016]
presented a static finite-element method for linear elastic materials
featuring fast updates through matrix augmentation. While this
strategy guarantees the conservation of mesh quality the approxi-
mation can be arbitrarily inaccurate especially for highly-detailed
cut surfaces. In a more elaborate approach Wicke et al. [2010] main-
tain the mesh quality using a dynamic local remeshing algorithm
involving topological splits and flips followed by vertex smoothing.
A similar two-dimensional approach for tearing of thin sheets was
proposed by Pfaff et al. [2014].

As opposed to embedding the cut surface into a tetrahedral mesh,
Dick et al. [2010] discretize the solid using a regular hexahedral grid
and approximately embed the cut by simple separation of elements
subsequent to octree refinement. The method was later extended
by Wu et al. [2011] using a composite finite-element discretization.
An approach based on polyhedral finite elements was proposed
by Martin et al. [2008]. Starting from a tetrahedral or hexahedral
mesh, they locally split cut elements into polyhedra and construct
harmonic basis functions on each subelement. In contrast to local
adaptions, Busaryev et al. [2013] proposed an approach for fracture
simulation of multi-layered thin plates using global constrained
delaunay remeshing.

In order to maintain mesh quality and decouple the mesh resolu-
tion from the cut geometry, Molino et al. [2004] developed a Virtual
Node Algorithm (VNA). The method is based on cell duplication
resulting in a possibly non-manifold mesh topology that correctly
accounts for the discontinuities and was adopted in several works,
e.g. [Bao et al. 2007; Koschier et al. 2014; Mitchell et al. 2015]. How-
ever, the method is not able to handle an arbitrary number of cuts
per tetrahedron resulting in a maximally-split configuration. This
limitation was later addressed by Sifakis et al. [2007] by embedding
a polygonal auxiliary mesh and by Wang et al. [2014] using an
adaptive approach.

Despite the fact that most attention was paid to Lagrangian mesh
based discretizations, Pauly et al. [2005] developed a meshless tech-
nique for fracturing solids using a transparency criterion while
Hegemann et al. [2013] model discontinuities using level-sets in
reference space using a hexahedral Eulerian background grid.

In contrast to the discussed approaches we present a Lagrangian
mesh-based but remeshing-free simulation method. Using the en-
richment concept of the XFEM, we are able to keep the number of
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additional DOFs low. Moreover, we are still able to accurately repre-
sent the shape of the cut within the discretization while correctly
maintaining physical properties as opposed to methods based on
cell duplication.

eXtended Finite Elements and VNAs in Engineering. In this para-
graph we will give a brief overview over related methods developed
in the field of mechanical engineering. For a detailed discussion of
XFEMs for the simulation of solids we would like to refer the reader
to the survey of Fries et al. [2010].

The concept of enriching finite element discretizations by discon-
tinuous functions was first proposed by Belytschko and Black [1999]
and later referred to as XFEM. They apply the method to model
elastic crack growth in two-dimensional solids using enrichment
functions based on asymptotic displacement fields near the crack tip.
The method was later extended by Moës et al. [1999] for the simula-
tion of long cracks using the piecewise-constant but discontinuous
Heaviside enrichment, by Daux et al. [2000] for arbitrarily branching
and intersecting cracks. A method based on harmonic enrichments
was proposed by Mousavi et al. [2011a] in order to treat multiple,
intersecting and branched cracks in a unified manner. They later
extended the method for higher-order approximations [Mousavi
et al. 2011b].

A, at first glance, highly similar method to XFEM approaches for
discontinuities was proposed by Hansbo and Hansbo [2004]. They
construct independent approximation bases for cut elements on each
side of the cut. However, in a report of Areias and Belytschko [2006]
it was proven that the kinematic decomposition in their method is in
fact equivalent to the earlier proposed XFEM [Belytschko and Black
1999; Moës et al. 1999]. Moreover, we discovered a very interesting
connection to the VNA, as cell and node duplication is equivalent
to the basis modification proposed by Hansbo and Hansbo [2004].
For that reason, the general kinematic decomposition of the VNA
and the XFEM is identical. However, major differences are that
traditional VNA based approaches do not correctly account for
integrals over the discontinuous functions and that the XFEM’s
canonical basis can be trivially extended by further enrichments for
different phenomena.

A particular challenge in implementing XFEMs is the evaluation
of integrals over discontinuous functions arising due to the enrich-
ment strategy, since no standard quadrature rules are applicable
anymore. The naïve approach to circumvent this issue is to gen-
erate a discontinuity-aligned submesh on the dissected elements
and perform Gauss-Legendre quadrature (cf. [Moës et al. 1999]).
However, as one of the main aims of the XFEM is to remove the ne-
cessity of remeshing, this strategy is often not desired. In an XFEM-
based method for brittle fracture Richardson et al. [2011] correctly
account for discontinuous integrands. They generate an explicit
discontinuity-aligned boundary mesh and compute surface integrals
using the divergence-theorem. VNA-based approaches following
the same strategy were also developed in the engineering commu-
nity [Bedrossian et al. 2010; Hellrung et al. 2012; Schroeder et al.
2014; Zhu et al. 2012]. Over the years several approaches based on
equivalent polynomials [Ventura 2006], adaptive quadrature [Müller
et al. 2012] or variable quadrature weights [Holdych et al. 2008]
were developed. As adaptive rules are computationally expensive

and as the remaining methods expect element-wise straight cuts,
an approach based on hierarchical moment-fitting using predefined
quadrature nodes was proposed by Müller et al. [2013] for discon-
tinuities represented by higher-order level-sets. The method was
later extended by a modification of the placement of the quadrature
nodes [Müller et al. 2017]. The method is highly suitable for smooth
cut surfaces but suffers from large errors for non-smooth, kinked
cut surfaces.

In our work, we represent the discontinuity, i.e. the cut surface, by
an explicit triangle mesh and present an approach for the evaluation
of integrals over discontinuous polynomials. Similar to the level-set
approaches Müller et al. [2017; 2013] we hierarchically construct
specialized quadrature rules for accurate integration. However, our
method builds on an explicit representation of the discontinuity
where we place quadrature nodes such that curved and even kinked
cut surfaces are accurately captured. Moreover, we allow the quad-
rature nodes to lie outside the actual finite element in order to avoid
geometric operations and to reduce complexity.

eXtended Finite Elements in Graphics. The XFEMwas also adopted
by some works in the field of computer graphics. Jeřábková et
al. [2009] developed anXFEMbased simulator for interactive surgery
using shifted sign enrichment. Moreover, they presented a novel
method for mass-lumping in order to maintain a stable simulation
based on explicit time integration. Kaufmann et al. [2009] intro-
duced a simulation method for cutting of two-dimensional shells
based on a discontinuous Galerkin finite element discretization and
a semi-implicit Euler method for time integration. In order to model
progressive cuts, they construct harmonic enrichments by solving
the Laplace equation on textures using the GPU. The solution of the
Laplace equation then mimics the behavior of asymptotic crack tip
functions (cf. [Belytschko and Black 1999]). However, for each cut at
least one Laplace equation has to be discretized, solved and stored
in a texture resulting in a considerable computational and memory
effort. Also, a numerical evaluation of the required integrals over
the enriched region can be computationally expensive due to the
yielded discontinuous, non-polynomial enrichment function. While
Kaufmann et al. demonstrate that this strategy is still effective for
two-dimensional structures, the computational effort and memory
requirements become dominant for three-dimensional simulations.
Moreover, the texture resolution poses a strict limitation on how
fine-structural the geometry of a cut is allowed to be.

In this work we will present a novel method using fully implicit
time integration. We overcome stability issues due to ill-conditioned
matrices using our approach by introducing an effective precondi-
tioner that directely reuses previously computed quadrature weights.
Finally, we will demonstrate that our method produces stable results
even in the case of large time-steps.

3 GOVERNING EQUATIONS
Let u : Ω × [0,∞) → R3 be the displacement function that maps a
material point ξ in the reference domain Ω ⊂ R3 at time t ∈ [0,∞)

to its displacement vector u pointing to the deformed location in
world space. Then the deformation gradient is defined as F = I+∇ξ u,
where I is the identity matrix. The mixed initial/boundary value
problem describing the deformation behavior of a cut solid is defined
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Fig. 2. Illustration of cut deformable continuum in reference (left) and world
space (right).

as
ρ0 Üu = ∇ξ · P + b

u(ξ , 0) = u0(ξ )

u(ξ , t) = u∗(ξ , t) on ∂Ωu

t(ξ , t) = t∗(ξ , t) on ∂Ωt ∪ Γ±

(1)

where P, ρ0, b, t, ∂Ωu , ∂Ωt denote first Piola-Kirchhoff stress tensor,
reference density, reference body force, traction and boundary with
displacement as well as traction conditions, respectively. Further,
Γ, Γ− and Γ+ represent the cut surface in reference space and the
arising cut sides in world space while u∗ and t∗ denote displacement
and traction boundary conditions (see Figure 2). As problems in
computer graphics applications are usually stated without traction
forces, we presume a traction free state with t∗ = 0 in the following.
However, note that our formulation can also be extended to handle
the case of t∗ , 0. Consequently, we develop the weak formulation
of the problem which yields∫

Ω
ρ0 Üu ·wdξ +

∫
Ω
P : ∇ξwdξ =

∫
Ω
b ·wdξ , (2)

where w denotes a test function. According to the Galerkin meth-
odology of using the same function space for test functions as well
as trial functions, the test function can be physically interpreted as
virtual displacement w = δu strongly fulfilling all essential bound-
ary conditions. Note that the resulting formulation is often referred
to as Principle of Virtual Work. In order to relate displacement and
stress we use a hyperelastic material model where an energy density
function Ψ is assumed such that P = ∇FΨ. More specifically we
used the St. Venant-Kirchhoff material model to compute all of our
results. Please note that the formulation is not restricted to this
specific material model and could easily be replaced by different
hyperelastic models as discussed by Sin et al. [2013], or Sifakis and
Barbic [2012].

4 DISCRETIZATION
In this section we will first briefly recapitulate the standard finite
element discretization using linear Lagrange polynomials. Subse-
quently, we will discuss how we represent the cut surface’s geom-
etry and finally introduce the concept of basis enrichment. This

enrichment will allow us to capture the discontinuities in the PDE’s
solution implied by the physical cuts.

4.1 Standard Finite Element Discretization
Consider a three-dimensional domain Ω ⊂ R3 discretized using
nel elements. Let further I be the set of nv nodes shared by the
elements. Then a field function u is approximated by uh using the
given basis as

u(ξ ) ≈ uh (ξ ) =
∑
i ∈I

Ni (ξ )ui , with ξ ∈ Ω, (3)

where Ni (ξ ) : R3 → R is the shape function and ui the field
coefficient of the ith node. As we presume that Lagrange polynomial
shape functions are used, they provide both theKronecker-δ Property
Ni (ξ j ) = δi j and the Partition of Unity Property

∑
i ∈I Ni (ξ ) = 1

∀ ξ ∈ Ω, where ξ j represents thematerial coordinate of the jth node.
For these reasons the approximation field is interpolating; hence,
the field coefficients ui can be interpreted as nodal displacements by
means of a displacement field. Semi-discretizing Equation (2) using
Equation (3) then yields

M Ǖu + f int = fext, ū =
(
uT1 . . . u

T
nv

)T
(4)

nel∑
e=1

me Ǖu +
nel∑
e=1

f inte =

nel∑
e=1

fexte (5)

me =

∫
∆e

ρ0NTe Nedξ (6)

fexte =

∫
∆e

NTe bdξ , f inte (ū) =
∫
∆e

ge (ū, ξ )dξ (7)

Ne =
[
N0I3 N1I3 N2I3 N2I3

]
, (8)

whereM, me , Ne , ge , f
int
e , fexte denote the mass and element mass

matrix, element shape function vector, specific elastic element force
as well as the internal and external element force vector, respectively.
Furthermore, ∆e ⊂ Ω represents the subdomain of the eth finite
element with Ω ≈ Ω

h
=
⋃
e ∆e and ∆i ∩ ∆j = ∅, ∀ i , j, where

Ω and ∆e are the closures of Ω and ∆e , respectively. To finally
discretize Equation (4) in time we employ a fully implicit Backward
Euler method and add an additional Rayleigh damping term as
suggested by Sin et al. [2013].

4.2 Cut Representation
In order to construct the enrichments, the location and geometry of
each cut has to be defined. Especially in engineering, implicit cut
representations, e.g. level-sets defined on grids or on the simula-
tion mesh, are very popular. However, implicit representations are
not well-suited to represent sharp features and are very memory
consuming. Moreover, it is more than non-trivial to detect if, where
and how often an implicit surface has dissected a tetrahedron. For
the stated reasons we represent all cut surfaces as explicit triangle
meshes. We denote the surface of the jth cut Γj while we further
define its corresponding signed distance function

Φj (ξ ) = s(ξ ) inf
ξ ∗∈Γj

∥ξ − ξ ∗∥, (9)
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where s : R3 → {−1, 1} determines the sign of the distance. Using
this information we can now augment the approximation in Equa-
tion (3) in order to capture the discontinuity in the PDE’s numerical
solution as discussed in the next section.

4.3 XFEM Discretization
The main strategy of the (extrinsic) XFEM is to extend an existing
polynomial approximation space by additional enrichment functions
to capture certain features, e.g. strong or weak discontinuities, and
to improve the quality of the PDE’s numerical solution. Moreover,
we would like to stress the fact that there is no need to perform
any modification on the underlying mesh even when additional
degrees of freedom are added. In order to keep the support of the
enrichment functions local and to keep the Kronecker-δ Property and
therefore the approximation field interpolating at nodes, we employ
a Shifted Sign Enrichment for strong discontinuities. Form disconti-
nuities Γ1, . . . , Γm the discretized displacement field introduced in
Equation (3) is extended yielding

uhXFEM(ξ ) =
∑
i ∈V0

Ni (ξ )u0
i +

m∑
j=1

∑
i ∈Vj

ψ
j
i (ξ )Ni (ξ )u

j
i

=

m∑
j=0

∑
i ∈Vj

ψ
j
i (ξ )Ni (ξ )u

j
i ,

ψ
j
i (ξ ) =

{
1 j = 0
1
2
(
sgn(Φj (ξ )) − sgn(Φj (ξ i ))

)
otherwise,

sgn(x) := 2H (x) − 1,

(10)

where ψ j
i , u

j
i denote the shifted enrichment function and the dis-

continuous part of the nodal displacement of the ith node and the
jth cut, respectively, while u0

i = ui . Furthermore,V0 is the set of all
mesh nodes whileVj represents the set of enriched nodes shared by
the finite elements Ej that are completely cut by Γj for j > 0. Please
note that the extending nature of the enrichment formulation only
augments the approximation space without changing the standard
term as well as previously added enrichment terms resulting in a
very elegant expression.

Selecting Nodes for Enrichment. In order to determine Vj , the set
of nodes to be enriched by the jth cut, we first compute Ej , i.e. the
set of tetrahedra completely intersected by the jth cut. We call a
tetrahedron partially intersected if the intersection path between cut
surface, other intersecting cut surfaces and tetrahedron faces is open
(cf. Figure 3, left). Correspondingly, we call a tetrahedron completely
intersected by a cut if the intersection geometry forms a closed
path (cf. Figure 3, right). Algorithmically, the decision whether a
tetrahedron is completely cut is made using the following steps.
We use the algorithm proposed by Baraff et al. [2003] in order to
compute the intersection path (cf. orange path in Figure 3) as the
cut surfaces are represented as triangle meshes and as a tetrahedron
can be represented by four triangles. Finally, we need to determine
if the cut is complete. This is realized by identifying cycles in the
graph implied by the intersection path using a simple depth-first
traversal.

Fig. 3. Tetrahedral element intersected by cut surface represented by a
triangle mesh. The orange polyline indicates the intersection path between
the surface and the element.

Γ1

Γ2

Γ3

Fig. 4. Simplified 2D example for the enrichment test. Left: The central
node is enriched by Γ1 and Γ2, as they completely separate the one-ring.
The partial cut Γ3 does not lead to an enrichment. Right: One-ring is cut by
a single cut path. However, the node is enriched thrice as the one-ring is
separated into four disjoint regions.

Once Ej is determined, we test for each vertex i associated with
Ej whether the support domain of its according shape function
Ni is either completely or partially cut. Based on the choice of
Lagrange polynomials as shape functions, the support domain of
a node i is exactly represented by its one-ring, i.e. the union of
incident tetrahedra. We extract the boundary mesh of this one-ring
represented by a triangle mesh and follow the exact same algorithm
described in the previous paragraph. In case of a complete cut by
surface j we enrich i using the enrichment functionψ j

i . An example
for the enrichment test is depicted in Figure 4, left using a simplified,
two-dimensional example.
Special care must be taken when a node’s one-ring is cut into

multiple disjoint regions by a single cut surface (cf. Figure 4, right).
In order to resolve this case, we treat each patch consisting of a
triangle submesh that completely separates the one-ring as a distinct
cut and add an enrichment for each of the patches.

Element Mass, Stiffness and Force. After determination ofVj all
information is provided in order to construct the enriched approxi-
mation as given in Equation (10). Consequently, Equations (6) and
(8) evolve into

me =

∫
∆e

ρ0


N0
e
T

N1
e
T

...

Nm
e
T


[
N0
e ,N1

e , . . . ,Nm
e
]
dξ (11)
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Fig. 5. Integration domains of dissected element. During integration the
arising subdomains left and right of the cut have to be treated separately.
While XFEM based methods correctly account for this, VNAmethods simply
duplicate the element leading to an incorrect result.

fexte =

∫
∆e


N0
e
T

N1
e
T

...

Nm
e
T


bdξ , f inte (ū) =

∫
∆e

g∗e (ū, ξ )dξ (12)

Nj
e =

[
ψ
j
0N0I3 ψ

j
1N1I3 ψ

j
2N2I3 ψ

j
3N3I3

]
, (13)

where g∗e is the specific elastic element force based on the new
XFEM discretization. Due to the complexity of the expression we
will leave out the explicit definition of g∗e and of the tangent stiffness
matrix K = ∂f inte /∂ū. However, both terms can be easily determined
depending on a specific hyperelastic potential using the given equa-
tions.
Due to the discontinuous nature ofψ j

i the integrals required to
compute these quantities contain discontinuous integrands. Figure 5
illustrates a single (two-dimensional) element separated by a single
cut. When integral quantities have to be evaluated on the element
one must pay special attention to the strong discontinuity induced
by the enrichment function. This results in two major issues. The
first issue is that standard quadrature rules are not applicable any-
more which makes the evaluation of these quantities non-trivial.
The second issue is that large volume ratios of the resulting subdo-
mains can lead to badly conditioned mass and stiffness matrices. In
the following, we will introduce a novel integration strategy and in-
troduce a preconditioner based on the computed quadrature weights.
Using this concept we address both issues in a robust manner.
At this point we would like to advise the reader with the infor-

mation that similar cutting methods based on the VNA overcome
both the quadrature and matrix condition issues by simply copy-
ing the element for each disjoint part that emerged while cutting
(cf. [Molino et al. 2004]). While this will lead to a very stable sim-
ulation it will introduce physical inconsistencies (cf. Figure 5), i.e.
mass and stiffness increments as well as a shifted center of mass,
which becomes especially noticeable for cutting of fine structures.
We demonstrate this in our results (cf. Figure 10).

5 NUMERICAL INTEGRATION OF DISCONTINUOUS
INTEGRANDS

In order to determine element mass and element tangent stiffness
matrices as well as internal and external element force vectors, in-
tegrals according to Equations (11) and (12) have to be evaluated.
Based on the standard discretization using polynomial shape func-
tions (cf. Equation (3)) all integrands are element-wise continuously

differentiable polynomials. An exact evaluation of these can be con-
veniently achieved by using a Gauss-Legendre quadrature rule of
adequate order. However, the extended discretization approach in-
troduced in Equation (10) leads to polynomial but discontinuous
integrands. Therefore, an evaluation using Gauss-Legendre quadra-
ture is not an option as the resulting accuracy is not acceptable. The
usage of adaptive techniques yields sufficient results but requires a
large number of subdivisions to adequately capture the discontinu-
ity resulting in poor performance (cf. [Fries and Belytschko 2010]).
Another strategy is to remesh the integration domain in order to
capture the cut surface and to apply standard Gauss-Legendre quad-
rature on the resulting subdomains. For one-dimensional integra-
tion domains this approach works very well in practice and is very
accurate. However, for higher-dimensional domains the remesh-
ing is computationally expensive as it involves triangulation or
tetrahedralization of possibly non-convex domains and error-prone
geometric intersection tests based on floating-point arithmetic.
In this section we will introduce a method to construct special-

ized quadrature rules for discontinuous integrands and will discuss
how we compute the integrals on one- to three-dimensional do-
mains. While a similar approach for quadrature rule construction
for partially filled hexahedra was proposed by Patterson et al. (2012),
they require the quadrature points to be positioned inside the filled
domain, and rely on computing the integrals of the construction
monomials using Monte-Carlo sampling. Also, an approach consid-
ering partially filled elements was proposed by Kim et al. [2011].
However, both approaches are not guaranteed to yield an accurate
quadrature rule as the sampling of the cell may miss the partially
filled regions. In contrast, we do not require the points to be inside
the considered volume portion and hierarchically construct rules
for integrals over the volume portion, the cut surface and mesh
edges. Especially, the rule construction for the integration over the
cut surface is beneficial if external tractions or boundary conditions
are required on the arising surface.

In the following, Td denotes the domain enclosed by a d-dimen-
sional simplex. Further, Td is the closure of Td , i.e. the union
of Td and its boundary. Let h : Td → R be a function that
is only piecewise continuously differentiable on Td but contin-
uously differentiable on nc subdomains Td

i , where T
d
=
⋃
i T

d
i

and Td
i ∩ Td

j = ∅ ∀ i , j . Let further χdi be the characteristic func-
tion of Td

i . We then additively decompose the following integral
into a sum of individual integrals

∫
Td

h(x)dx =
nc∑
i=1

∫
Td

χdi (x)h(x)dx. (14)

5.1 One-Dimensional Integration Domain
In order to numerically integrate a piecewise continuous polynomial
we subdivide the integration domain such that the discontinuity is
captured and integrated over each individual continuous segment:∫

T1
χi (ξ )h(ξ )dξ =

∫
T1
i

h(ξ )dξ . (15)
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ξA ξB

T 1
1 T 1

2

Fig. 6. Domain of 1D function is subdivided into T1
1 and T1

2 such that the
function is continuous on both subdomains.

The position of each discontinuity is determined by a geometrical
intersection test between the cut surface and the mesh edge. The in-
tegral of each subdomain T 1

i can then be numerically computed us-
ing Gauss-Legendre quadrature. Figure 6 shows a one-dimensional
example of the discontinuous function and its corresponding sub-
domains.

5.2 Quadrature Rule Construction for Two and
Three-Dimensional Domains

In order to numerically compute integrals over discontinuous inte-
grands on two- or three-dimensional simplicial domains, we con-
struct specialized quadrature rules depending on the discontinuties’
geometries. More specifically, a single rule for each subdomain Td

i
where the integrand is continuously differentiable is determined,
such that ∫

Td
χi (ξ )h(ξ )dξ ≈

N∑
j=1

wi, jh(ξ j ), (16)

where ξ j and wi, j denote quadrature points and weights corre-
sponding to the ith subdomain, respectively.

Volume/Area Integrals. Given a set of integrands P = {P1, ..., PM }

over a domain Td a quadrature rule can be constructed by solving
the following system of equations:

P1(ξ 1) · · · P1(ξN )

...
. . .

...

PM (ξ 1) · · · PM (ξN



wi,1
...

wi,N

 =

∫
Td
i
P1dξ

...∫
Td
i
PMdξ

 . (17)

As all occurring integrands in Equations (11) and (12) are polyno-
mials of maximum order two in ξ , we choose P as a set of (linearly
independent) polynomials up to order two. Moreover, choosing P

as a basis that is orthonormal on the reference triangle/tetrahedron
greatly improves the matrix condition number of Equation (17). The
orthonormal basis can be easily constructed from a monomial basis,
i.e. {1,x ,y,x2,xy,y2} for d = 2, using generalized Gram-Schmidt
orthogonalization and subsequent normalization. The equation sys-
tem is only linear in wi, j but nonlinear in the quadrature nodes
ξ j and for that reason hard to solve. In order to alleviate the prob-
lem, we predefine a set of quadrature nodes and keep their position
constant which simplifies Equation (17) to a linear equation system.
While the construction of the matrix is trivial given the fixed

quadrature points, the evaluation of the system’s right-hand-side
is challenging due to the integrals over the subdomain Td

i . In or-
der to tackle this problem we first reformulate the right-hand-side
by replacing the polynomials Pj with the divergence of their an-
tiderivatives PAj , such that ∇ · PAj = Pj . Please note, that there are

multiple choices to choose the antiderivatives PAj . However, we
choose PAj,i =

∫
Pjdξi for the sake of convenience, where PAj,i is

the ith component of vector PAj . Then, we can rewrite the integrals
using the divergence theorem yielding∫

Td
i

∇ξ · PAj dξ =
∫
∂Td

i

PAj · nds

=

∫
∂Td

χi PAj · nds︸                 ︷︷                 ︸
1

+

∫
Ii

PAj · nds︸         ︷︷         ︸
2

, (18)

where Ii = ∂Td
i \ ∂Td . Here Ii can be interpreted as the interface

between the currently considered subdomain Td
i and its neighbor-

ing subdomains.
In order to compute integral 1 we distinguish between the three-

dimensional (d = 3) and the two-dimensional (d = 2) simplicial case.
For a tetrahedral domain we again construct quadrature rules as
described in this section for each triangular face by computing the
intersection of the cut surface’s relevant triangles with the plane
spanned by the tetrahedron’s face. In the two-dimensional case,
we can directly compute 1 by integrating over the mesh edges as
described in Section 5.1.
The second term 2 represents a path/surface integral over the

interfaceIi . For an evaluation of the termwe construct an additional
interface quadrature rule as discussed in the next paragraph.
Finally, the linear equation system (17) can be solved in order

to obtain the quadrature weights wi, j required to construct the
element vectors and matrices (see Equations (11) and (12)). It is
important to state, that depending on the number of quadrature
nodes and polynomials contained in P Equation (17) is generally
over- or underdetermined. For that reason, we aim to guarantee
the equation system to be underdetermined in order minimize the
error in a least-squares sense and choose the number of quadrature
nodes as approximately twice the number of polynomials according
to symmetric quadrature rules. Finally, we have to decide where
to place the quadrature points ξ j . For both cases, i.e. d = 2, 3, we
precompute ξ j according to symmetric quadrature with the cor-
responding number of points following the method proposed by
Zhang et al. [2009] and solve the underdetermined system by com-
puting the matrix’ Moore-Penrose pseudoinverse using a singular
value decomposition.

In order to improve the efficiency when solving Equation (17)
we us a linear transformation Q : Rd → Rd that maps the sim-
plex onto a reference simplex with coordinates (0, 0, 0)T , (1, 0, 0)T ,
(0, 1, 0)T for a tetrahedron and (0, 0)T , (1, 0)T , (0, 1)T for a trian-
gle and additionally project the involved cut triangles/segments
into the reference space. Then the matrix’ pseudo-inverse has to
be computed only once and can be reused for every element as the
matrix is independent of the cut location. Subsequently, we scale the
quadrature weightswi, j by |det(Q−1)| in order to obtain the correct
weights in the original space.

Example. Given a triangular finite element with domain ∆e that is
cut by a single straight vertical line (cf. Figure 7). Using a fixed distri-
bution of 18 quadrature points as depicted in Figure 8, left, we solve
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Fig. 7. Example for quadrature rules constructed on a 2D domain. A dot
represents the position of a quadrature point while its radius represents
its according weight wi, j . Left: Weights to compute integrals on the blue
subdomain. Right: Weights to compute integrals on the red subdomain.

Fig. 8. Distribution example of quadrature on 2- and 3-simplex.

Equation (17) to compute the according momentsw1,1, . . . , w1,18
andw2,1, . . . , w2,18. such that the basis polynomials of a quadratic
orthonormal basis are correctly integrated over the two resulting
subdomains depicted in blue and red in Figure 7 by evaluation of
Equation (16). Then, the integral over a function h on ∆e can be
approximated by evaluating

∑
j w1, jh(ξ j ) +

∑
j w2, jh(ξ j ).

Interface Integrals. As an integral over the subdomain interface
Ii has to be computed in order to evaluate term 2 , we construct a
second quadrature rule with a set of predefined quadrature nodes
such that ∫

Ii

hds ≈

N I
i∑

j=1
ωi, jh(ξ j ), (19)

where ξ j and ωj denote quadrature nodes and weights, respectively.

Based on a vectorial, polynomial basis PD =
{
PD1 , . . . , P

D
MD

}
, we

can then write the according construction equations
PD1 (ξ 1) · n(ξ 1) · · · PD1 (ξN ) · n(ξ 1)

...
. . .

...

PDM (ξ 1) · n(ξ 1) · · · PDM (ξN ) · n(ξN )



ωi,1
...

ωi,N

 =

∫
Ii
PD1 · nds
...∫

Ii
PDM · nds

 .
(20)

Analogously to Equation (17) the evaluation of the linear system’s
right-hand-side is non-trivial for a choice of arbitrary polynomial
vectors. Fortunately, a special choice of PD as divergence-free basis
allows us to elegantly simplify the right-hand-side. We construct
the divergence-free basis following the method presented by Müller
et al. [2013]. Assuming that ∇ξ · PDj = 0 we can rewrite the entries
of Equation (20)’s right-hand-side using the divergence theorem as

Fig. 9. Interface quadrature nodes. Blue line/surface represents the cut
geometry while orange dots indicate the location of quadrature points.
Left: 2D case; triangle intersected by polyline. Right: 3D case; tetrahedron
intersected by triangle mesh.

follows:∫
Ii

PDj · nds =
�������: 0∫
∂Td

∇ξ · PDj dξ −

∫
∂Td

χi PDj · nds . (21)

The rewritten integral can then either be directly evaluated by piece-
wise integration over the mesh edges as described in Section 5.1
for d = 2 or using the already constructed quadrature rule used to
evaluate 1 for d = 3.

Again, we have to choose quadrature points ξ j in order to evalu-
ate the integrands in meaningful positions. For d = 2 the cut path
is a polyline. Therefore, we place four quadrature points on each
segment following the corresponding quadrature points of tradi-
tional Gauss-Legendre quadrature as illustrated in Figure 9, left. Due
to the dependence of the system matrix on the cut geometry the
matrix is not guaranteed to have full rank. We aim to still maintain
an underdetermined system by using enough quadrature points.
Therefore, using approximately twice as many points as polynomi-
als basis vectors in PD was a safe choice for all of our tests and
simulations. Therefore, we subdivide one segment at a time until
we have acquired the desired number of quadrature points. Simi-
larly, we place the quadrature points for d = 3 on the triangles of
the intersecting patch, again, using the abscissae of the symmetric
quadrature rules for triangles determined following the approach
of Zhang et al. [2009] (cf. Figure 9, right).
Finally, we can solve Equation (20) in order to obtain the inter-

face quadrature weights ωi . Please note, that we again choose the
number of quadrature points to be approximately twice the number
of polynomials in PD which results in an undetermined system.
Moreover, the system matrix is in general rank-deficient and has
poor conditioning depending on the discontinuity’s geometry. To
robustly solve the underdetermined system, we compute the Moore-
Penrose pseudoinverse using a singular value decomposition.

Discussion. Placing the quadrature nodes directly onto the cut
path/surface rather than somewhere within the surrounding finite
element (cf. [Müller et al. 2013]) ensures that the cut patch’s ge-
ometry, if smooth or sharp, is captured sufficiently resulting in an
accurate quadrature rule. It might, however, seem to be an inter-
esting choice to place the quadrature nodes on the polyline seg-
ments/triangles without clipping the primitives on the considered
triangular/tetrahedral element. Conducting several experiments
showed that even if many quadrature points lay outside the element
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due to the cut path segments being large compared to the element
size, still resulted in very accurate quadrature rules. We assume
that this is the case because the integrands, i.e. polynomials, are
infinitely often differentiable and therefore very smooth.

6 PRECONDITIONING AND AVOIDANCE OF
ILL-CONDITIONING

The enrichment of nodes using shifted sign enrichment as described
in Section 4.3 adds DOFs to the system and therefore leads to addi-
tional entries in the system matrix. A DOF’s entries heavily depend
on how the corresponding node’s support domain, i.e. its one-ring,
is dissected. If the ratio of the contributing subdomain’s volume (the
portion of cut-off material) and the one-ring’s volume is high the
system matrix’ condition number deteriorates. This phenomenon is
similar to the influence of element shapes on the matrix condition
number in standard FE discretizations [Shewchuk 2002].

The convergence of iterative solvers is heavily influenced by the
condition number of the system matrices (see e.g. [Shewchuk 1994])
but also modern direct solvers rely onwell-conditionedmatrices (see
e.g. [Sonneveld 1989]). Even worse, a numerically singular system
can cause a breakdown of the simulation. For the stated reasons
keeping the system regular and moreover well-conditioned is a
vital requirement and one of the key aspects regarding stability and
robustness. We ensure a well-conditioned system by means of the
following three steps:

1. Perturbation StepWe check if the cut surface touches (but does
not intersect) the support domain of the currently processed node’s
shape functions. As previously described, a vertex is enriched if
its one-ring is completely cut. Due to the nature of floating point
arithmetic, a complete cut may be detected but no actual intersection
geometry is generated. This could cause the construction of the
interface quadrature rule to fail, and result in a potentially singular
system matrix. Therefore, we perturb the cut surface’s vertices in
order to improve robustness. As this problem is caused by numerical
inaccuracies in geometric intersection tests, intersection algorithms
based on robust predicates or exact arithmetic could be employed
to resolve this problem.

2. Constraining Step If the support domain’s volume of an en-
riched node is small compared to the volume of its shape functions’
support domains, we constrain the DOF. In order to avoid the mate-
rial "sticking" together in the region close to the constrained DOF
we move the DOF with its according fragment to keep the afflicted
region as-rigid-as-possible. Mathematically, the criterion for con-
straining a DOF di, j reads

Vi, j,enr
Vi,supp

< ϵ, (22)

where Vi,supp is the volume of the support domain of the ith node
and Vi, j,enr the volume of the DOF di, j ’s support domain volume
associated with the ith node and the jth enrichment. Further, ϵ rep-
resents a scalar threshold that we chose 10−9 for all of our results.
Generally, the computation of Vi, j,enr is problematic since we want
to avoid to explicitly represent the DOF’s support domain. How-
ever, we can fortunately reuse the previously computed weights to

determine Vi, j,enr as the volume over the given domain is equal to∑
e ∈Ci

∫
∆je

1dξ =
∑
e ∈Ci

∑N
j=1we, j , where Ci is the set of elements

incident to vertex i .

3. Preconditioning Step In the third and final step we construct a
diagonal preconditioning matrix T to improve the systemmatrixA’s
condition number for the subsequent Newton iterations. In order
to keep the matrix’ symmetry we choose to bilaterally apply the
diagonal preconditioning matrix T following

Ax = c (23)

TTATy = TT c (24)
x = Ty. (25)

As previously mentioned the area ratio of Vi,supp and Vi, j,enr has a
big influence on the system matrix’ condition number. Therefore,
we aim to scale the diagonal entries of A with the inverse ratio:

Tdi, j ,di, j =
1

√
νi, j

(26)

νi, j =
Vi, j,enr
Vi,supp

=

∑
e ∈Ci

∑N
j=1we, j

Vi,supp
. (27)

7 RESULTS AND DISCUSSION
In this section we explain how we generate a representation for
visualization purposes and discuss our results and comparisons. All
measurements provided in this section were performed on an Intel
i7-6700HQ processor with 2.6 GHz, 4 cores and 16GB RAM. We
use an implicit Euler scheme for time integration and solve the
resulting nonlinear equation systems using Newton’s method in
combination with the PARDISO solver implemented in Intel’s Math
Kernel Library. The number of quadrature points for volume, area
quadrature were 24 and 19, respectively (cf. Figure 8). Analogously,
we used 4 and 6 quadrature points per involved cut path segment
and cut surface triangle, respectively (cf. Figure 9). Please note that
we apply Dirichlet conditions following Wu et al. [2008] to fixate
parts of the discretizations in all presented scenarios. Further, none
of the presented simulations include collision handling.

Visualization. The simulation yields a numerical solution repre-
sented by the displacement field uhXFEM(ξ , t) to the initial/boundary
value problem described in Equation (1). Consequently, a suitable
representation has to be found in order to visualize the result in an
appealing way. At this point we would like to point out that the
generation of a visualization can be understood as post-processing
step and that the strategy presented in the following is by no means
inextricably linked to the described simulation.
In order to represent the (initially uncut) simulation object’s

boundary surface we first extract the border mesh from the tetrahe-
dral discretization in reference space. Subsequently, we compute the
geometric intersection path between border mesh and cut surfaces
using the algorithm proposed by Baraff et al. [2003]. The acquired
path is then explicitly embedded into both the border mesh and
the cut surface meshes by inserting intersection vertices and the
according mesh edges followed by a retriangulation. As the cut sur-
faces overlap the border mesh we clip all triangles lying outside the
border mesh. Each cut surface mesh is then duplicated in order to
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Fig. 10. Cubes consisting of five tetrahedra fixated on one edge are cut in
differently sized slices. This image shows the resting position of the slices
where all blue-shaded slices where simulated using our method and the
red-shaded slices using the VNA.

represents both sides of the cut. Finally, we use Equation (10) to com-
pute the world positions for each vertex in the visualization mesh.
If the tetrahedral mesh’s boundary is too coarse for visualization
purposes or if a higher resolution is desired an additional triangle
mesh representing the object boundary may be used. The only re-
quirement is that the mesh is entirely contained in the tetrahedral
mesh in order to evaluate Equation (10) for mapping the vertices to
world space positions. We used a high-resolution representation to
generate the results shown in Figures 1 and 13 (right).

Our method vs. VNA. We performed three experiments where we
compared our XFEM based method with the widely used VNA. In
the first scenario depicted in Figure 10 we cut a cube consisting
of five tetrahedra at three different locations. Because of the hinge
fixation the resulting slices fold down and oscillate until they reach a
resting position. In all simulations performed with our method (blue
shading) the slices rest in a position where their centers of mass are
exactly placed under the fixations. In contrast, the resting positions
of the VNA based simulations (red shading) are noticeably displaced
resulting in a physically incorrect and even implausible state. In the
second experiment depicted in Figure 11 we cut a deformable slab
fixed to a wall into several slices with increasing thickness. The slab
is discretized with 61 × 11 × 1 blocks consisting of five tetrahedra.
Our method produces a realistic result where each distinct slice
folds down separately due to the varying thicknesses. When the
exact same scenario is simulated using the VNA each slice is as
stiff as the uncut slab caused by inexact integration (cf. Figure 5)
and therefore scarcely folds. In the third and final experiment we
compared how well mass is conserved after inserting several cuts
into an object. As illustrated in Figure 12 we simulated two blocks
hanging on a comparably small strip of material. Due to the weight
of the blocks the attached strips stretch and can thus be interpreted
as nonlinear springs. The nonlinearity in the strips deformation
behavior is caused by the nonlinear hyperelastic constitutive model
as explained in Section 3. As a consequence of the insertion of several
cuts into the blocks the objects unfold. Investigating the unfolded
objects’ resting states reveals that the simulation performed with
our method conserves mass very well as the attachment connecting

Fig. 11. A deformable slab is fixed to a wall and cut into five slices with
increasing thickness. Left: Resting position resulting from our XFEM based
simulation. Right: Result computed using the VNA with the exact same
material and simulation parameters.

Fig. 12. Two blocks hanging on thin material strip are cut into an unfolding
structure. The result produced by our method (left) conserves mass before
and after the cut as indicated by the strip’s extension. The result simulated
using the VNA (right) drops significantly due to unphysically added mass
and looks stiffer.

block and material strip still rests at the initial position (around one
on the backgroundmeasuring scale). In contrast, the block simulated
using the VNA drops significantly, finally resting at three on the
background measuring scale. This indicates a significant amount of
additional mass gained caused by the element duplication strategy.
Moreover, the resulting dynamic behavior of the object simulated
with our method is noticeably "livelier" and looks less stiff compared
to the VNA simulation.

Quadrature Comparison. We tested the quality of the acquired
volume quadrature rules for 24 quadrature points by evaluating
Equation (16) on the unit tetrahedron for several test polynomials.
Three different cut surface shapes were used: a planar, a kinked and
a spherical one. Furthermore, the results were compared against a
regular sampling approach as used by Kaufmann et al. [2009] and
a specialized adaptive quadrature approach for multidimensional
discontinuous functions proposed by Müller et al. [2012]. We used
a regular grid on the tetrahedron’s bounding box consisting of 503

cells for the regular sampling. For the adaptive approach a maximum
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Scenario Integrand Our Meth. Reg. Samp. Adapt.
h(ξ , η, ζ ) ϵrel (24QP) ϵrel #QP ϵrel #QP

1 3.32e−5 4.44e−3 560 5.79e−2 54
ξ + η + ζ 4.43e−5 4.44e−3 560 8.19e−2 54

ηζ + ξ ζ + ξ η 5.54e−5 9.78e−1 560 9.25e−1 181
ξ 2 + η2 + ζ 2 5.54e−5 5.00e−1 560 4.94e−1 181

1 2.99e−6 4.94e−4 3795 1.54e−2 646
ξ + η + ζ 6.50e−6 4.89e−4 3795 2.16e−2 646

ηζ + ξ ζ + ξ η 1.26e−5 2.50e−3 3795 1.86e−2 2512
ξ 2 + η2 + ζ 2 1.38e−5 1.10e−4 3795 1.72e−2 2512

1 3.88e−4 4.62e−3 8219 1.21e−2 788
ξ + η + ζ 5.15e−4 6.23e−3 8219 1.65e−2 788

ηζ + ξ ζ + ξ η 6.43e−4 7.60e−3 8219 1.30e−3 3073
ξ 2 + η2 + ζ 2 6.46e−4 7.71e−3 8219 1.79e−4 3073

Table 1. Results of our numerical integration test using regular sampling, an
adaptive approach [Müller et al. 2012] and our method. The unit tetrahedron
was cut using a planar (diagonal) cut, a kinked cut and a spherical cut. The
integral over polynomials h(ξ , η, ζ ) over the volume portion indicated in
blue was computed. ϵrel and #QP represent the relative error to the analytic
solution and the number of the contributing quadrature points used for
quadrature, respectively.

Fig. 13. Left: Cutting a plate with a smooth, helical surface. Right: Stanford
armadillo is cut by several high- and low-frequent, smooth or sharp surfaces.

refinement depth of four was used. The results are summarized in
Table 1. Please note the we counted only quadrature points evaluat-
ing to non-zero values in the other methods. The regular sampling
consistently produced less accurate results compared to our method
while a much larger number of quadrature points was required.
Although the adaptive approach was in some cases able to achieve
comparable accuracy, the number of required quadrature points was
larger by several orders of magnitude.

Complex Cutting. Besides comparisons and academic examples
we performed four simulations with multiple complex cut surfaces.
In the first experiment we used a helical cut surface to dissect a plate
discretized with 25 × 25 × 1 hexahedral blocks each consisting of 5
tetrahedra (cf. Figure 13, left). Even though the object is discretized
by a small number of linear elements the helical-shaped material
deforms very smoothly while the cut is progressing. In the second
scenario we simulated the Stanford armadillo that we fixated on its
limbs (cf. Figure 13, right). Here, we demonstrate that our method
is able to robustly handle cuts with low and high frequent smooth
and/or sharp features while dissecting thousands of tetrahedra.

In the scenario illustrated in Figure 1 (right), we cut a circular
groove into the Stanford bunny and subsequently peeled the groove
off with a second cut. The result demonstrates that our method is
able to robustly handle finely structured cut surfaces while pro-
ducing a realistic result. Moreover, it shows that our simulation
yields realistic results even when a coarse tetrahedral mesh is used.
The tetrahedral discretization of the bunny consisted of only ~18.5k
tetrahedra while the visualized triangle mesh had ~53k triangles.
In the fourth and final scenario we simulated a plate with several
attached objects as depicted in Figure 1 (left). We modeled a very
long cut surface and complicated the scenario by displacing the
cut surface’ vertices using distorted noise. Due to the noise several
tetrahedra are cut multiple times by the same cut surface resulting
in the requirement to enrich several nodes multiple times (prob-
lem described in Section 4.3). In this highly complex example, we
show that our method is able to accurately handle very complex cut
surfaces and yields a realistic animation where all cut regions are
properly separating without any artifacts.

We also measured the performance of the last two scenarios. Both
scenarios were simulated using a time step width of ∆t = 5ms. The
simulation of the bunny scenario took on average 1.375s per step
with initially 5326 DOFs, finally resulting in 9432 DOFs. Further,
47.27% of the time was spent to process the cuts and to enrich the
nodes. Our quadrature rule construction is included in that portion
but individually took only 8.5% of the time required per step. The
plate scenario initially consisted of 47643 DOFs resulting in 53326
DOFs and took 9.365s per time step. 17.5% of the time was spent to
process the cuts while our quadrature rule construction individually
took 0.7% of the simulation time. The last scenario clearly shows
the advantage of our approach in comparison to remeshing based
methods since even for a very complex cut surface the number of
DOFs increased only by 12%.

Preconditioning. In order to analyze the effect of our precondi-
tioner on the system matrix’ condition number we conducted an
experiment where we cut the unit cube consisting of five tetrahedra
with bounding coordinates (−1,−1,−1)T and (1, 1, 1)T using a plane
with normal (1, 0, 0). We then measured the condition number of the
system matrix while varying the location of the cut in x-direction.
We further chose the system matrix as A = M+∆t2K resulting from
discretization and linearization in a single Newton step, where ∆t
and K = ∂f int/∂u represent time step width and tangent stiffness
matrix, respectively. The cube was unconstrained and the matrix
was assembled for Young’s modulus E = 106N /m2, Poisson ratio
ν = 0.3, density ρ = 1000kд/m3 and time step width ∆t = 10−3s .
The graph in Figure 14 shows the outcome of our experiment. While
the condition number of the unpreconditioned system matrix ap-
proaches infinity when the cut is close to the bounds, the condition
number of the preconditioned matrix is considerably lower. Even
when the cube is cut exactly through its center the condition number
of the unpreconditioned matrix is nearly two orders of magnitude
higher compared to the uncut matrix’ condition number. It should
further be mentioned that the condition number of the precondi-
tioned matrix will also approach infinity when the cut is so close to
the cube boundary that some of the enriched vertices’ DOFs have (al-
most) no support. Fortunately, this is prevented by constraining the

ACM Transactions on Graphics, Vol. 36, No. 4, Article 55. Publication date: July 2017.



55:12 • D. Koschier, J. Bender and N. Thuerey

-1.0 -0.5 0.0 0.5 1.0
x

100

101

102

103

104

105

106

107

108

109

1010

1011

1012

1013

C
on

di
ti

on
nu

m
be

r
κ

=
|λ

m
a
x
|

|λ
m

in
|

κ(A)

κ(TTAT)

κ(Auncut)

Fig. 14. Semi-logarithmic plot of the condition number of the system matrix
A = M + ∆t 2K over cut location x . Cube consisting of five tetrahedra was
cut by a plane.

affected nodes as explained in Section 6 which keeps the condition
number bounded.

8 CONCLUSION
We presented a novel approach for the simulation of complex cut-
ting of three-dimensional deformable solids with fully implicit time
integration. After introducing the concept of basis enrichment for
the representation of cuts within the finite element discretization,
an approach to construct specialized quadrature rules to compute
arising integrals over discontinuous elements on polyhedral do-
mains was proposed. Moreover, an algorithm was presented that
keeps the equation system required for implicit time integration
regular and well-conditioned. We demonstrated that our method
robustly handles complex cut surfaces in large scenarios. Further,
we showed that our method is able to realistically simulate finely
structured cuts, even in the case of coarse tetrahedral discretizations.
We compared the proposed method to the popular VNA where we
could clearly show how the proposed method offers considerable
advantages concerning preservation of physical plausibility such as
mass conservation and correctly maintaining stiffness properties.

Limitations and Future Work. As explained before, our method
only treats elements as cut if they are completely dissected by the cut
surface. Therefore, we cannot simulate cuts progressively advancing
within a single element. Building on the flexibility of the XFEM to
incorporate different enrichments, we plan to enrich completely
dissected elements using the presented shifted sign enrichment
and treat regions near the crack-tip with the harmonic enrichment
strategy following Kaufmann et al. [2009]. A localized Laplace en-
richment near crack-tips would allow us to represent intra-element
progressive cuts at moderate cost, and would result in a nice synergy
of both approaches. A limitation of our implementation is that we
did not treat the case of mutually intersecting and T-cuts. However,
we see no reason why this should limit the generality of the pro-
posed approach and we are confident that by using the specialized

sign enrichments for branched cracks proposed by Daux et al. [2000]
these cases can be treated in a straightforward manner. Further, we
used the implicit backward Euler scheme together with Newton
iterations to solve the resulting nonlinear equation system. We are
aware of the fact that more elaborate and efficient implicit time
integration schemes were developed within the computer graphics
community. While performance was not the main focus of our work,
wewould still like to incorporate a more efficient time integrator and
would like to investigate if our method can be further parallelized.
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