
Projective Fluids

Marcel Weiler
Graduate School CE,

TU Darmstadt

Dan Koschier
Graduate School CE,

TU Darmstadt

Jan Bender
Computer Animation Group,
RWTH Aachen University

Figure 1: Left: Breaking dam scenario with 1.94 million particles, featuring obstacles with complex solid boundaries. Right: Fluid and cloth
are simulated together in the Projective Dynamics framework.

Abstract

We present a new method for particle based fluid simulation, using
a combination of Projective Dynamics and Smoothed Particle Hy-
drodynamics (SPH). The Projective Dynamics framework allows
the fast simulation of a wide range of constraints. It offers great
stability through its implicit time integration scheme and is paral-
lelizable in large parts, so that it can make use of modern multi
core CPUs. Yet existing work only uses Projective Dynamics to
simulate various kinds of soft bodies and cloth. We are the first
ones to incorporate fluid simulation into the Projective Dynamics
framework. Our proposed fluid constraints are derived from SPH
and seamlessly integrate into the existing method. Furthermore, we
adapt the solver to handle the constantly changing constraints that
appear in fluid simulation. We employ a highly parallel matrix-free
conjugate gradient solver, and thus do not require expensive matrix
factorizations.

Keywords: Projective Dynamics, SPH, fluids, implicit integration

Concepts: •Computing methodologies→ Physical simulation;

1 Introduction

Since Projective Dynamics was proposed by Bouaziz et al. [2014],
it has received wide interest from the computer graphics commu-
nity. Its robustness and efficiency make it a desirable method for
the simulation of constrained particle systems.

Our goal is to simulate fluids. In computer graphics, SPH has be-
come predominant for the particle based, Lagrangian simulation of
fluids [Ihmsen et al. 2014b]. For our simulations, we propose a new

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
MiG ’16, October 10-12, 2016, Burlingame, CA, USA
ISBN: 978-1-4503-4592-7/16/10
DOI: http://dx.doi.org/10.1145/2994258.2994269

fluid constraint derived from SPH, that adheres to the constraint
structure required by Projective Dynamics.

Moreover, we adapt parts of the solver, to improve the performance
of Projective Dynamics in scenes where constraints change fre-
quently. In fluid simulation this is the case. The original Projective
Dynamics method relies on Cholesky factorization to accelerate the
solution of large sparse linear systems.Changes in the constraints
are incorporated into the factorization by sparse Cholesky updates,
but this procedure is only practical when the number of changes per
time step is low. To gain the flexibility required by fluids, we em-
ploy a matrix-free conjugate gradient (CG) solver for optimization
over the particle positions during the global step.

Meanwhile, our method still adheres to the Projective Dynamics
framework and we can handle other constraints in a unified solver
as well. We inherit the stability for stiff constraints and large time
step sizes, while our solver is able take advantage of multi core
systems since the conjugate gradient method is easy to parallelize.

2 Related Work

The physically-based simulation of fluids has been an important and
active research topic for several decades. As most fluid simulation
techniques are based on the Navier-Stokes equation several meth-
ods for a discretization were developed. Especially, Lagrangian dis-
cretizations based on SPH have become increasingly popular for in-
teractive free-surface flows. We would like to refer to reader to the
work of Bridson [2008] for a general overview of fluid simulation
techniques while we recommend the state-of-the-art report of Ihm-
sen et al. [2014b] to gain insight into recent developments in SPH
approaches in the field of computer graphics.

SPH Fluid Simulation Building on the pioneering work on SPH
simulation of Monaghan [1992], Müller et al. [2003] introduced the
particle-based concept for fluid simulation to the computer graph-
ics community. The method was later extended to a spatially adap-
tive SPH discretization by Adams et al. [2007]. Due to the fact
that a wide range of liquids is incompressible, e.g. water, sev-
eral approaches to eliminate or reduce compression within the fluid
were developed. Becker and Teschner [2007] presented a method
that guarantees a maximum compression based on precomputed,
scenario-dependent stiffness coefficients. As this method penal-

izes compression using forces and as it is based on explicit time-
integration the maximum stable time step can become arbitrarily
small for large stiffness coefficients. The first step towards im-
plicit solvers for maintaining incompressibility was taken by Solen-
thaler and Pajarola [2009] proposing a predictive-corrective scheme
that iteratively computes particle pressures. Following the gen-
eral concept of maintaining incompressibility using implicit solves,
methods based on holonomic constraints [Bodin et al. 2012], a dis-
cretization of the pressure Poisson equation [He et al. 2012; Ihm-
sen et al. 2014a], position based dynamics [Macklin and Müller
2013] or power diagrams [de Goes et al. 2015] were presented
in the following years. Recently, a method maintaining not only
constant density but also a divergence-free velocity field was pro-
posed by Bender and Koschier [2015]. Besides the development
of pressure solvers, mathematical models were developed in order
to model complex physical phenomena which include the simula-
tion of multiphase flows with high density contrast [Solenthaler and
Pajarola 2008], robust solid fluid coupling [Akinci et al. 2012], ver-
satile surface tension [Akinci et al. 2013], robust thin features [He
et al. 2014] and highly viscous liquids [Peer et al. 2015; Takahashi
et al. 2015; Bender and Koschier 2016].

Position Based and Projective Dynamics The concept of Po-
sition Based Dynamics (PBD) was first introduced by Müller et
al. [2007] for the simulation of cloth and cloth balloons. Over the
years, the constraint based concept of PBD evolved from a simple
and robust simulation method for cloth to a fully fledged framework
supporting a variety of constraints developed in the following years.
Position-based methods range from approaches for hair, fur and
rods [Bender et al. 2015] over cloth and solids [Bender et al. 2014a;
Deul et al. 2014] and even to fluids [Macklin and Müller 2013], just
to mention a few. Moreover, two-way coupling between any of the
approaches can be easily realized [Bender et al. 2015]. For a com-
plete survey on position-based approaches we would like to refer
the reader to the state-of-the-art report of Bender et al. [2014b].

Besides all the advantages, PBD cannot accurately handle soft con-
straints as they are usually enforced through early termination of
the iterative constraint solver prior to convergence. While the re-
sulting dynamic behavior is still visually appealing, material prop-
erties, e.g. stiffness, are hard to control as they solely rely on
the time step size and the solver’s residual. In order to solve that
problem, Bouaziz et al. [2014] presented the Projective Dynamics
framework for general constraints building upon the work for opti-
mization integrator based simulation of mass-spring systems of Liu
et al. [2013]. Through reformulation of the implicit Euler scheme
as optimization problem and simplification of elastic energies to
quadratic distance functions, they simulate elastic objects using a
local/global alternating minimization technique. While the local
step is intended to satisfy all underlying constraints independently
by position alteration following the PBD concept, the global step
can be interpreted as ”smart” averaging of the computed goal posi-
tions which also accounts for inertia terms. This results in a stable
and robust simulation of soft constraints for elastic objects. Re-
cently, the convergence of both PBD and Projective Dynamics was
improved by Wang et al [2015] using a Chebyshev semi-iterative
approach while Narain et al. [2016] generalized Projective Dynam-
ics using an alternating direction method of multipliers for opti-
mization in order to simulate general nonlinear constitutive models.

In contrast to previous work, we present a novel, fully implicit ap-
proach based on Projective Dynamics for the simulation of fluids.
We formulate an SPH based constraint that seamlessly integrates
into the framework and efficiently solve the linear equation system
in the global step using a matrix-free conjugate gradient solver. We
demonstrate the robustness, stability and efficiency of our approach
on complex scenarios with thousands of particles.

3 Projective Fluids Solver

Our fluid simulation method is based on Projective Dynamics and
SPH. In this section we describe how we extend Projective Dynam-
ics to handle our fluid constraints.

3.1 Projective Dynamics

Implicit Euler Time Integration Projective Dynamics uses im-
plicit time integration to evolve a system of particles over time,
subject to constraints C(x) = 0. Given a vector x(n) ∈ R3m

of m stacked particle positions at time step n and their velocities
as v(n) ∈ R3m, the state of the system at the next time step is
calculated as

x(n+1) = x(n) + ∆tv(n+1)

v(n+1) = v(n) + ∆tM−1
(
fext + fint

(
x(n+1)

))
,

(1)

where M is the mass matrix, fext is the sum of external forces like
gravity, fint (x) is the sum of internal (constraint) forces and ∆t de-
notes the time step size. The internal forces try to minimize the con-
straint potentials Zi(x), which are introduced in the following sec-
tion, such that fint(x) = −

∑
i∇Zi(x). Martin et al. [2011] show

that Equation (1) can be transformed into an optimization problem:

x(n+1) = argmin
x

1

2∆t2

∥∥∥M 1
2

(
x− s(n)

)∥∥∥2

F
+
∑
i

∇Zi(x), (2)

where ‖.‖F denotes the Frobenius norm and s(n) = x(n) +

∆tv(n) + ∆t2M
1
2 fext is a term describing the particle movement

without internal forces. The values of x that minimize Equation (2)
are the particle positions for the next time step.

Quadratic Constraint Potentials In general, the constraint po-
tentials Zi(x) are defined as a material model Ψi(·), applied to a
strain Ei(x), such that Zi(x) = Ψi(Ei(x)). Ψi(·) can be highly
nonlinear, which makes Newton’s method the first choice to find
the minimum of Equation (2). Unfortunately, this involves finding
the Hessian of a system of nonlinear equations in every iteration,
which is very expensive. Bouaziz et al. [2014] therefore replace the
highly nonlinear potentials with specially designed quadratic po-
tentials. They notice that the set of rest states of a constraint, the
so-called constraint manifold, is independent of its potential. For
each constraint they introduce an auxiliary variable p. p contains
the positions of the particles in the constraint, which are projected
onto the constraint manifold. The resulting constraint potential is
a quadratic distance measure between the current and the projected
positions:

Z (x,p) =
w

2
‖Dx−Pp‖2F + δC(p). (3)

D and P are constant matrices and w ≥ 0 is a weight for the con-
straint. δC(p) is an indicator function that is zero if p lies on the
constraint manifold and∞ otherwise. The indicator is used to for-
malize the requirement that p should lie on the constraint manifold.

Alternating iterative solver With the new constraint potentials
from Equation (3), the potential that has to be minimized becomes

1

2∆t2

∥∥∥M 1
2

(
x− s(n)

)∥∥∥2

F

+
∑
i

wi

2
‖DiSix−Pipi‖2F + δCi(pi) (4)

with Si being a selector matrix that selects the particles belonging
to constraint i. The optimization now has to be performed over the
positions x and the auxiliary variables p. By minimizing Equa-
tion (4) for x and p independently in turn, the global minimum is
found. This approach is a form of block coordinate descent and will
converge for any pseudo-convex potential [Tseng 2001].

In the local step, the particle positions x are kept fixed, while the
minimization for pi is performed by projecting the auxiliary vari-
ables onto the respective constraint manifold. Since each constraint
is treated independently, this step can be easily parallelized.

During the global step, the pi are kept fixed. Equation (4) then be-
comes a simple quadratic potential and can be solved by finding the
point where its derivative becomes zero. This leads to the system
of linear equations(

M

∆t2
+
∑
i

wiS
T
i DT

i DiSi

)
x =

M

∆t2
s(n) +

∑
i

wiS
T
i DT

i Pipi. (5)

The matrix on the left hand side of the equation is constant as long
as the constraints do not change. In this case, performing Cholesky
factorization in a preprocessing step allows for an efficient solve
during the simulation.

3.2 The Fluid Constraints

In typical SPH fluid simulations, a particle i is evolved in time,
subject to the constraints that the internal pressure at its location
should be zero. The relation between pressure pi(x) and fluid den-
sity ρi(x) at the particle is modeled by an equation of state (EOS).
There are different EOS in use, we chose

pi(x) =
ρi(x)

ρ0
− 1,

where ρ0 is the fluid’s rest density. Requiring pi(x) = 0 formalizes
the constraint that the fluid density should remain constant. Since
it only depends on the particle positions, this constraint has exactly
the form that is required by Projective Dynamics. We, therefore,
define our fluid constraints as

Ci(x) =
ρi(x)

ρ0
− 1. (6)

To estimate ρi at each particle, we use SPH. At point xi the density
ρi can be interpolated from the n neighboring particles using

ρi =
n∑

j=1

mjWij , (7)

where mj is the mass of particle j and Wij = W (xi − xj , h) is a
kernel function with h being the smoothing length of the kernel. In
practice, kernels are chosen to be spherical and have compact sup-
port. This way, only the n neighboring particles inside the support
radius have to be considered in the interpolation. Furthermore, the
kernel needs to be normalized and its shape should be close to a
Gaussian [Monaghan 1992] to offer best interpolation results.

Since only the n particles inside the support radius contribute to
the density, only these particles are part of a fluid constraint in our
solver. Thus, from equations (6) and (7) we get the fluid constraint

Ci(x) =
1

ρ0

(
n∑

j=1

mjWij

)
− 1. (8)

To avoid the problem of particle deficiencies at frees surfaces, we
restrict the constraint to positive values. This approach is equiva-
lent to clamping negative pressures to zero, a common solution in
SPH free surface flow, see e.g. [Ihmsen et al. 2014a], [Bender and
Koschier 2016].

Note that since particle neighborhoods change, our constraints may
contain different particles in each time step.

3.3 Constraint Projection

Now that we have established our fluid constraint, we need to find a
way to project it onto its constraint manifold. This means we want
to find auxiliary variables pi = Six + ∆pi, for each constraint
i, such that Ci(pi) = 0. In the following paragraphs we drop the
subscript for better readability.

We solve this problem by linearizing the constraint and iteratively
approaching its rest state in a Newton fashion, an idea also known
from Position Based Dynamics [Müller et al. 2007] and discussed in
depth in [Bender et al. 2014b]. As a first guess, we set p(0) = Six.
In the n-th iteration, the linearization yields

C(p) ≈ C(p(n)) +∇pC(p(n))T ∆p(n). (9)

D’Alembert’s principle restricts ∆p(n) to the constraint gradient:

∆p(n) = λ∇pC(p(n)), (10)

where the scalar λ is a Lagrange multiplier. By inserting Equa-
tion (10) into Equation (9) and solving for λ, we get

λ =
C(p(n))

∇pC(p(n))T∇pC(p(n))
. (11)

To calculate the approximate position correction we need the con-
straint gradient. Taking the derivative of Equation (8) with respect
to p reveals

∇pC(p(n)) =
1

ρ0

n∑
j=1

mj∇pWij ,

with which the position correction becomes

∆p(n) =
1

ρ0

n∑
j=1

mjλ∇pWij .

Because of the linearization performed in Equation (9), C(p(n) +

∆p(n)) will in general not be zero. Therefore, the correct projected
position is found by iterative updates p(n+1) = p(n) +∆p(n). The
iteration continues untilC(p(n)+∆p(n)) < ε, with ε being a small
constant. In our experiments, we found that on average three to four
iterations were sufficient to reach ε = 10−14. Only in rare cases
more than ten iterations were required. Algorithm 1 illustrates the
iterative projection procedure.

Note that in Macklin et al. [2013] take a similar approach, but in
their work the constraints are not independently projected onto their
rest states. Instead, after each solver iteration x is updated so that
intermediate particle positions are known to all constraints.

3.4 Linear System Solve

After all auxiliary variables have been projected onto their cor-
responding constraint manifold, we have to solve Equation (5)
for x in the global step. We chose the matrices D and P to

Algorithm 1 The constraint projection algorithm.
1: function PROJECTCONSTRAINT(p) . call with p = Six
2: C ⇐ calcConstraintPotential (p)
3: while C > ε do
4: ∇C ⇐ calcConstraintGradient (p)
5: if ||∇C|| is 0 then
6: break . already fond a minimum
7: p⇐ p− C

‖∇C‖2∇C . apply position correction
8: C ⇐ calcConstraintPotential (p)

9: return p

be the identity matrices. Experiments with differential coordinate
matrices, as proposed by Bouaziz et al. [2014], have not shown
a significant performance increase. The system matrix thus be-
comes A = M

∆t2
+
∑

i wiS
T
i Si, and the right hand side becomes

b = M
∆t2

s(n)∑
i wiS

T
i pi.

Projective Dynamics owes much of its performance to the fact that
the system matrix is constant and can be factorized in advance. This
allows the global step to be solved very efficiently. In our fluid sim-
ulation on the other hand, the constraints change in every time step
as particles flow past each other and their neighborhoods change.
The system matrix has to be updated in each step, and so does the
Cholesky factorization. A step that has previously been considered
preprocessing has now become performance-critical. When only a
small number of constraints change, sparse Cholesky updates can
be used to avoid a complete refactorization, but in our fluid sim-
ulation almost all constraints change each time step. In practice
this is unfeasible, and so we decided to use a matrix-free conjugate
gradient (CG) solver instead.

CG is a popular iterative algorithm for solving large, sparse systems
of linear equations. For an excellent derivation of the algorithm we
refer the reader to [Shewchuk 1994]. CG is used to solve sparse,
linear systems of the form Ax = b for a square, symmetric, pos-
itive definite matrix A. The main advantage of CG for our simu-
lation is, that it only references A through its multiplication with a
vector.We make use of this fact by providing only the result of the
matrix-vector multiplication and not the matrix A itself. Similarly,
we can calculate the right hand side vector without building any ma-
trix for b. Our matrix-free algorithm is illustrated in Algorithm 2.
Note that we parallelize over the constraints and, therefore, need to
apply updates to the result vectors atomically. Since the number of
concurrent threads on a modern CPU is significantly lower than the
number of constraints, threads only rarely block each other.

3.5 Inherited Traits

Our solver inherits several important traits from Projective Dynam-
ics. The first notable property is that there are no hard constraints
in Projective Dynamics. This leaves our fluid slightly compressible.
Since we use implicit time integration we can combat this problem
with high stiffness parameters wi. Even with large time step sizes,
we do not have to worry about stability. We adapt the time step size
during our simulation according to the CFL condition.

4 Implementation Details

We implemented our simulation framework in C++. We employ the
Eigen 3.2 library for basic linear algebra computations and use Intel
Threading Building Blocks for parallelization. By nature, matrix-
free CG consists only of vector operations which can be trivially
parallelized. Parallelization of the local step is straightforward as
well, since the constraints in Projective Dynamics are viewed as

Algorithm 2 The functions to calculate the product r = Σx and
the right hand side vector b in a matrix-free fashion.

1: function MATRIXFREEATIMES(x)
2: r⇐ 0 . to accumulate system matrix times vector
3: for each Ci do in parallel
4: for j ⇐ 1 to number of particles in Ci do
5: l⇐ global index of particle j
6: atomic rl ⇐ rl + wixl

7: for i⇐ 1 to number of particles do in parallel
8: ri ⇐ ri + Mii

∆t2
xi

9: return r
10: function MATRIXFREEB(x)
11: b⇐ 0 . to accumulate right hand side vector
12: for each Ci do in parallel
13: k ⇐ number of particles in Ci

14: p⇐ empty vector of size 3k
15: for j ⇐ 1 to k do
16: l⇐ global index of particle j
17: pj ⇐ xl

18: p⇐ PROJECTCONSTRAINT(p)
19: for j ⇐ 1 to k do
20: l⇐ global index of particle j
21: atomic bl ⇐ bl + wipj

22: for i⇐ 1 to number of particles do in parallel
23: bi ⇐ bi + Mii

∆t2
s
(n)
i . inertia term

24: return b

independent. Each constraint is projected onto its constraint mani-
fold and their influence on the right hand side of the system of linear
equations is updated atomically.

To accelerate the search for neighboring particles, we use the par-
allel spatial hashing algorithm proposed by Ihmsen et al. [2011].
Collisions with static objects were modeled using solid boundary
particles. To get a good distribution of particles on an arbitrary
object, Poisson-Disk samples are created on the surface of an in-
put mesh. These particles are then used in the density estimation of
SPH. We use the corrected density computation proposed by Akinci
et al. [2012] to account for the inherently irregular sampling and to
not have to sample the object’s volume. For the density calculation
we use the cubic spline kernel proposed by Monaghan et al. [1992].
It is cheap to compute and works well inside the fluid, but SPH
will inherently underestimate the fluid density at free surfaces. This
leads to negative pressure values and causes particles near the sur-
face to clump together. To circumvent this problem, we clamp the
pressure to non-negative values, an approach that is popular in com-
puter graphics [Ihmsen et al. 2014b]. After each simulation step
artificial viscosity is applied. We use the XSPH variant of the vis-
cosity term proposed by Schechter et al. [2012]. This formulation
was already successfully used by Bender and Koschier [2016].

5 Results

In this section we present the results of our simulations and dis-
cuss their meaning. The scenarios we chose here each concern the
reproduction of desired effects, or properties of our solver.

A common test case in fluid simulation for computer graphics is the
dam break. Figure 2 shows our version of the scenario. The break-
ing and overtaking waves that can be observed here are a desirable
result and typical for liquids. A closely related scenario is the dou-
ble breaking dam. In Figure 3 we show the simulation of two fluid
blocks that start with a diagonal offset. On collision, the simulated
liquid clearly forms the expected splashes and thin sheets.

Figure 2: A breaking dam scenario. A block of water flows under gravity and shows typical breaking waves.

Figure 3: A diagonal double dam break scenario in a rectangular
domain shows typical splashes and thin sheets.

Figure 4: Water spurts from an inlet into a box. Even at higher
velocities and constraint stiffness values our solver remains stable.

The scenario depicted in Figure 4 is a test for the stability of our
method. Since Projective Dynamics only simulates soft constraints,
we use high stiffness values in the range of wi = 106 to counter
compression of the fluid. Nevertheless we are able to stably simu-
late this scenario with an average time step size of more than 6ms
(see Table 1). Still the maximum density never rises more than
0.01% over the rest density during the whole simulation.

Since we are using the boundary handling method proposed by Ak-
inci et al. [2012], we are able to handle collisions with arbitrary
solid objects. An example of the interaction between fluid and com-
plex boundaries is shown in Figure 1, left. The right side shows
an experimental unified simulation of our fluids with other Projec-
tive Dynamics constraints. Furthermore, the artificial viscosity term
shows that our framework can easily be combined with other SPH
methods.

Timings Table 1 illustrates the performance of our solver on the
different scenarios described above. All measurements were run
on a computer with two Intel Xeon E5-2697 processors with 12
cores each, clocked at 2.7GHz, and 64GB of RAM. Our solver per-
formed a maximum of 30 local/global iterations, while constraint
projection and conjugate gradient solver ran until convergence.

fluid avg. time avg. time
Scene particles per step step size
three dragons 1945600 106.29s 0.00210s
double breaking dam 240000 12.73s 0.00174s
breaking dam 200000 11.30s 0.00207s
inlet 90000 4.47s 0.00622s
cloth 64000 2.92s 0.00122s

Table 1: Time measurements for different simulations.

Adaptive ∆t While the employed implicit time integration is un-
conditionally stable, the time step size is still limited by the CFL
condition. Fluid behavior can only be correctly recreated when par-
ticles travel less than their radius in one time step. Otherwise parti-
cle collisions may be missed. This means that the time step size has
to be lowered when the fluid flows faster. When the fluid is mov-
ing slowly on the other hand, we can be generous with the time step
size used in our simulation. In all videos we allow a maximum time
step size of ∆tmax = 0.01s and adapt it depending on the maximum
particle velocity in the scene. The average time step sizes for our
different scenarios are shown in Table 1.

6 Conclusion and Future Work

In this paper we have presented a new method for Lagrangian fluid
simulation, that uses Projective Dynamics to resolve our SPH based
pressure constraints. In contrast to other implicit SPH solvers we
maintain the ability to simulate compressible fluids. Still we can
keep the density deviation below 0.01% by using high stiffness val-
ues, while our implicit time integration allows us to use large ∆t.
Since in its core our solver still operates in the Projective Dynamics
framework, fluid and other constraints can be solved in a unified
manner. We employ a matrix-free CG solver to efficiently handle
constraints that change in every time step. Due to the highly paral-
lel nature of CG and Projective Dynamics, our algorithm can make
use of modern multi core CPUs. Matrix free CG also shows promis-
ing performance on the GPU [Weber et al. 2013]. Consequently, we
are considering an implementation on graphics hardware for further
speedup.

In future, we are planning to scrutinize the performance of our
method in complex scenarios with many different kinds of con-
straints. First experiments with the simulation of interactions be-
tween fluid and soft bodies have shown the potential of this ap-
proach. The reproduction of additional fluid properties, like surface
tension, is something we want to investigate as well.

Acknowledgments

The work of the authors is supported by the Excellence Initia-
tive of the German Federal and State Governments and the Grad-
uate School of Computational Engineering at TU Darmstadt. The
dragon model is courtesy of the Stanford Computer Graphics Lab.

References

ADAMS, B., PAULY, M., KEISER, R., AND GUIBAS, L. J. 2007.
Adaptively Sampled Particle Fluids. ACM Trans. on Graphics
26, 3, 48.

AKINCI, N., IHMSEN, M., AKINCI, G., SOLENTHALER, B., AND
TESCHNER, M. 2012. Versatile Rigid-Fluid Coupling for In-
compressible SPH. ACM Trans. on Graphics 31, 4, 62:1–62:8.

AKINCI, N., AKINCI, G., AND TESCHNER, M. 2013. Versatile
Surface Tension and Adhesion for SPH Fluids. ACM Trans. on
Graphics 32, 6, 1–8.

BECKER, M., AND TESCHNER, M. 2007. Weakly Compressible
SPH for Free Surface Flows. In ACM SIGGRAPH / Eurograph-
ics Symposium on Computer Animation, 1–8.

BENDER, J., AND KOSCHIER, D. 2015. Divergence-Free
Smoothed Particle Hydrodynamics. In ACM SIGGRAPH / Eu-
rographics Symposium on Computer Animation, 1–9.

BENDER, J., AND KOSCHIER, D. 2016. Divergence-Free SPH for
Incompressible and Viscous Fluids. IEEE Trans. on Visualiza-
tion and Computer Graphics.

BENDER, J., KOSCHIER, D., CHARRIER, P., AND WEBER, D.
2014. Position-Based Simulation of Continuous Materials. Com-
puters & Graphics 44, 1, 1–10.

BENDER, J., MÜLLER, M., AND MACKLIN, M. 2014. A Survey
on Position-Based Simulation Methods in Computer Graphics.
Computer Graphics Forum 33, 6, 228–251.

BENDER, J., MÜLLER, M., AND MACKLIN, M. 2015. Position-
based simulation methods in computer graphics. In Eurograph-
ics 2015 Tutorials, Eurographics Association.

BODIN, K., LACOURSIÈRE, C., AND SERVIN, M. 2012. Con-
straint fluids. IEEE Trans. on Visualization and Computer
Graphics 18, 516–526.

BOUAZIZ, S., MARTIN, S., LIU, T., KAVAN, L., AND PAULY, M.
2014. Projective Dynamics: Fusing Constraint Projections for
Fast Simulation. ACM Trans. on Graphics 33, 4, 1–11.

BRIDSON, R. 2008. Fluid Simulation for Computer Graphics. A
K Peters / CRC Press.

DE GOES, F., WALLEZ, C., HUANG, J., PAVLOV, D., AND DES-
BRUN, M. 2015. Power Particles: An incompressible fluid solver
based on power diagrams. ACM Trans. on Graphics 34, 4, 50:1–
50:11.

DEUL, C., CHARRIER, P., AND BENDER, J. 2014. Position-based
rigid body dynamics. Computer Animation and Virtual Worlds
27, 2, 103–112.

HE, X., LIU, N., LI, S., WANG, H., AND WANG, G. 2012. Lo-
cal Poisson SPH for Viscous Incompressible Fluids. Computer
Graphics Forum 31, 1948–1958.

HE, X., WANG, H., ZHANG, F., WANG, H., WANG, G., AND
ZHOU, K. 2014. Robust Simulation of Sparsely Sampled Thin
Features in SPH-Based Free Surface Flows. ACM Trans. on
Graphics 34, 1, 7:1–7:9.

IHMSEN, M., AKINCI, N., BECKER, M., AND TESCHNER, M.
2011. A Parallel SPH Implementation on Multi-Core CPUs.
Computer Graphics Forum 30, 1, 99–112.

IHMSEN, M., CORNELIS, J., SOLENTHALER, B., HORVATH, C.,
AND TESCHNER, M. 2014. Implicit Incompressible SPH. IEEE
Trans. on Visualization and Computer Graphics 20, 3, 426–435.

IHMSEN, M., ORTHMANN, J., SOLENTHALER, B., KOLB, A.,
AND TESCHNER, M. 2014. SPH Fluids in Computer Graphics.
Eurographics (State of the Art Reports), 21–42.

LIU, T., BARGTEIL, A. W., BRIEN, J. F. O., AND KAVAN, L.
2013. Fast Simulation of Mass-Spring Systems. ACM Trans. on
Graphics 32, 6, 214:1–214:7.

MACKLIN, M., AND MÜLLER, M. 2013. Position Based Fluids.
ACM Trans. on Graphics 32, 4, 1–5.

MARTIN, S., THOMASZEWSKI, B., GRINSPUN, E., AND GROSS,
M. 2011. Example-based Elastic Materials. ACM Transactions
on Graphics 30, 4, 72:1–72:8.

MONAGHAN, J. 1992. Smoothed Particle Hydrodynamics. Annual
review of astronomy and astrophysics 30, 1, 543–574.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
Based Fluid Simulation for Interactive Applications. In ACM
SIGGRAPH / Eurographics Symposium on Computer Animation,
154–159.

MÜLLER, M., HEIDELBERGER, B., HENNIX, M., AND RAT-
CLIFF, J. 2007. Position Based Dynamics. Visual Communi-
cation and Image Representation 18, 2, 109–118.

NARAIN, R., OVERBY, M., AND BROWN, G. E. 2016. ADMM
⊇ Projective Dynamics: Fast Simulation of General Constitu-
tive Models. In ACM SIGGRAPH / Eurographics Symposium on
Computer Animation, 1–8.

PEER, A., IHMSEN, M., CORNELIS, J., AND TESCHNER, M.
2015. An Implicit Viscosity Formulation for SPH Fluids. ACM
Trans. on Graphics 34, 4, 1–10.

SCHECHTER, H., AND BRIDSON, R. 2012. Ghost SPH for Ani-
mating Water. ACM Trans. on Graphics 31, 4, 61:1–61:8.

SHEWCHUK, J. 1994. An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain. Tech. rep.

SOLENTHALER, B., AND PAJAROLA, R. 2008. Density Contrast
SPH Interfaces. In ACM SIGGRAPH / Eurographics Symposium
on Computer Animation, 211–218.

SOLENTHALER, B., AND PAJAROLA, R. 2009. Predictive-
corrective Incompressible SPH. ACM Trans. on Graphics 28,
3, 40:1–40:6.

TAKAHASHI, T., DOBASHI, Y., FUJISHIRO, I., NISHITA, T., AND
LIN, M. 2015. Implicit Formulation for SPH-based Viscous
Fluids. Computer Graphics Forum 34, 2, 493–502.

TSENG, P. 2001. Convergence of a Block Coordinate Descent
Method for Nondifferentiable Minimization. Journal of Opti-
mization Theory and Applications 109, 3, 475–494.

WANG, H. 2015. A Chebyshev Semi-iterative Approach for Ac-
celerating Projective and Position-based Dynamics. ACM Trans.
on Graphics 34, 6, 246:1–246:9.

WEBER, D., BENDER, J., SCHNOES, M., STORK, A., AND FELL-
NER, D. 2013. Efficient GPU Data Structures and methods to
Solve Sparse Linear Systems in Dynamics Applications. Com-
puter Graphics Forum 32, 1, 16–26.

