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Figure 1: Left: Collisions of 1000 marbles dropped into a bowl with highly complex structures are accurately resolved using our SDF
representation. Right: A sheet of cloth represented by 320k triangles is dropped on the Stanford dragon. The mesh’s characteristic features
are outlined due to our accurate SDF representation serving as collision detector.

Abstract
In this paper we propose a novel method to construct hierarchical hp-adaptive Signed Distance Fields (SDFs). We discretize
the signed distance function of an input mesh using piecewise polynomials on an axis-aligned hexahedral grid. Besides spatial
refinement based on octree subdivision to refine the cell size (h), we hierarchically increase each cell’s polynomial degree
(p) in order to construct a very accurate but memory-efficient representation. Presenting a novel criterion to decide whether
to apply h- or p-refinement, we demonstrate that our method is able to construct more accurate SDFs at significantly lower
memory consumption than previous approaches. Finally, we demonstrate the usage of our representation as collision detector
for geometrically highly complex solid objects in the application area of physically-based simulation.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

Signed distance fields are a frequently used tool in the field of
computer graphics and serve a wide range of applications includ-
ing surface reconstruction [CT11], rendering [Jam10], geometrical
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modeling [FP06] or collision detection [MASS15]. Given a three-
dimensional spatial domain B ⊂R3 the distance function is usually
defined as the Euclidian distance from a given point ξ = (ξ,η,ζ)T

to the nearest point which lies on the domain’s boundary ∂B. More-
over, a signed distance function augments the distance function by
the information whether the point in question lies inside or outside
the domain. From a mathematical point of view the signed distance
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function Φ : R3 7→ R is defined as

Φ(ξ) = s(ξ) inf
ξ∗∈∂B

‖ξ−ξ∗‖,

s(ξ) =

{
−1 ξ ∈ B
1 otherwise.

(1)

While analytic representations for signed distance functions of
rather simple shapes (e.g. spheres, tori, boxes etc.) are efficient to
evaluate, the computation of the signed distance to arbitrary poly-
hedral shapes is very expensive. For that reason, it is common prac-
tice to discretize the signed distance function in order to evaluate
the function more efficiently. In the following, we will refer to a dis-
cretized signed distance function as Signed Distance Field (SDF).

The most common approach to construct an SDF is to sample
the signed distance at the vertices of a regular hexahedral grid and
to trilinearly interpolate within each cell, as e.g. proposed by Xu
and Barbič et al. [XB14b]. However, for complex objects this dis-
cretization strategy either consumes a large amount of memory or is
not sufficiently accurate while the sampling additionally may suffer
from aliasing effects. More elaborate approaches sample the func-
tion adaptively in order to increase the accuracy in highly detailed
regions and to reduce memory consumption, e.g. using an octree
as proposed by Frisken et al. [FPRJ00]. Especially in regions near
curved or sharp features, strong subdivision is demanded yielding
very memory consuming SDF representations.

In this paper, we propose a novel method to efficiently construct
a grid-based SDF using hierarchical hp-refinement based on piece-
wise polynomial fitting. Besides spatial adaption using octree sub-
division to refine the cell-size (h), we adapt the approximation’s
polynomial degree (p). We employ an orthonormal polynomial ba-
sis using shifted, normalized Legendre polynomials that enables us
to hierarchically construct higher order polynomials without any
rejection of previously computed coefficients. Using a novel hp-
decision criterion we steer the refinement process to decide whether
to apply h- or p-adaption. We demonstrate on complex objects
that our method generates highly accurate SDFs while keeping the
memory consumption at a minimum. Based on nearness weighting,
we provide the user the possibility to focus the refinement during
construction on regions near the underlying object’s surface. Fi-
nally, we show in several experiments that our hp-adaptive SDFs
are well-suited for the robust detection of collisions in dynamic
simulations (cf. Figure 1). Besides pure detection of contacts, the
field provides information about penetration depth and contact nor-
mals. Additionally, we would like to mention that our method is not
limited to this application.

2. Related Work

Numerous approaches in computer graphics use Signed Distance
Fields (SDF). See Jones et al. [JBS06] for an overview.

In the field of physics-based animation, SDFs are especially
well-suited for collision detection. SDFs allow rapid distance
queries between possibly colliding objects. Furthermore, the gra-
dient of the SDF, which defines the shortest path to the surface,
can be used as contact normal in the collision response. Bridson
et al. [BMF03] as well as Fuhrmann et al. [FSG03] use SDFs to

resolve collisions between cloth and rigid objects. Haptic render-
ing, which involves data provided by SDFs, is presented by Barbič
and James [BJ08]. Rigid body collisions are detected by methods
of Kaufman et al. [KSP07], Glondu et al. [GSM∗12], and Xu and
Barbič [XZB14]. Furthermore, Xu et al. [XB14a] present a con-
tinuous collision detection for rigid bodies. In this paper, we also
demonstrate the usage of our new SDF representation in the ap-
plication area of rigid body collision detection. However, with the
modifications presented by McAdams et al. [MZS∗11], our SDF
approach can also be applied to rigid-deformable and deformable-
deformable collision detection.

Since the introduction of SDFs to computer graphics by Rosen-
feld and Pfaltz [RP66], many methods have been presented to ac-
celerate the exact evaluation of signed distance functions based on
meshes (see e.g. [SFP12]). Although these methods got faster and
faster, the computation times are still far too long than required for
applications like interactive simulation or haptic rendering. More-
over, approximations to signed distance functions using precom-
puted SDF are often sufficiently accurate. Due to the fact that dis-
cretizations of increasingly complex scenes are very memory con-
suming, various methods focusing on a reduction of the memory
consumption were developed. One of the most popular methods
is the adaptively sampled distance fields (ADFs) approach intro-
duced by Frisken et al. [FPRJ00]. ADFs construct an octree of the
SDF. During construction, a cell of the octree is divided into finer
cells as long as the sampled error of the distance approximation
of the current cell at the new corners of the finer cells is above
a given threshold. It follows that ADFs require many fine cells in
regions where the trilinear discretization does not adequately repre-
sent the distance to the surface. The construction time of ADFs as
well as the memory consumption have been improved by Perry and
Frisken [PF01]. Recently, Liu and Kim [LK14] presented a method
to compute ADFs on GPUs. Another popular approach to reduce
memory consumption is to discretize only a narrow band close to
the objects surface as proposed by Bærentzen [Bær02] and Erleben
and Dohlmann [ED08]. Our hp-adaptive SDFs could also be gener-
ated for a narrow band in order to additionally save memory. How-
ever, we are generally interested in a high quality representation of
the SDF on the whole predefined domain in order to quickly ex-
clude possible contacts when testing against bounding spheres.

A hybrid approach for meshes between exact evaluation of dis-
tance fields and precomputation of distance information is pre-
sented by Huang et al. [HLC∗01]. This approach works with a reg-
ular grid where each cell stores data providing all triangles that
influence the distance values inside the cell. As a result, exact dis-
tance evaluation is available for all cells. While this method decou-
ples grid size and accuracy successfully, it is difficult to find the
right trade-off between the grid size and the number of triangles
per cell. Other approaches augment the grid with additional data to
represent sharp features like corners or edges without subdividing
the grid unnecessarily. For example, Ju et al. [JLSW02] store her-
mite data on the grid, Qu et al. [HNR∗04] store an additional curvi-
linear grid and Bærentzen [Bae05] uses a point cloud in addition
to the grid. A very cache efficient spatial subdivision scheme for
volumetric data on a grid has been presented by Museth [Mus13].
This approach is tailored for very large sparse data sets with a do-
main of at least 81923 cells. In order to handle large data sets the
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approach uses a structure similar to a B+-tree to find the cells con-
taining data. Instead of dividing space into hexahedral cells, Wu
and Kobbelt [WK03] propose to use a binary space partition (BSP-
tree) where the distance field inside the cells is approximated by
a linear function. The main advantage of this method compared
to grids is the adjustment of splitting planes to the geometry. In
opposition, our method fits a function to the distance field. In con-
trast to spatial subdivision schemes, Jones [Jon04] transforms the
distance field with a vector distance transform and a specially de-
fined predictor to be able to use entropy compression on the field.
By reducing the SDF data to a 2D height field projected onto a
proxy geometry Otaduy et al. [OJSL04] as well as Moustakas et
al. [MTS07] reduce the consumed memory. The main problem of
both approaches is to define a suitable proxy geometry.

Mitchell et al. [MASS15] present multivalued signed distance
fields where several cells might occupy a single volume of space.
This allows to represent non-manifold features that cannot be rep-
resented by standard grid-based representations. As such, the ap-
proach is orthogonal to the aforementioned methods to represent
more detail with less memory. Therefore, the method should also be
compatible with our grid-based method. Image-based volume con-
tacts proposed by Faure et al. [FBAF08] and Allard et al. [AFC∗10]
are an alternative approach of capturing detailed contact geometry
but require high resolution sampling for precise contact handling.
As a result, Wang et al. [WFP12] apply, similar to our method, an
error estimation based on polynomials to guide the refinement of
the spatial sampling.

Like most of the aforementioned methods, our approach uses
spatial subdivision to increase the accuracy. But in addition to that,
we apply higher-order polynomial fitting to approximate the dis-
tance field inside the grid cells. As a result, our method can use
the best fitting tool depending on the current distance field data to
reduce memory consumption.

3. Signed Distance Field Construction

In this section we will describe how to construct the hierarchical
hp-adaptive SDF. The algorithm expects a rectangular domain Ω in
the form of an axis-aligned bounding box, an initial grid resolution
and the function Φ, as defined in Equation (1), that maps a query
point to the exact signed distance of the underlying geometry, e.g.
a polygonal mesh. The construction consists of several steps. In the
initialization step we construct a coarse signed distance field using
the initial grid resolution by fitting low-order polynomials into each
cell serving as an initial guess. Subsequently, we estimate the error
in terms of the quadratic distance between the polynomial approxi-
mation and its embedded lower order approximation. We select the
cell contributing the largest residual and decide whether to perform
h- or p-refinement by means of a novel criterion, followed by the
actual refinement. Finally, we repeat the previous step as long as the
residual exceeds a certain threshold. For a more compact overview
we outlined our method in Algorithm 1. All variables contained in
the algorithm will be explained the following sections.

Algorithm 1: hp-adaptive SDF construction.
Data: nx,ny,nz,τ,Ω, pmax , lmax

1 ε← 0
2 n← nxnynz
3 pending← priority_queue{}
4 for e← 0 to n do
5 fit_polynomial(e, 2) // Fit

polynomial of
lowest order
2 to each
base cell e.
Equation (5)

6 εe← estimate_error(e) // Equation (6)
7 ε← ε+ εe
8 pending.push({e, εe})
9 end

10 while not pending.empty() and ε > τ do
11 {e, εe}← pending.pop()
12 {p, l}← {degree(e), level(e)}
13 µe← estimate_improvement_p(e) // Equation (8)
14 νe← estimate_improvement_h(e) // Equation (9)
15 refinep ← p < pmax and ( l == lmax or µe > νe )
16 refineh ← l < lmax and not refinep
17 if refinep then
18 fit_polynomial(e,p+1) // Equation (5)
19 ε← ε− εe
20 εe← estimate_error(e) // Equation (6)
21 ε← ε+ εe
22 pending.push({e, εe})
23 end
24 if refineh then
25 children← subdivide(e) // Octree

subdivision.
26 ε← ε− εe
27 for j ∈ children do
28 fit_polynomial( j,p) // Equation (5)
29 ε j← estimate_error( j) // Equation (6)
30 ε← ε+ ε j
31 pending.push({ j, ε j})
32 end
33 end
34 end

3.1. Exact Signed Distance Computation

In order to determine the exact signed distance Φ from a given point
to the input mesh, we first determine the unsigned distance. This is
done by finding the nearest triangle within the mesh and by com-
puting the distance to the triangle. In order to accelerate the nearest
triangle search, we build a bounding sphere hierarchy in combi-
nation with a special traversal algorithm according the method pro-
posed by Sanchez et al. [SFP12]. Afterwards, we determine the sign
of the minimal distance using the angle-weighted pseudo-normal
test which solely consists of a single dot product as proposed by
Bærentzen and Aanæes [BA05]. For further details on the pseudo-
normal test, we would like to refer the reader to their publication.
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3.2. Polynomial Fitting

In this section we describe how to efficiently fit a multivariate poly-
nomial of degree p to the exact signed distance function for a single
cell. Given an arbitrary polynomial basis, we are interested in the
coefficient set that minimizes the quadratic distance between the
polynomial and the signed distance function. Mathematically, this
results in the following quadratic minimization problem:

min
cp

e

Rp
e (c

p
e )

Rp
e =

∫
Ωe

1
2
( f p

e −Φ)2dξ, f p
e = cp

e ·Pp
e

Pp
e =

{
Pρ

e
}
, cp

e =
{

cρe
}

ρ= (ρξ,ρη,ρζ), 0≤ ρξ +ρη +ρζ ≤ p,

(2)

where f p
e represents the polynomial degree p approximation, Rp

e
the half squared error to the exact signed distance function and
where the vectors Pp

e and cp
e denote the polynomial basis and cor-

responding coefficients, respectively. Furthermore, ρ describes the
polynomial degree in each direction of the corresponding basis
polynomial. This problem can then be reformulated as a dense lin-
ear equation system:

Ap
e cp

e = bp
e ,

Ap
e =

∫
Ωe

Pp
e
(
Pp

e
)T dξ, bp

e =
∫

Ωe

Pp
e Φdξ.

(3)

In order to finally interpolate using the fitted polynomial, fe(ξ) has
to be evaluated.

3.3. Hierarchical p-Refinement

Unfortunately, the matrix Ap
e can be badly conditioned for arbi-

trary polynomial bases, e.g. a monomial basis. Another problem is
that the system has to be reassembled and reevaluated if the basis
is augmented by polynomials of higher degree. To overcome these
issues, we construct a tensor product basis, based on shifted nor-
malized Legendre polynomials:

Pρ
e (ξ) = ∏

x∈{ξ,η,ζ}

√
2ρx +1
bx

e−ax
e

Lρx(x
′)

Lp(x) =
1

2p

p

∑
l=0

(
p
l

)2

(x−1)p−l(x+1)l

=
1
p
(
(2p−1) x Lp−1(x)− (p−1) Lp−2(x)

)
,

(4)

where ax
e and bx

e are the minimum and maximum coordinate of the
cell e in x-direction while x′ = 2

bx
e−ax

e
x− bx

e+ax
e

bx
e−ax

e
is the shifted co-

ordinate. Thanks to the basis’ orthonormality, i.e.
∫

Ωe
Pρ

e Pρ∗

e δξ =
δρξρ∗

ξ
δρηρ∗

η
δρζρ∗

ζ
, the matrix of Equation (3) becomes the identity

matrix, i.e. Ae = I, where δi j denotes the Kronecker-δ. As a conse-
quence, the formula for the coefficients reduces to

cp
e =

∫
Ωe

Pp
e Φdξ. (5)

Please note that besides the vanished requirement to compute the
matrix Ae, there remains no coupling between the coefficients.
This is especially advantageous as only new coefficients have to

be computed when increasing the polynomial degree. Based on
this fact, we consider the basis hierarchical, as the coefficient
set ce can simply be augmented by computing the missing, de-
sired entries without affecting existing ones. By definition of Equa-
tion (2), the number of entries contained in vectors Pp

e and cp
e is

then nc(p) = 1
6 (6+ 11p+ 6p2 + p3). Note that it would also be

possible to use the complete set of polynomials up to order p, such
that 0 ≤ max(ρξ,ρη,ρζ) ≤ p instead of 0 ≤ ρξ + ρη + ρζ ≤ p.
However, the number of resulting vector entries would grow faster
(nc(p) = (p+1)3) which would result in a less granular refinement.

The biggest challenge during the described fitting step is to eval-
uate the integral in Equation (5). A common approach to solve in-
tegrals with a-priori unknown integrand is to apply locally or glob-
ally adaptive, multi-dimensional numerical integration rules, e.g.
adaptive Gauss quadrature or Monte-Carlo integration using impor-
tance sampling. However, an application of these methods to Equa-
tion (5) would heavily suffer from two issues. The first issue is the
smoothness of the integrand. While the polynomials are smooth and
therefore infinitely often differentiable, Φ is only guaranteed to be
continuous for two-manifold geometries and usually contains dis-
continuities in its derivatives. A possible source of these ’kinks’ are
sharp features in the underlying geometry. Moreover, they may also
arise when smooth surfaces are considered as, e.g., the signed dis-
tance function in the center of a sphere is non-differentiable. This
results in a high number of required Φ evaluations during numeri-
cal integration. Even worse, an evaluation of Φ as defined in Equa-
tion (1) is computationally expensive, hence the number of evalua-
tions should be kept to a minimum. In order to compute the integral
sufficiently well and in an acceptable amount of time, we heuristi-
cally approximate it using multi-dimensional Gauss quadrature of
order 4p, where p is the highest polynomial degree contained in
Pe. Using this heuristic, we experienced no artifacts or major is-
sues. Moreover, our results demonstrate the quality of the generated
SDFs.

3.4. Hierarchical h-Refinement

Besides incrementing the polynomial degree, a spatial subdivision
is also desirable. More specifically it is especially useful in re-
gions where the underlying signed distance function has low regu-
larity and is therefore not very smooth. In this case the benefit of
higher order polynomials is marginal while h-adaption, typically
using low-order polynomials, resolves ’kinks’ in the function bet-
ter. Based on a regular subdivision we generate an octree for each
of the base cells. If a cell is about to be h-refined, we again fit poly-
nomials to the exact signed distance function by means of solving
Equation (5) for the finer cells and reject the coarser approximation.
Please note that the construction of the coarser approximation was
not redundant as it is essential in order to decide if the cell should
be h- or p-refined in the further process.

3.5. Error Estimation

The previously described refinement methods must be steered in
order to control where the approximation should be improved and
to decide whether to apply h- or p-refinement. As the function Φ

may be evaluated at any point in space, it is theoretically possible
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to directly compute the exact quadratic error ε = ∑e Re(ce) using
the sum of each cell e’s individual quadratic error. However, it is
computationally very expensive to approximate this exact quadratic
error which is due to two reasons. First, every evaluation of the ex-
act signed distance function Φ is rather expensive depending on
the complexity of the underlying mesh, so we aim to keep the num-
ber of evaluations to a minimum. Second, the integrand is in gen-
eral locally non-smooth which results in either poor accuracy if
static numerical integration is used or an unacceptably high num-
ber of function evaluations for adaptive numerical integration rules.
Please note that we initially intended to use an approximation to the
exact error, but discovered that either the accuracy or the runtime
was not acceptable.

As a robust alternative, we estimate the remaining error using
the currently available approximation. More specifically, our esti-
mation is based on the difference of the current degree p approxi-
mation compared to a lower order approximation of degree p− 1:

ε
p
e =

∫
Ωe

(
∆

p
e
)2 dξ

=
∫

Ωe

(
∑

i+ j+k=p
c(i, j,k)e P(i, j,k)

e

)2

dξ

= ∑
i+ j+k=p

∑
α+β+γ=p

c(i, j,k)e c(α,β,γ)e

∫
Ωe

P(i, j,k)
e P(α,β,γ)

e dξ

= ∑
i+ j+k=p

|c(i, j,k)e |2,

∆
p
e = cp

e ·Pp
e − cp−1

e ·Pp−1
e

(6)

Thanks to the choice of the orthonormal polynomial basis, the es-
timation is computationally very efficient due to two reasons. First,
the lower order approximation is directly embedded in the current
approximation and can simply be computed by using only the com-
puted coefficients c up to the requested order. Second, the constant
coefficients can be factored out while the integrals of the polynomi-
als of equal degree become exactly 1 and all others 0. This finally
results in simple sum of squared coefficients.

3.6. Construction Algorithm

In this section we will give a detailed description of Algorithm 1.
The approach can be considered a globally adaptive refinement fol-
lowing a top-down strategy. The main idea of the construction al-
gorithm is to maintain a priority queue yielding the next cell desig-
nated to be refined based on the individual error contributed by the
cell.

In line 1 to 3 we initialize the total error variable and the priority
queue and compute the number of base cells in the initial, user-
defined grid resolution. In the initialization loop (line 4 to 9) we fit a
polynomial of degree 2 into each cell, estimate the error contributed
by the cell, accumulate the error in the total error variable and insert
the cell index based on its error contribution into the priority queue.
The core part of the algorithm is the refinement loop described in
line 10 to 34. We aim to refine the approximation as long as the
error exceeds a certain threshold τ and refinable cells exist. After
retrieving the element contributing the highest individual error, we

have to decide whether to geometrically refine the cell or to increase
its approximation’s polynomial degree. If the cell has reached its
maximum refinement level, only the degree may be increased and
vice versa, such that no further criterion is required. Otherwise, we
estimate the improvement that a p- or an h-adaption would yield.
This is done by trying out both refinement strategies and measuring
the remaining error on the h-adaption induced subcells. In order to
make a final decision we developed the hp-decision criterion:{

adapt p if µe > νe

adapt h otherwise,
(7)

µe =
1

nc(p+1)−nc(p)

(
ε

p
e −8ε

p+1
e

)
, (8)

νe =
1

7nc(p)

(
ε

p
e −8max

c∈Ce
ε

p
c

)
, (9)

where Ce is the set of child cells resulting from the octree subdi-
vision of e. The criterion decides in favor of a p-adaption if the
improvement per additional degree of freedom based on the scaled
error of the (p+1)-polynomial defined on the coarse cell is greater
than the improvement per additional degree of freedom due to the
scaled maximum error of the spatially subdivided order p poly-
nomial measured on each of the subdomains on the finer octree
level. The reason for preferring the criterion over simply measuring
which adaption would result in the greater improvement is the fol-
lowing. We aim to favor an h-adaption if the approximation on any
of the potential subcells gains more accuracy from h-adaption com-
pared to p-adaption. Additionally, the scaling balances the refine-
ment to counteract over-refinement in one dimension. Otherwise,
the algorithm tends to drastically increase the polynomial degree
in the first few steps as this improves the approximation on aver-
age over the coarse cell very well while there is potentially only a
small improvement on some of the octree subdomains. This forces
at least the same degree on the subcells resulting from subsequent
h-adaptions. Consequently, many unnecessary degrees of freedom
arise resulting in a higher memory consumption and computational
effort for both construction and interpolation. Following the crite-
rion, we either refine the grid or increase the polynomial degree
according to lines 18-22 or 25-32, respectively. Moreover, the er-
ror is updated and the resulting cells’ indices with the respective
individual errors are inserted into the queue.

Please note that we accumulate the residual during the whole
construction process. To overcome concerns regarding an increas-
ing numerical error, we store the residual of each individual cell
and recompute the total residual ε = ∑e εe every 1000 steps.

3.7. Nearness Weighting

For some applications of SDFs a comparably higher accuracy near
the surface may be desired while regions far away from the surface
are less interesting. In order to achieve the respective refinement
behavior, we extend Equation (6) by a weighting factor κe depend-
ing on the nearness of the cell to the surface:

ε
∗
e =

(
1− 1

Ved

∣∣∣∣∫
Ωe

Φdξ
∣∣∣∣)θ

εe

≈
(

1− 1
Ved

∣∣∣∣∫
Ωe

fedξ
∣∣∣∣)θ

εe = κeεe,

(10)
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Figure 2: Legend. Each color in this legend represents either the
polynomial degree or the octree refinement level in other plots.

where Ve, d and θ are the cell e’s volume, the construction domain’s
diagonal and the nearness exponent, respectively. By replacing Φ

with fe we avoid the expensive exact signed distance evaluations
and use the current approximation instead. The factor’s integral part
divided by the cell’s volume represents the average signed distance
value of the approximation. We additionally divide the cell by d as
the maximum possible average distance must be smaller than the
length of the domains diagonal if we presume that the underlying
object is completely contained in the domain, i.e. B ⊆Ω, such that
we can guarantee 0 ≤ κe ≤ 1. However, due to potentially strong
deviations of the approximation, κe may lie outside of the inter-
val. In this case we simply clamp the factor to [0,1]. Please note
that if nearness weighting is used, the criterion described by Equa-
tions (7)-(9) must be modified accordingly.

4. Results and Discussion

All computations presented in this section were performed on two
Intel Xeon E5-2697 processors with 2.7GHz, 30MB Cache, 12
cores per processor and 64GB RAM. We parallelized the SDF
construction using Intel TBB while we always executed the code
with 48 threads. All deformable and rigid body simulations with
contacts are based on the approaches proposed by Bender et
al. [BKCW14] and Deul et al. [DCB14] implemented in the open-
source library PositionBasedDynamics [Ben16]. In summary our
results cover four types of experiments. Firstly, we analyzed the
convergence of the proposed method with respect to the number of
coefficients. Secondly, we generated SDFs for a variety of meshes
and summarized the key data in Table 1. Thirdly, we simulated var-
ious scenarios including rigid and deformable objects demonstrat-
ing the practical applicability of our approach for physically-based
simulation. Finally, we measured the average time required to com-
pute distance values with our SDFs. In the following paragraphs
each of these experiments will be described in detail.

Convergence and Refinement Analysis Figures 3 and 4 show the
convergence behavior with respect to the number of required co-
efficients (#DOF) measured using the estimated error (residual)
described in Equation (6) on logarithmic scale. We compared our
hp-adaptive approach to pure octree-subdivision with linearly (h1-
adaptive) and quadratically (h2-adaptive) fitted polynomials. Both
examples show the superiority of our approach as we require a frac-
tion of the number of coefficients compared to the other methods.
The curves’ ’kinks’, mostly visible in the curve according to h1-
adaption, appear when all cells of a certain octree level are sub-
divided such that the decrease in the residual becomes suddenly
smaller. We would like to put additional emphasis on the fact that
we constructed the polynomials in all cases using the fitting ap-
proach (cf. Equation (2)) which yiels the optimal solution in terms
of the measured error. Using the standard approach of previous
works of sampling distance values within each cell would yield

Figure 3: Comparison of the convergence for a torus model of our
hp-adaptive method with a pure octree-subdivision using linearly
and quadratically fitted polynomials. #DOF encodes the number
of polynomial coefficients required to enforce the corresponding
residual.

Figure 4: Convergence study of SDF construction for a skeleton
hand.

even worse results for the h1- and h2-adaptions. For further in-
vestigation, we visualized the leaf cells and their polynomial de-
gree and their according polynomial degree of an example slice
as depicted in Figures 5 and 6. Notable is that the h-refinement
with low-order polynomials was primarily used in regions where Φ

is non-differentiable while smooth regions are mainly represented
by large cells with high polynomial degree. This exactly correlates
with our assumptions about the refinement behavior and demon-
strates the meaningfulness and applicability of our hp-decision cri-
terion (cf. Equation 7).

Construction Statistics Table 1 summarizes statistics on the input
triangle meshes and the according SDF construction results. All in-
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Figure 5: Torus degree plot. Visualization of octree cells with cor-
responding polynomial degrees according to the legend depicted in
Figure 2.

Figure 6: Skeleton hand degree plot. Visualization of octree cells
with corresponding polynomial degrees according to the legend de-
picted in Figure 2.

put meshes were scaled to the unit box [−1,1]3 and the construction
domain was enlargened by 10% while we globally chose pmax = 30
and lmax = 10. Additionally, we used a nearness exponent of θ = 4
for all examples. The mesh column shows the name of the mesh and
its number of containing vertices and faces. The SDF column fur-
ther contains the resolution of the intial construction grid, the time
required for construction, the number of the resulting octree leaf
cells, the per-volume distributions of degree and octree depth with
colors according to the legend in Figure 2, the target error and the fi-
nal memory consumption as well as a visualization of an exemplary
slice of the SDF. We store the SDF in a data structure which mainly

Figure 7: Top: Complex rigid and deformable bodies slide down
an inclined plane with obstacles. Bottom: 800 rigid bodies fall onto
a set of 64 poles having several thousand contacts per simulation
step.

consists of four arrays. The first two arrays contain the polynomial
coefficients in double-precision and a prefix-sum stating at which
point in the coefficient array the coefficients of each cell start and
how many coefficients belong to the respective cell. The remaining
two arrays represent a child node index list containing the index of
the corresponding octree nodes stored in the last array.

Collision Detection In order to demonstrate the applicability of
our SDFs to collision detection in dynamics simulations, we sim-
ulated several scenarios. The surface of each object was sampled
using points which were organized in a bounding-sphere hierar-
chy (BSH). The BSH was constructed and traversed similar to the
approach described by Sanchez et al. [SFP12]. Furthermore, we
generated an SDF for each (non-deformable) object offline and se-
rialized the SDF. The field was then loaded by the simulation code
and in each time-step tested against the point samples of the other
objects. Figure 7 shows two experiments where dynamic bodies
collide with a couple of poles. Each body has 10k surface points
which were used for the distance queries. The collision detection
was accelerated by performing the collision tests for all pairs of
bodies in parallel. In the first simulation (top) rigid and deformable
bodies slide down an inclined plane. While the rigid dragons and
bunnies have their own signed distance field, the collisions of the

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.
The definitive version is available at http://diglib.eg.org/.

http://diglib.eg.org/


Dan Koschier, Crispin Deul & Jan Bender / Hierarchical hp-Adaptive Signed Distance Fields

Figure 8: Dynamic simulation of a marble run with subsequent
armadillo bowling.

Figure 9: Dynamic simulation of a marble following a highly-
detailed, helix shaped groove in a bowl.

deformable armadillos are only detected using the distance fields of
the other bodies and obstacles. In the second experiment 800 rigid
armadillo, bunny and dragon models were dropped onto a set of 64
poles. In a simulation time of 25 seconds the maximum and aver-
age number of contacts per step were 15050 and 8007, respectively.
Within the finally resting body pile we observed more than 11600
contacts in each simulation step. Our collision detection including
the BSH traversal and the signed signed distance field queries re-
quired an average computation time of 158 ms per simulation step.
Note that such an efficient contact computation would not have
been possible using a collision detection with triangle-triangle tests
as our distance fields accurately represent all geometric models in
the scenario with a total number of more than 132M triangles.

Figure 9 and 1 (left) show bowls with very fine structures. Re-
garding the first bowl, a marble runs down a helix-formed groove
while we dropped 1000 marbles into the second bowl. In both sce-
narios the contact information between the marbles and the bowls
is very accurate while the highly-detailed surfaces are flawlessly
represented by the SDF. Figure 8 shows a marble rolling on a mar-
ble run. Please note that the geometry is very thin and small com-
pared to its bounding box. Our method was still able to construct
a very accurate SDF while the memory consumption was surpris-
ingly small (cf. Table 1). In a final simulation scenario depicted in
Figure 1 (right), we covered the Stanford dragon with a sheet of

cloth. The features of the dragon surface are still clearly visible as
they are silhouetted against the sheet.

Distance Query Performance Finally, we measured the time to
query the distance using the SDF. We randomly sampled the field
with several thousand points and averaged the resulting measured
values. For the armadillo and structured bowl this took approxi-
mately 4.76× 10−4 ms and 7.16× 10−4 ms, respectively. If the
SDF-gradient was additionaly requested, the queries took 7.34×
10−4 ms and 7.84× 10−4 ms. Thanks to the recursive form of the
Legendre polynomials (cf. Equation (4)) their evaluation was accel-
erated by reusing redundant terms from order 0 to order p within
the distance evaluation as well as the gradient computation.

5. Conclusion

In this paper we presented a novel hierarchical method to construct
SDFs. We introduced an approach based on shifted, orthonormal-
ized Legendre polynomials to efficiently fit polynomials to the ex-
act signed distance function in a hierarchical manner. Spatial adap-
tivity was realized using octree subdivision. We developed a new
hp-decision criterion based on an estimated error in order to steer
the refinement. The criterion-controlled subdivision heavily im-
proves the convergence compared to traditional pure spatial refine-
ment. Moreover, a nearness weighting approach was presented that
modifies the error measure such that the refinement is focused near
the underlying object’s surface. We demonstrated that our method
is able to produce very accurate SDFs for complex geometries con-
suming only a small amount of memory and that these are very
well-suited to detect contacts and collisions, implicitly providing
depth and contact normal, in physically-based simulations.

Our method also has some limitations. Generally, the SDFs re-
sulting from our approach are discontinuous over cell borders.
However, the discontinuities vanish for small target errors τ. In
order to produce meaningful results for coarse approximations
we plan to extend our method in order to provide sufficiently
smooth transitions between cells. Another limitation is that for two-
dimensional objects embedded in three dimensions such as cloth or
shells it can not be distinguished between ’inside’ and ’outside’.
For that reason our method is not useful to handle cloth-cloth con-
tacts or self-intersections of cloth. Surfaces exactly touching each
other as in cutting or fracture simulations cannot be easily resolved
for collision handling by simply discretizing the signed distance.
Therefore, we plan to investigate if we can extend our method to a
non-manifold SDF similar to the work of Mitchell et al. [MASS15].
This would potentially allow us to apply the approach to collision
detection in cutting and fracture simulations.
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Mesh Signed Distance Field

Name #Vert. #Faces
Base
Grid

Constr.
Time

#Cells Degree Depth ε,τ Memory Field

Armadillo 173k 346k 63 270s 71k 10−6 10.6 MB

Bunny 34.8k 69.6k 63 301s 55k 10−6 8.4 MB

Dragon 40k 80k 103 1245s 299k 10−7 46.9 MB

Hand 66.2k 132.5k 103 833s 159k 10−7 25 MB

Helix
Bowl

164.9k 329.8k 43 423s 159k 5×10−9 34.9 MB

Marble
Run

27k 53k 43 312s 87k 5×10−9 18.4 MB

Structured
Bowl

2.05M 4.1M 43 4121s 1.25M 5×10−9 250 MB

Table 1: Construction statistics. Mesh column shows object names and corresponding number of vertices and faces. The SDF column
contains initial grid resolution, required time for construction, number of octree leaf cells, normalized histograms capturing the volume-
fraction of the domain occupied by cells of the corresponding degree or octree depth, the (enforced) target error and the final memory
consumption as well as a slice image of the SDF. The colors of the histograms are encoded as depicted in Figure 2 according to the degree
or octree depth.
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