
Divergence-Free Smoothed Particle Hydrodynamics

Jan Bender∗ Dan Koschier†

Graduate School CE
TU Darmstadt

Figure 1: Our new SPH method allows a stable simulation of incompressible fluids with high velocities while maintaining a divergence-free
velocity field. This is shown on the left in a simulation with 2.4 million fluid particles and 6 million boundary particles. Moreover, our
approach is significantly faster than current state-of-the-art SPH methods and is able to simulate complex scenes consisting of 5 million fluid
particles and 40 million boundary particles in 5 seconds per time step with a maximum volume compression of 0.01 % (right).

Abstract

In this paper we introduce an efficient and stable implicit SPH
method for the physically-based simulation of incompressible flu-
ids. In the area of computer graphics the most efficient SPH ap-
proaches focus solely on the correction of the density error to pre-
vent volume compression. However, the continuity equation for
incompressible flow also demands a divergence-free velocity field
which is neglected by most methods. Although a few methods con-
sider velocity divergence, they are either slow or have a perceivable
density fluctuation.

Our novel method uses an efficient combination of two pressure
solvers which enforce low volume compression (below 0.01 %)
and a divergence-free velocity field. This can be seen as enforc-
ing incompressibility both on position level and velocity level.
The first part is essential for realistic physical behavior while the
divergence-free state increases the stability significantly and re-
duces the number of solver iterations. Moreover, it allows larger
time steps which yields a considerable performance gain since par-
ticle neighborhoods have to be updated less frequently. Therefore,
our divergence-free SPH (DFSPH) approach is significantly faster
and more stable than current state-of-the-art SPH methods for in-
compressible fluids. We demonstrate this in simulations with mil-
lions of fast moving particles.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation;

∗e-mail:bender@gsc.tu-darmstadt.de
†e-mail:koschier@gsc.tu-darmstadt.de

Keywords: fluid simulation, Smoothed Particle Hydrodynamics,
divergence-free fluids, incompressibility, implicit integration

1 Introduction

In the last years Smoothed Particle Hydrodynamics (SPH) became
a popular method in computer graphics to simulate complex water
effects. SPH is a meshless Lagrangian method which computes the
fluid quantities at a given point by only considering a finite set of
neighboring particles. One of the most challenging problems in this
field is to enforce incompressibility which is essential to simulate
realistic physical behavior.

In general the SPH simulation of incompressible fluids is performed
using the incompressible, isothermal Navier-Stokes equations in
Lagrangian coordinates

Dρ

Dt
= 0 ⇔ ∇ · v = 0 (1)

Dv

Dt
= −1

ρ
∇p+ ν∇2v +

f

ρ
, (2)

where D(·)/Dt denotes the material derivative and ρ, p, ν, v and
f denote density, pressure, kinematic viscosity, velocity and body
forces, respectively. Note that due to the incompressibility the
partial derivative of the density with respect to the time is zero,
i.e. ∂ρ/∂t = 0, which implies the equivalence of both equations

Figure 2: Comparison between the velocity divergence of IISPH
(left) and DFSPH (right) in a breaking dam simulation with 125k
particles. The divergence errors are color coded, where white is the
minimum and red is the maximum.

in (1). According to these equations, an incompressible fluid must
fulfill the divergence-free condition ∇ · v = 0, which means that
the fluid must have a divergence-free velocity field. From the con-
tinuity equation Dρ

Dt
= −ρ∇ · v and the divergence-free condition

it follows that the density must stay constant over time Dρ
Dt

= 0.
Hence, in theory, a fluid with a divergence-free velocity field has a
constant density and therefore is incompressible. However, in prac-
tice, enforcing the divergence-free condition in a simulation is not
sufficient to guarantee incompressibility. Inevitable errors of nu-
merical time integration lead to density deviations which sum up
over the simulation. Since the divergence-free condition does not
consider the resulting density error, volume compression due to nu-
merical errors can not be avoided. To correct the numerical density
error a second condition must be fulfilled ρ − ρ0 = 0, which we
call the constant density condition. In summary, the Navier-Stokes
equations for incompressible fluids demand a divergence-free ve-
locity field and additionally a stabilization in form of the constant
density condition is required to counteract numerical errors.

Recently, in the area of computer graphics implicit pressure solvers
became popular in SPH simulations to simulate incompressible flu-
ids. These solvers determine pressure forces for the particle model
in order to prevent volume compression. Currently, the most ef-
ficient SPH pressure solvers for incompressible fluids solely con-
sider the constant density condition which only depends on the par-
ticle positions. However, the resulting velocity field is generally
not divergence-free (see Figure 2, left) which is demanded by the
continuity equation for incompressible flow. So far only few SPH
approaches exist which consider velocity divergence but either they
cannot enforce a low density error or they are comparatively slow.

In this paper we introduce a novel efficient and stable SPH approach
which in contrast to most previous methods fulfills the divergence-
free condition and the constant density condition. This is achieved
by the combination of two pressure solvers which consider the di-
vergence error and the density error, respectively. Our first solver
enforces a divergence-free velocity field (see Figure 2, right) which
has several advantages in SPH simulations. First of all, the simu-
lation gets more stable, especially in simulations with fast moving
particles (see Figure 1). The increased stability allows us to perform
larger time steps which increases the overall performance since
the computationally expensive neighborhood search is required less
frequently. Moreover, the maximum time step size can be deter-
mined more accurately by the CFL condition which depends on the
maximum particle velocity. Finally, enforcing a divergence-free ve-
locity field significantly decreases the number of iterations required

by the second solver which corrects the density error. There al-
ready exist different constant density solvers which could be com-
bined with our divergence-free solver, e.g. Predictive-Corrective In-
compressible SPH (PCISPH) [Solenthaler and Pajarola 2009] and
Implicit Incompressible SPH (IISPH) [Ihmsen et al. 2014a]. How-
ever, in this work we introduce a new method that perfectly fits our
divergence-free solver since it uses an analogue technique and can
therefore reuse precomputed coefficients. The simulation with our
new approach yields speedup factors of more than 20 in comparison
to current state-of-the-art SPH methods.

2 Related Work

Within the field of computer graphics a variety of methods for the
simulation of incompressible fluids were developed. In this section
we give a brief overview over related approaches. For a general
survey we refer to the work of Bridson [2008] while the recent state
of the art report of Ihmsen et al. [2014b] specifically discusses SPH
methods for fluid simulation.

Monaghan [1994] used state equations to weakly enforce incom-
pressibility by penalizing density errors using a stiffness-weighted
pressure term. They choose the stiffness coefficient dependent on
the speed of sound to keep the compressibility considerable. Des-
brun and Gascuel [1996] made use of an equation of state (EOS)
based solver in order to animate highly deformable bodies. Later,
Müller et al. [2003] introduced an EOS-based approach for fluid
simulation to the computer graphics community while Adams et
al. [2007] extended this method by spatial adaptivity. Becker and
Teschner [2007] proposed an EOS method to restrict the maximum
compression by predetermined, scenario-dependent stiffness coef-
ficients. However, small density tolerances lead to high stiffness
coefficients resulting in stiff differential equations and therefore to
strict time-step restrictions.

To further enhance density preservation, pressure can be com-
puted using an intermediate density determined after advecting the
particles without pressure forces, known as the concept of split-
ting [Chorin 1968; Bridson 2008]. Solenthaler and Pajarola [2009]
adopted this splitting concept and extended it by an iterative pres-
sure solver in order to keep the maximum density error within a
user-defined tolerance. Later, the method was extended by rigid-
fluid coupling [Akinci et al. 2012] and a novel surface tension
model [Akinci et al. 2013]. Macklin and Müller [2013] proposed
Position Based Fluids (PBF) – a similar concept that iteratively re-
fines particle positions to enforce incompressibility. Holonomic
constraints on the density error motivated by rigid body mechan-
ics were solved on a velocity level by Bodin et al. [2012]. How-
ever, they reported compression errors of up to 17 % due to nu-
merical approximations, a regularization parameter and errors in
time-integration. All of these EOS-based iterative methods with
splitting enforce incompressibility only either on velocity or den-
sity level while our method considers both. Recently, Kang and
Sagong [2014] proposed a method extending the work of Mack-
lin and Müller [2013] by additionally satisfying the divergence-free
condition. However, they cannot guarantee a divergence-free ve-
locity field after each timestep as particle positions are updated
subsequently to the velocity projection. Moreover, they report run-
times being similar or worse compared to the method of Macklin
and Müller while our method yields large speed-up factors of up to
one order of magnitude especially for large time steps (see Table 2).

In contrast to non-iterative as well as iterative EOS solvers, the
Pressure Poisson Equation (PPE) can be solved in order to project
intermediate velocities onto a divergence-free state. Especially, in
grid-based, Eulerian approaches this is common practice [Bridson
2008]. Therefore, Cummins and Rudman [1999] solved the PPE

using a multigrid approach where the particles are treated as the
finest level grid. Later, a semi-Lagrangian method was employed
by Foster and Fedkiw [2001] where incompressibility is enforced
on a simulation grid while they counteracted mass dissipation using
a level set and freely moving inertialess particles. Further hybrid
approaches using particles and a background grid were developed
in the following years [Zhu and Bridson 2005; Raveendran et al.
2011; Ando et al. 2013]. An advanced method was proposed by
Losasso et al. [2008] where a PPE is solved on a background grid
not only to keep the field divergence-free but to maintain a prede-
fined target density. Another interesting approach was introduced
by Sin et al. [2009] as they solve the PPE on a Voronoi diagram
constructed from the point-samples in each step. However, all of
these approaches have to maintain and sometimes reconstruct addi-
tional grid data-structures resulting in high memory consumption,
especially for large domains. Our method fully avoids background
grids and therefore consumes a smaller amount of memory espe-
cially for large scenarios like in Figure 1.

Some approaches directly solve the PPE on the meshless discretiza-
tion. An incompressible SPH method for multiphase flows was pro-
posed by Hu et al. [2007], where the time integration step to obtain
the velocities is subdivided into two halfsteps. During the first half-
step density fluctuations are eliminated using a position-altering it-
erative gradient descent solver. During the second halfstep errors in
velocity divergence are resolved in a similar fashion. However, they
applied their method exclusively to non-complex two-dimensional
scenarios of up to 14,400 particles. He et al. [2012] extended the
work of Solenthaler and Parajola [2009] by a local Poisson solver
enforcing a divergence-free velocity field and constant density. Un-
fortunately, they have to determine particle neighbors in each solver
iteration for their Poisson solve, while the integration domain is not
necessarily equal or a subset of the local kernel function support.
This leads to a considerable computational effort since the search
radius increases. Moreover, they report only a small speedup factor
of approximately 1.5 in comparison to the underlying method of
Solenthaler and Parajola while we experienced speedup factors of
more than 20 with DFSPH. In a recent work of Ihmsen et al. [2014a]
a PPE is used in order to iteratively decrease the density deviation
to 0.1% or even less. However, they do not consider eliminating
velocity divergence which leads to a large number of solver itera-
tions compared to our method and can even cause artifacts in special
cases (see Section 4).

3 Fluid Simulation

In our simulation we use the incompressible, isothermal Navier-
Stokes equations (see Section 1). However, we skip the second,
viscous term on the right hand side of Equation (2) and use the
XSPH variant proposed by Schechter and Bridson [2012] to simu-
late viscosity. We spatially discretize Equation (2) using the SPH
method as described in the following while the incompressibility
condition represented by Equation (1) is fulfilled by enforcing the
divergence-free condition and the constant density condition as de-
scribed in Sections 3.2 and 3.3, respectively.

Using the SPH concept a quantity at position xi is approximated
by the values at a set of neighboring particles xj [Monaghan 1992].
One of the most important quantities in the SPH formulation is the
density which can be approximated using this concept as:

ρi =
∑
j

mj

ρj
ρjWij =

∑
j

mjWij ,

where mj is the mass of particle j and Wij = W (xi − xj , h)
is a Gaussian like kernel function with the support radius h. Af-
ter computing the density, the pressure field of a fluid is typically

determined by the following equation of state (EOS):

pi =
κρ0

γ

((
ρi
ρ0

)γ
− 1

)
,

where κ and γ are stiffness parameters and ρ0 is the rest density. In
our work we consider the special case

pi = κ(ρi − ρ0), (3)

where γ = 1 which is a common choice in computer graphics [Des-
brun and Gascuel 1996; Müller et al. 2003; Ihmsen et al. 2014b].

In the standard SPH approach [Monaghan 1992] the pressure field
computed by the EOS is directly used to determine forces in or-
der to encounter volume compression. However, weakly com-
pressible fluids require a high stiffness coefficient κ which restricts
the time step size and therefore the overall performance consider-
ably. Hence, implicit pressure solvers, e.g. [Solenthaler and Pa-
jarola 2009; Ihmsen et al. 2014a], were investigated to simulate in-
compressible fluids. These solvers typically compute the pressure
field by solving a linear system which allows larger time steps and
as a consequence a significant performance gain.

In this paper we present a novel implicit SPH method for in-
compressible fluids. Our approach uses two solvers to fulfill the
divergence-free condition and the constant density condition, re-
spectively. The goal of the divergence-free solver (see Section 3.2)
is to obtain a divergence-free velocity field. However, as discussed
in Section 1, this is not sufficient to guarantee incompressibility
in practice since density deviations due to numerical errors cannot
be corrected. Therefore, we employ a constant density solver (see
Section 3.3) as a stabilization which eliminates the density errors.
The key idea of the solvers is to determine an individual stiffness
coefficient κi (see Equation (3)) for each neighborhood to solve
the respective condition locally. In order to fulfill the conditions
globally the solvers process the neighborhoods in a parallel Jacobi
fashion which is a common choice in SPH solvers [Solenthaler and
Pajarola 2009; Macklin and Müller 2013; Ihmsen et al. 2014a]. Ad-
justing the stiffness coefficients individually is equivalent to an im-
plicit computation of the pressure field. However, this allows us a
simple and consistent formulation of the constant density and the
divergence-free forces.

3.1 Simulation Step

At the end of a simulation step both the constant density con-
dition and the divergence-free condition must be fulfilled. The
divergence-free solver computes pressure forces which are inte-
grated once to obtain the velocity changes that satisfy the corre-
sponding condition. The pressure forces determined by the constant
density solver must be integrated twice to get the required position
changes. Therefore, as a side-effect, it also modifies the velocities.
For this reason, first, we execute the constant density solver and
modify the velocities and positions, and then the divergence-free
solver which corrects the resulting velocities to obtain a divergence-
free state. Since both steps are executed in a loop, performing the
density stabilization before computing a divergence-free velocity
field does not impose any restrictions.

Algorithm 1 outlines the simulation with our novel method in detail.
First, we determine the particle neighborhoods Ni using compact
hashing [Ihmsen et al. 2011]. Then for each particle we compute the
density ρi and the factorαi (see Section 3.2). αi is a common factor
of both solvers which is required to correct the density error and the
divergence error, respectively. Since this factor solely depends on
the current positions, it is precomputed before executing the solvers
which reduces the computational effort of both solvers significantly.

Algorithm 1 Simulation

1: function PERFORMSIMULATION
2: for all particles i do // init neighborhoods
3: find neighborhoods Ni(0)

4: for all particles i do // init ρi and αi
5: compute densities ρi(0)
6: compute factors αi(0)

7: while (t < tmax) do // start simulation loop
8: for all particles i do
9: compute non-pressure forces Fadv

i (t)

10: adapt time step size ∆t according to CFL condition
11: for all particles i do // predict velocities v∗i
12: v∗i = vi + ∆tFadv

i /mi

13: correctDensityError(α, v∗) // fulfill ρ∗ − ρ0 = 0
14: for all particles i do // update positions
15: xi(t+ ∆t) = xi(t) + ∆tv∗i
16: for all particles i do // update neighborhoods
17: find neighborhoods Ni(t+ ∆t)

18: for all particles i do // update ρi and αi
19: compute densities ρi(t+ ∆t)
20: compute factors αi(t+ ∆t)

21: correctDivergenceError(α, v∗) // fulfill Dρ
Dt

= 0
22: for all particles i do // update velocities
23: vi(t+ ∆t) = v∗i

The first step in the simulation loop is to determine all non-pressure
forces Fadv such as gravity, surface tension and viscosity and to
adapt the time step size by the Courant-Friedrich-Levy (CFL) con-
dition ∆t ≤ 0.4 d

‖vmax‖ [Monaghan 1992], where d is the particle
diameter and vmax is the maximum particle velocity. In line 12 the
non-pressure forces are used to compute predicted velocities v∗i .
The constant density solver uses this prediction and the precom-
puted factors αi to determine the pressure forces for each neigh-
borhood in order to correct the density error ρ∗i − ρ0 (see Sec-
tion 3.3). Then the positions are integrated forward in time. There-
fore, the neighborhoodsNi, the densities ρi and the factors αi have
to be updated. In line 21 the divergence-free solver computes pres-
sure forces to fulfill Dρi

Dt
= 0 in order to make the velocity field

divergence-free (see Section 3.2). Finally, the resulting velocity
changes are used to update the particle velocities.

Note that Ni, ρi and αi are determined only once per simulation
step. However, we do not compute these values in the beginning of
the simulation loop as in previous works since our two solvers are
executed at different points of time. Instead, these values have to
be initialized before the first simulation step in lines 2-6. They are
then updated in each time step in lines 16-20.

3.2 Divergence-Free Solver

Our divergence-free solver enforces the condition Dρ
Dt

= 0 which
means that the density does not change over time. This is equivalent
to the divergence-free condition (see Equation (1)) and therefore
leads to a divergence-free velocity field.

If the condition Dρi
Dt

= 0 is not fulfilled for a particle i, the solver
computes a set of pressure forces for the particle and its neighbor-
hood which correct the divergence error. The pressure force of par-
ticle i is determined by

Fp
i = −mi

ρi
∇pi, (4)

where the pressure gradient is computed by differentiating Equa-

tion (3) w.r.t. xi using the SPH formulation [Ihmsen et al. 2014b]:

∇pi = κv
i∇ρi = κv

i

∑
j

mj∇Wij ,

where κv
i is the stiffness parameter that we want to determine. Fur-

thermore, we consider the pressure forces Fp
j←i that act from par-

ticle i on the neighboring particles j to obtain a set of symmetric
pressure forces which fulfill the condition Fp

i +
∑
j F

p
j←i = 0.

This means that all inner forces sum up to zero which is required to
conserve momentum. The forces Fp

j←i are computed analogously
to Equation (4) except that we differentiate the pressure with respect
to the neighboring position xj :

Fp
j←i = −mi

ρi

∂pi
∂xj

=
mi

ρi
κv
imj∇Wij . (5)

The solver must determine pressure forces that change the veloci-
ties of the particles so that the condition Dρi

Dt
= 0 is fulfilled. The

current density change rate in particle i is computed by employing
the SPH formulation of the divergence [Ihmsen et al. 2014b]:

Dρi
Dt

=
∑
j

mj(vi − vj)∇Wij . (6)

This value should be zero after applying the symmetric pressure
forces determined for particle i. The pressure forces cause the ve-
locity changes ∆vi = ∆tFp

i/mi and ∆vj = ∆tFp
j←i/mi. Insert-

ing these terms in Equation (6) yields:

Dρi
Dt

= −∆t
∑
j

mj

(
Fp
i

mi
−

Fp
j←i

mi

)
∇Wij . (7)

Using Equations (4) and (5) in Equation (7) gives us an equation
for the stiffness parameter κv

i :

Dρi
Dt

= −∆t
∑
j

mj

(
Fp
i

mi
−

Fp
j←i

mi

)
∇Wij

Dρi
Dt

=
∆t

ρi

∑
j

mj

(
κv
i

∑
j

mj∇Wij + κv
imj∇Wij

)
∇Wij

Dρi
Dt

= κv
i
∆t

ρi

(∣∣∣∣∣∑
j

mj∇Wij

∣∣∣∣∣
2

+
∑
j

|mj∇Wij |2
)
.

Solving for κv
i yields:

κv
i =

1

∆t

Dρi
Dt
· ρi∣∣∣∑jmj∇Wij

∣∣∣2 +
∑
j |mj∇Wij |2︸ ︷︷ ︸

αi

, (8)

where αi is a factor that only depends on the current positions. The
pressure forces computed with the stiffness parameter κv

i exactly
fulfill the condition Dρi

Dt
= 0 which means that the velocity field in

the neighborhood of particle i is divergence-free. However, since
the stiffness parameters of neighboring particles depend on each
other, they are determined iteratively. Note that the denominator
of αi can cause instabilities in the special case that particle i has a
low number of neighbors. To solve this problem we simply clamp
the denominator if it gets too small. In our simulations we used a
threshold of 10−6 which did not cause any visual artifacts.

Algorithm 2 Divergence-free solver

1: function CORRECTDIVERGENCEERROR(α, v∗)
2: while

((
Dρ
Dt

)
avg
> ηv

)
∨ (iter < 1) do

3: for all particles i do // compute Dρ
Dt

4: Dρi
Dt

= −ρi∇ · v∗i
5: for all particles i do // adapt velocities
6: κv

i = 1
∆t

Dρi
Dt

αi, κv
j = 1

∆t

Dρj
Dt

αj

7: v∗i := v∗i −∆t
∑
jmj

(
κv
i
ρi

+
κv
j

ρj

)
∇Wij

Finally, we determine the total force Fp
i,total for particle i including

the forces from neighboring particles j as

Fp
i,total = Fp

i +
∑
j

Fp
i←j = −mi

∑
j

mj

(
κv
i

ρi
+
κv
j

ρj

)
∇Wij ,

where Fp
i←j is computed analogously to Equation (5). Note that

this pressure force is equivalent to the symmetric pressure force
introduced by Monaghan [1992].

Our solver determines pressure forces in parallel using Jacobi iter-
ation in order to make the complete velocity field divergence-free.
Since the factors αi only depend on the current positions, they can
be precomputed before the iterative process and do not have to be
updated in each iteration step. This yields computationally cheap
iteration steps since αi is the most complex term used in our solver.
Note that since Fp

j←i = 0 if particle j is not dynamic, the equation
for κv

i must be adapted accordingly for static boundary particles.

Algorithm 2 outlines our divergence-free solver. The solver per-
forms at least one iteration and finishes when the average density
change rate is smaller than a user-defined threshold ηv. The con-
vergence can be significantly improved by performing a “warm
start” of the solver. This means that we sum up the stiffness val-
ues κv

i for each particle. Then in the next time step we first evaluate
line 7 for each particle using the resulting values before starting the
divergence-free solver.

3.3 Constant Density Solver

While the solver described in the last section makes the velocity
field divergence-free, our constant density solver minimizes the
density error which is determined by the deviation ρ − ρ0 of the
actual density to the rest density. There already exist different
pressure solvers that minimize the density deviation and that could
be combined with our divergence-free solver, e.g. PCISPH [Solen-
thaler and Pajarola 2009] or IISPH [Ihmsen et al. 2014a]. However,
in this work we introduce a new solver which works analogous to
our divergence-free solver and therefore has the advantage that it
can reuse the factor α. This reduces the computational effort sig-
nificantly since the presented iterative method is particularly fast
if the factor α is already known. Our new constant density solver
employs a predictor-corrector scheme in order to obtain particle po-
sitions after the time integration that correct the density error. The
key idea of this scheme is similar to the one of PCISPH. However,
in contrast to PCISPH we do not use a precomputed prototype con-
figuration with a filled neighborhood to solve the system.

We perform an Euler integration step for the density using Equa-
tion (6) in order to compute a prediction of the density error ρ∗i−ρ0:

ρ∗i = ρi + ∆t
Dρi
Dt

= ρi + ∆t
∑
j

mj(v
∗
i − v∗j)∇Wij .

Algorithm 3 Constant density solver

1: function CORRECTDENSITYERROR(α, v∗)
2: while (ρavg − ρ0 > η) ∨ (iter < 2) do
3: for all particles i do // predict density
4: compute ρ∗i
5: for all particles i do // adapt velocities

6: κi =
ρ∗i−ρ0

∆t2
αi, κj =

ρ∗j−ρ0
∆t2

αj

7: v∗i := v∗i −∆t
∑
jmj

(
κi
ρi

+
κj
ρj

)
∇Wij

Analogous to Equation (7), we determine pressure forces that cor-
rect this density error by solving:

ρ∗i − ρ0 = ∆t2
∑
j

mj

(
Fp
i

mi
−

Fp
j←i

mi

)
∇Wij . (9)

This yields the following stiffness parameter:

κi =
1

∆t2
(ρ∗i − ρ0)αi.

Our implicit pressure solver is outlined in Algorithm 3. Note that
analogous to the divergence-free solver we perform a warm start to
improve the convergence of the solver.

3.4 Kernel

The kernel function used in SPH simulations is an approximation
of the Gaussian. In previous works several kernel functions were
introduced such as the poly6 kernel, the spiky kernel and the cu-
bic spline kernel. In some works even different kernels are used to
compute Wij and its gradient ∇Wij , e.g. in [Müller et al. 2003].
However, in our predictor-corrector scheme it is important to use
the same kernel for both since otherwise the prediction and correc-
tion steps do not fit together. In our work we use the cubic spline
kernel [Monaghan 1992].

In SPH simulations typically a kernel with compact support is used
which vanishes at a finite distance also known as the support radius
h. In general a kernel function can be written as Wh(q(x)) with
q = ‖x‖

h
. This means that the kernel is only non-zero for 0 ≤ q <

1. Hence, the first spatial derivative of such a kernel ∇Wh(q(x))
has the same compact support.

Especially the evaluation of the kernel gradient is one of the most
time consuming tasks in a simulation step since gradients have to
be determined for the whole neighborhood of each particle in each
iteration step of both solvers. Moreover, they are required for dif-
ferent non-pressure forces and to compute the factors αi. However,
storing the gradients of all neighborhoods requires much memory
and is not recommended for large scenes. To speed up the simula-
tion we propose a faster computation of the kernel and its gradient
by using precomputed lookup tables. The idea of using lookup ta-
bles for a fast function evaluation is not new. However, to the best
of our knowledge it has not been employed yet in SPH simulations.

Since the kernel Wh is a scalar function with compact support, a
lookup table is generated easily by a regular sampling. However,
the gradient is handled differently. Instead of sampling the vec-
tor function ∇Wh in all three dimensions, we introduce a scalar
function g(q) to reduce the computational effort and the memory
requirements:

∇Wh(q(x)) = x · g(q) with g(q) =
∂Wh

∂q
· 1

h‖x‖ .

IISPH PBF PCISPH
∆t [ms] solver total solver total solver total

4.0 6.9 6.2 13.4 12.0 23.9 21.2
2.0 5.3 4.5 10.6 8.8 21.4 17.4
1.0 2.3 2.1 3.7 3.1 7.7 6.3
0.5 1.1 1.1 1.2 1.1 2.4 2.1
0.25 1.1 1.1 0.9 1.0 1.4 1.3

Table 2: This table shows the speedup factors of DFSPH in com-
parison to IISPH, PBF and PCISPH based on the measured values
in Table 1.

The function g(q) can also be sampled regularly to obtain a corre-
sponding lookup table. Finally, a gradient is determined by a single
lookup and a multiplication with x.

The usage of lookup tables is a simple but efficient trick which can
also be employed to speed up other SPH methods. In Section 4 we
discuss details about the sampling distance, the approximation error
and the performance gain.

4 Results

All timings in this section were measured on two Intel Xeon E5-
2697 processors with 2.7 GHz, 12 cores per processor and 64GB
RAM. We parallelized our fluid simulation using OpenMP. In our
simulations we performed the neighborhood search using the paral-
lel method of Ihmsen et al. [2011] and the boundary handling using
the rigid-fluid coupling of Akinci et al. [2012]. To simulate the vis-
cosity of the fluid we employed the XSPH variant of Schechter and
Bridson [2012]. We successfully tested our method in combination
with the surface tension models of Becker and Teschner [2007],
Akinci et al. [2013] and He et al. [2014]. However, for the results
in this paper we solely used the surface tension model of Akinci
et al. [2013]. Particle deficiency at free surfaces is a well-known
problem in SPH simulations which causes particle clustering. In the
simulations we solved this issue by clamping negative pressures to
zero which is a common solution, see e.g. [Ihmsen et al. 2014a]. We
enforced an average density error of less than 0.01 % and a density
error due to the density change rate of less than 0.1 % in all simu-
lations. Unless otherwise stated, we used adaptive time-stepping in
the simulations according to the CFL condition (see Section 3.1).

Performance We performed a breaking dam simulation with
125k particles in order to compare the performance of our novel
method with IISPH, PBF and PCISPH. The particle radius was
0.02 m and we used different fixed time step sizes. Table 1 summa-
rizes the performance measurements for a simulation over one sec-
ond. In Table 2 the speedup factors are shown. Note that in [Ihmsen
et al. 2014a] a similar scenario was used for a performance com-
parison between PCISPH and IISPH and comparable results were
measured.

By fulfilling the divergence-free condition and the constant density
condition at the same time, the density error is kept small during the
simulation which decreases the required number of solver iterations
significantly. Using a warm start in iterative solvers is another way
to reduce the number of iterations. In our simulation we initialize
the DFSPH solvers with the sum of the stiffness values of the last
time step. This reduced the number of iterations by a factor of ap-
proximately 3 in the dam break scenario. While DFSPH performs
best for a full warm start, IISPH has its best performance when
multiplying the solution of the last step with a factor of 0.5 [Ihmsen
et al. 2014a]. Due to the divergence-free velocity field in our sim-
ulation and the performed warm start of the solver, we measured

Figure 3: Breaking dam model (2.3 million fluid particles) with
two dragon models and a moving wall. The velocity field is color
coded: blue is the minimum and white is the maximum.

neigh.
α Fadv const. div.- totalsearch density free

dragons 0.4 0.1 0.3 0.7 0.6 2.1
canyon 1.2 0.2 0.7 1.9 1.3 5.3

Table 3: Average computation times (in seconds) per simulation
step of the neighborhood search, the computation of α, the compu-
tation of all non-pressure forces Fadv, the constant density solver
and the divergence-free solver for the dam break simulation (see
Figure 3) and the canyon simulation (see Figure 1, right).

speedup factors of 6.9 in comparison to IISPH up to 23.9 in com-
parison to PCISPH for a time step size of 4 ms. The DFSPH solvers
required only 4.5 and 2.8 iterations to correct the density error and
the divergence error, respectively, while the second best method
IISPH already required 50.5 iterations. In our experiment we mea-
sured a smaller speedup for smaller time step sizes since for DF-
SPH often the minimum number of iterations was used. However,
for scenarios with more particles, where the number of iterations
lies clearly above the minimum value, the speedup is also larger for
small step sizes. In our experiments we noticed that our method
performs best when using a time step size so that the number of
iterations ranges between 2 and 20 iterations.

As Table 1 shows, our method has its best overall performance for
larger time steps than IISPH, PBF and PCISPH. This has another
advantage: When using larger time steps, the computationally ex-
pensive neighborhood search has to be performed less frequently.

In the breaking dam simulation we measured a performance gain of
approximately 30 % by using the kernel optimization introduced in
Section 3.4. For the sampling of the kernel function and its gradient
we used 1000 sample points and measured an maximum local error
of less than 10−11. Since the implementation is very simple and the
error is negligible, this is a nice extension for our method.

In order to measure the performance of DFSPH in simulations with
large numbers of fluid particles, we first simulated a breaking dam
scenario with two dragon models and a moving wall (see Figure 3).
The model consists of 2.3 million fluid particles and 0.7 million
boundary particles. Additionally, we simulated a real breaking dam
with 5 million particles flowing through a canyon sampled by 40
million boundary particles (see Figure 1, right). The average com-

DFSPH IISPH PBF PCISPH
∆t [ms] iter. (cd/df) solver [s] total [s] iter. solver [s] total [s] iter. solver [s] total [s] iter. solver [s] total [s]

4.0 4.5/2.8 45.2 51.3 50.5 312.1 318.1 105.7 607.1 613.5 160.0 1079.1 1085.7
2.0 2.1/1.3 47.8 59.4 21.4 256.4 267.9 42.7 508.4 520.7 73.9 1021.2 1033.5
1.0 2.0/1.0 85.0 107.5 7.3 197.9 220.7 13.2 314.8 338.0 23.9 656.9 680.0
0.5 2.0/1.0 164.1 210.8 2.3 182.3 225.6 3.4 194.1 240.5 6.7 394.9 440.9
0.25 2.0/1.0 288.3 372.0 2.0 322.5 402.2 2.0 263.3 354.0 3.0 409.3 498.0

Table 1: Comparison of DFSPH with IISPH, PBF and PCISPH using different fixed time step sizes for a breaking dam scenario with 125k
particles (see Figure 2). The table shows the average number of required iterations, the total computation time of the solvers and the total
time including the neighborhood search in a simulation over one second. The lowest total computation times are marked bold. Note that for
DFSPH we used the sum of the times needed by the divergence-free solver and the constant density solver since the iteration steps of both
solvers need almost the same time. For DFSPH the column with the iteration count contains the values for the constant density solver (cd)
and the divergence-free solver (df).

Figure 4: Top of a resting fluid pillar with 80k particles. The
large divergence errors in the IISPH simulation lead to jumping
artifacts (left). DFSPH maintains a divergence-free velocity field
and therefore allows a stable simulation without artifacts (right).
The divergence errors are color coded: white is the minimum and
red is the maximum.

putation times for the main steps in Algorithm 1 are shown in Ta-
ble 3 for both simulations.

Memory Requirements An advantage of our method especially
when simulating large scale scenarios with millions of particles is
that the memory requirements are low. Per particle we only have
to store the scalar value αi which is used by both solvers. When
performing a warm start, we have to store one additional scalar for
each solver. For comparison, IISPH requires seven scalar values for
the solver and one for the warm start. Hence, our method requires
significantly less memory than IISPH.

Stability In the following we show that current state-of-the-art
pressure solvers which do not enforce a divergence-free velocity
field explicitly cannot fulfill the condition Dρ

Dt
= 0 as demanded by

the continuity equation. This can lead to instabilities in simulations,
especially when particles have high velocities.

Figure 2 compares the velocity divergence error of IISPH and DF-
SPH in a breaking dam simulation with 125k particles. This figure
shows that our approach maintains a divergence-free velocity field
in contrast to methods which do not correct the velocity divergence.
The maximum local divergence error of IISPH was 108.3 while the
one of DFSPH was only 1.9. In another divergence comparison
we simulated a resting fluid pillar with 80k fluid particles (see Fig-
ure 4). Since the CFL condition returns arbitrary large values for the
resting particles, we restricted the time step size to a maximum of

Figure 5: Stability comparison in a simulation where a cube with
27k particles is falling on the ground with a high velocity. PCISPH
(left) gets instable due to the impact and several fluid particles pass
through the boundary, DFSPH without divergence-free solver (mid-
dle) shows artifacts and DFSPH with divergence-free solver stays
stable. The same color coding as in Figure 3 is used.

5 ms. Large divergence errors of up to 72.9 in the IISPH simulation
in combination with large time steps led to visual artifacts: fluid
particles sometimes jump up due to the errors (see Figure 4, left).
The maximum local divergence error of DFSPH was 2.5 which al-
lowed a stable simulation without artifacts.

We performed a stability test with a cube of 27k fast moving parti-
cles falling on the ground to show how this influences the stability
(see Figure 5). The time step size was chosen according to the
CFL condition. In this test we compared PCISPH and DFSPH. The
test with DFSPH was performed twice. In the first simulation we
deactivated our divergence-free solver and activated it in the sec-
ond one in order to show that the simulation is more stable with a
divergence-free velocity field. In the simulation PCISPH got insta-
ble due to the impact, DFSPH without the divergence-free solver
showed artifacts and DFSPH using both solvers stayed stable. The
instability in the PCISPH simulation even led to several fluid parti-
cles which passed through the boundary. For a stable simulation of
this scenario with PCISPH the time step size had to be decreased
considerably which reduced the overall performance significantly.

In order to demonstrate the stability of our approach in a simu-
lation with dynamic boundaries, we integrated the Bullet physics
library [Coumans 2014] in our simulator. In another stability ex-
periment we dropped several rigid bodies with different velocities
in a breaking dam scenario with 330k particles. The result is shown
in Figure 6 and the accompanying video. Finally, Figure 1 (left)

Figure 6: Two-way coupling of 330k particles with dynamic rigid
bodies.

demonstrates that DFSPH even allows a stable simulation with 2.4
million fast moving particles.

5 Conclusion and Future Work

In this paper we presented a novel implicit SPH simulation method
for incompressible fluids that prevents volume compression and en-
forces a divergence-free velocity field. The divergence-free con-
figuration leads to a significantly faster convergence of the implicit
pressure solver resulting in a substantial speedup compared to state-
of-the-art methods. Moreover, we demonstrated that our method is
able to handle scenarios with millions of fast moving particles ro-
bustly and produces a convincing physical behavior.

Our method also has some limitations. In SPH simulations the den-
sity near a free surface is underestimated which causes unnatural
particle clustering artifacts. In our implementation this problem is
solved by clamping negative pressures to zero. However, a bet-
ter solution would be to introduce ghost particles as suggested by
Schechter and Bridson [2012] in order to prevent particle deficien-
cies which improves the physical behavior of the fluid. Moreover,
without pressure clamping more sophisticated solving algorithms
like the conjugate gradient method could be employed and would
enhance the converge rate even more. This is a goal for our future
research. In this context we also plan to investigate if DFSPH can
improve the stability of multi-phase simulations with high density
contrasts.

Acknowledgements

The work of the authors is supported by the ’Excellence Initiative’
of the German Federal and State Governments and the Graduate
School of Computational Engineering at TU Darmstadt. We would
like to thank Markus Ihmsen and Matthias Teschner for their help.

References

ADAMS, B., PAULY, M., KEISER, R., AND GUIBAS, L. J.
2007. Adaptively sampled particle fluids. ACM Transactions
on Graphics 26, 3, 48.

AKINCI, N., IHMSEN, M., AKINCI, G., SOLENTHALER, B., AND
TESCHNER, M. 2012. Versatile rigid-fluid coupling for incom-
pressible SPH. ACM Transactions on Graphics 31, 4, 62:1–62:8.

AKINCI, N., AKINCI, G., AND TESCHNER, M. 2013. Versatile
surface tension and adhesion for sph fluids. ACM Transactions
on Graphics 32, 6, 182:1–182:8.

ANDO, R., THÜREY, N., AND WOJTAN, C. 2013. Highly adaptive
liquid simulations on tetrahedral meshes. ACM Transactions on
Graphics 32, 103:1–103:10.

BECKER, M., AND TESCHNER, M. 2007. Weakly compressible
SPH for free surface flows. In ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, 1–8.

BODIN, K., LACOURSIÈRE, C., AND SERVIN, M. 2012. Con-
straint fluids. IEEE Transactions on Visualization and Computer
Graphics 18, 516–526.

BRIDSON, R. 2008. Fluid Simulation for Computer Graphics. A
K Peters / CRC Press.

CHORIN, A. J. 1968. Numerical solution of the Navier-Stokes
equations. Mathematics of Computation 22, 745–762.

COUMANS, E., 2014. The bullet physics library. http://www.
bulletphysics.org.

CUMMINS, S. J., AND RUDMAN, M. 1999. An SPH Projection
Method. Journal of Computational Physics 152, 584–607.

DESBRUN, M., AND GASCUEL, M.-P. 1996. Smoothed Particles:
A new paradigm for animating highly deformable bodies. In Eu-
rographics Workshop on Computer Animation and Simulation,
61–76.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liq-
uids. ACM Transactions on Graphics 28, 12–17.

HE, X., LIU, N., LI, S., WANG, H., AND WANG, G. 2012. Lo-
cal poisson SPH for viscous incompressible fluids. Computer
Graphics Forum 31, 1948–1958.

HE, X., WANG, H., ZHANG, F., WANG, H., WANG, G., AND
ZHOU, K. 2014. Robust simulation of sparsely sampled thin
features in sph-based free surface flows. ACM Transactions on
Graphics 34, 1 (Dec.), 7:1–7:9.

HU, X., AND ADAMS, N. 2007. An incompressible multi-phase
SPH method. Journal of Computational Physics 227, 264–278.

IHMSEN, M., AKINCI, N., BECKER, M., AND TESCHNER, M.
2011. A parallel sph implementation on multi-core cpus. Com-
puter Graphics Forum 30, 1, 99–112.

IHMSEN, M., CORNELIS, J., SOLENTHALER, B., HORVATH, C.,
AND TESCHNER, M. 2014. Implicit incompressible SPH. IEEE
Transactions on Visualization and Computer Graphics 20, 426–
435.

IHMSEN, M., ORTHMANN, J., SOLENTHALER, B., KOLB, A.,
AND TESCHNER, M. 2014. SPH Fluids in Computer Graphics.
Eurographics (State of the Art Reports), 21–42.

KANG, N., AND SAGONG, D. 2014. Incompressible SPH using
the Divergence-Free Condition. Computer Graphics Forum 33,
7, 219–228.

LOSASSO, F., TALTON, J. O., KWATRA, N., AND FEDKIW, R.
2008. Two-way coupled SPH and particle level set fluid simula-
tion. IEEE Transactions on Visualization and Computer Graph-
ics 14, 797–804.

MACKLIN, M., AND MÜLLER, M. 2013. Position Based Fluids.
ACM Transactions on Graphics 32, 4, 1–5.

http://www.bulletphysics.org
http://www.bulletphysics.org

MONAGHAN, J. J. 1992. Smoothed particle hydrodynamics. Ann.
Rev. of Astron. and Astrophys. 30, 543–574.

MONAGHAN, J. 1994. Simulating Free Surface Flows with SPH.
Journal of Computational Physics 110, 399–406.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
Based Fluid Simulation for Interactive Applications. In ACM
SIGGRAPH / Eurographics Symposium on Computer Animation,
154–159.

RAVEENDRAN, K., WOJTAN, C., AND TURK, G. 2011. Hybrid
smoothed particle hydrodynamics. In ACM SIGGRAPH / Euro-
graphics Symposium on Computer Animation, 33–42.

SCHECHTER, H., AND BRIDSON, R. 2012. Ghost SPH for ani-
mating water. ACM Transactions on Graphics 31, 4, 61:1–61:8.

SIN, F., BARGTEIL, A. W., AND HODGINS, J. K. 2009. A
point-based method for animating incompressible flow. In ACM
SIGGRAPH / Eurographics Symposium on Computer Animation,
247.

SOLENTHALER, B., AND PAJAROLA, R. 2009. Predictive-
corrective incompressible SPH. ACM Transactions on Graphics
28, 3, 40:1–40:6.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid.
ACM Transactions on Graphics 24, 3 (July), 965–972.

