
Real-Time Isosurface Extraction
with View-Dependent Level of Detail and Applications

Manuel Scholz1, Jan Bender1 and Carsten Dachsbacher2

1Graduate School CE, TU Darmstadt 2Karlsruhe Institute of Technology

Figure 1: Isosurfaces rendered in real-time (above 200 frames per second) with our view-dependent level of detail algorithm.
From left to right: a wireframe rendering of a medical dataset; a computer tomography dataset of a beetle with a resolution of
832×832×494 (white lines illustrate our refinement hierarchy); a wireframe rendering of a Julia set fractal where the geometry
is procedurally generated at run-time allowing for virtually unlimited detail; rendering of a terrain as an isosurface of complex
procedurally-generated volume data.

Abstract
Volumetric scalar datasets are common in many scientific, engineering, and medical applications where they orig-
inate from measurements or simulations. Furthermore, they can represent geometric scene content, e.g. as distance
or density fields. Often isosurfaces are extracted, either for indirect volume visualization in the former category, or
to simply obtain a polygonal representation in case of the latter. However, even moderately sized volume datasets
can result in complex isosurfaces which are challenging to recompute in real-time, e.g. when the user modifies the
isovalue or when the data itself is dynamic. In this paper, we present a GPU-friendly algorithm for the extraction
of isosurfaces, which provides adaptive level of detail rendering with view-dependent tessellation. It is based on a
longest edge bisection scheme where the resulting tetrahedral cells are subdivided into four hexahedra, which then
form the domain for the subsequent isosurface extraction step. Our algorithm generates meshes with good triangle
quality even for highly nonlinear scalar data. In contrast to previous methods, it does not require any stitching
between regions of different levels of detail. As all computation is performed at run-time and no preprocessing is
required, the algorithm naturally supports dynamic data and allows us to change isovalues at any time.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Volumetric scalar datasets are ubiquitous in scientific, tech-
nical, and medical applications. They originate directly
from measurements, result from simulations, or are used to
manually or procedurally create virtual scenes [PGGM09,
RMD11]. In many cases, the volumetric scalar function is
sampled and stored as grids. Obviously an efficient and in-

teractive rendering of this data is crucial for many applica-
tions, including inspection and analysis, or simply for dis-
playing the modelled content. One of the most popular visu-
alization techniques for volume data is isosurface extraction
which belongs to the so-called indirect volume visualiza-
tion techniques. The basic techniques therefor, e.g. march-
ing cubes [LC87], operate cell-by-cell on the grid, determine

Version of the authors

Scholz, Bender and Dachsbacher / Real-Time Isosurface Extraction with View-Dependent Level of Detail and Applications

the cells intersecting the isosurface, and create a piecewise
polygonal approximation to the isosurface. However, even
for moderately sized datasets, isosurfaces can get very com-
plex which makes their interactive visualization a challeng-
ing problem. On the other hand, in most cases not all parts
of an isosurface need to be extracted with the same accuracy
or detail, e.g. as their projected image space size varies and
they are simply less important to the viewer. At this point,
level of detail (LOD) techniques can be used to reduce the
memory footprint as well as the required computational re-
sources without noticeably sacrificing quality.

Existing visualization methods for isosurface extraction
from large and complex datasets require either expensive
and time consuming preprocessing of the data, or yield low
frame rates even on modern graphics hardware. Obviously,
this contradicts the requirements of many applications where
instant inspection of measurements or simulation results,
with possibly time-varying data, is required. Preprocessing
is also not applicable whenever the volume data is proce-
durally created or depending on user-input. This aspect is
of particular importance in this paper, as one of our appli-
cations is the rendering of terrains defined by procedurally
generated scalar data.

The contribution of this paper is twofold: First, we pro-
pose a novel LOD algorithm for isosurface rendering on
modern graphics hardware which enables interactive indirect
volume visualization of large data sets. By performing incre-
mental updates to our LOD hierarchy and amortizing com-
putational cost over several frames, high display rates are
achieved. Unlike previous methods, which first extract a full
resolution base mesh and build a LOD hierarchy in a bottom-
up manner, our method does not rely on any preprocessing.
As a consequence, our algorithm can update the complete
isosurface at run-time within a few seconds which allows for
adjusting the isovalue during exploration. We use hexahe-
dral cells to extract the isosurface from the volumetric repre-
sentation. This results in more a desirable topology, a better
triangle quality and less primitives than most other multires-
olution meshing techniques which rely on tetrahedral rep-
resentations. Our algorithm also avoids costly stitching pro-
cesses that are required with most previous approaches. Fi-
nally, we discuss aliasing in the context of level of detail ren-
dering and present a sampling strategy applicable to many
volumetric representations. Four examples of complex iso-
surfaces rendered with our method are shown in Figure 1.

As a second contribution, we further elaborate on the use
of our isosurface rendering method for terrain visualization.
This is a challenging example for demonstrating its applica-
tion to procedurally, potentially time-varying, and virtually
infinite content generated on-the-fly, which makes any pre-
computation impossible. Terrain visualization has a long his-
tory in computer graphics and is a key component of many
virtual reality applications, simulators, geographic informa-
tion systems, and computer games. Most research in this

field has focused on heightmap-based approaches which fa-
cilitate effective level of detail strategies for rendering ter-
rain at large scales. However, they are unable to faithfully
represent features like caves, overhangs, rugged mountains
and steep cliffs. As the expectations of users regarding detail
and realism increase, this limitation becomes more appar-
ent. Often these missing features are added by placing sep-
arate objects on top of the terrain, which can only be con-
sidered as a work-around rather than a satisfactory solution
to the problem. Consequently, volumetric approaches have
recently gained more attention, e.g. in the modelling system
of Peytavie et al. [PGGM09]. These can represent arbitrary
shapes and thus provide more flexibility than heightmaps. In
this setting, a terrain surface is typically defined by a scalar
function from which an isosurface is extracted. Our LOD
algorithm delivers a tool for rendering these isosurfaces at
frame rates comparable to heightmap-based approaches.

2. Related Work

Analogous to the twofold contribution of our paper, we first
discuss previous work related to isosurface extraction in gen-
eral, followed by a brief overview over terrain rendering
methods.

2.1. Isosurface Extraction

Basic Techniques The basic techniques for isosurface ex-
traction operate cell-by-cell on scalar functions stored on
the vertices of a static grid. The marching cubes algo-
rithm [LC87] is probably the most well-known isosurfacing
algorithm. It assumes cubical lattices, but the core idea (the
cell-by-cell operation) has quickly been generalized to other
types of grids, e.g. to curved or irregular grids. Early pop-
ular works for the latter include the marching tetrahedra al-
gorithm [PT90,ST90]. Methods that process a grid cell-wise
obviously perform badly on large grids, as every cell has to
be tested whether it intersects the isosurface. One strategy to
reduce this cost are data structures to query the required cells
for a given isovalue. Cignoni et al. [CMPS96], for example,
use interval trees built on the minimum and maximum scalar
values of each cell to determine all cells intersecting the iso-
value in optimal time. Note that the isosurface extraction is
still non-adaptive, as its precision is coupled to the grid res-
olution. For very large data sets, however, it is desirable to
adapt the tessellation to the image space projection of the
surface.

Adaptive Tessellation In order to adapt the resolution
of an isosurface, multiresolution methods have been in-
troduced, e.g. for structured rectilinear grids [WKL∗01,
WKE99, WCM12] or tetrahedral grids [GR99, Ger02]. Note
that many of these approaches require stitching to connect
regions of the isosurface with varying degree of tessellation
or operate at a fine-grained level making them impractical
for large datasets. Dual contouring [JLSW02] is probably

Version of the authors

Scholz, Bender and Dachsbacher / Real-Time Isosurface Extraction with View-Dependent Level of Detail and Applications

one of the most popular adaptive algorithms. It extracts iso-
surfaces with varying resolutions using an octree representa-
tion of the scalar data. Each octree cell contains a single ver-
tex which is moved to the isosurface by quadric error min-
imization. Then all edges of the octree cells are inspected
for a sign change of the isofunction and vertices of cells ad-
jacent to the respective edge are connected to form a part
of the isosurface. For large isosurfaces dual contouring be-
comes inefficient because it operates at the triangle level and
imposes a large overhead for octree management and traver-
sal. Furthermore, in certain configurations the resulting tri-
angulation can contain undesirable foldovers and artifacts.

Most related to our algorithm are the following two works
which do not use octrees and avoid expensive stitching oper-
ations. Gregorski et al. [GDL∗02] build a conforming tetra-
hedral mesh with an adaptive longest edge bisection hierar-
chy to extract the isosurface. Pascucci et al. [Pas04] improve
this method by transferring the surface extraction phase to
the GPU. Compared to our method, extracting a surface di-
rectly from adaptive tetrahedral meshes results in a larger
hierarchy overhead, significantly more triangles and a lower
mesh quality (see Figure 6). Additionally our algorithm does
not suffer from certain artifacts that arise from contouring
non-linear isofunctions on simplex grids.

For a more comprehensive overview, we refer the reader
to Newman and Yi’s excellent survey [NY06] over the evo-
lution of marching cubes and its successors.

Ray casting Isosurfaces Isosurfaces can also be rendered
without explicitly generating a polygonal mesh by finding
the intersection of view rays with the isosurface, e.g. using
ray marching. These approaches provide inherent level of
detail (e.g. by adapting step sizes in ray marching) and typ-
ically deliver good image quality. Their disadvantage is the
lower rendering performance which, however, is somewhat
mitigated by the increasing power of modern GPUs. Today
there exist many ray casting algorithms that reach interactive
frame rates, e.g. [YLM06, GMG08, CNLE09, Áfr12]. How-
ever, it is worth noting that the performance of ray casting
is output-sensitive, i.e. their rendering performance does not
scale well to high display resolutions; on the other hand, ras-
terization based methods can offer better performance and
allow for trading quality for speed more easily. To combine
the best from both worlds, hybrid approaches were devel-
oped which dynamically switch from ray casting to raster-
ization to optimize performance [ZQHK04, GM05]. Note
that these methods depend on acceleration data structures
which are built in a preprocessing step and thus do not meet
one important goal of our approach. For example, Reichl
et al. [RCBW12] proposed a hybrid approach which uses
a sample based surface representation which makes it possi-
ble to outperforms rasterization as well as ray tracing seen
individually. Their algorithm uses triangle meshes or reg-
ular volume datasets as input and requires only little pre-
processing time. However, dynamically building these data

structures at full resolution can consume significant amounts
of computational resources and quickly become impractical.
Also, when rendering isosurface no explicit triangulation is
build from the volume dataset. Hence, their hybrid approach
falls back to classical isosurface raytracing instead of using
efficient rasterization in closeup regions.

2.2. Terrain Visualization

Methods for rendering large scale terrain data can be roughly
categorized into heightmap-based methods, (generic) mas-
sive model visualization techniques, and volumetric terrain
rendering. For further reading, we refer to surveys on (mul-
tiresolution) terrain models [Dac06, PG07] for the “classic”
techniques, and to [Vir14] which provides an extensive col-
lection of references.

Heightmap-Based Terrain Rendering Due to its simplic-
ity and compactness, terrains have traditionally been stored
as heightmaps. Previous work on rendering from this rep-
resentation spans the entire range from fine-grained level
of detail methods that operate on the individual triangles,
e.g. [LKR∗96, DWS∗97], to coarse grained methods which
became the first choice with the advent of powerful graph-
ics hardware. The approaches tailored for modern GPUs ad-
just the detail level on the granularity of large chunks of ge-
ometry and tessellate their borders to match the resolution
of neighbor chunks [LH04, Str09, BGP09, LKES09, JL12].
In the same spirit as for isosurfaces, hybrid approaches
combining rasterization and ray casting have been pro-
posed [DKW09,DKW10,AGD10] to cope with the strongly
varying detail with terrain rendering. Heightmaps are well
suited to model the shape of natural terrain at large scales,
but apparently lack the ability to represent caves or over-
hangs, and provide low sampling at steep slopes.

Massive Model Visualization Techniques Techniques that
are designed to render arbitrary highly detailed models can
obviously also be applied to rendering terrains. In contrast to
heightmaps, these techniques do not impose any restrictions
on the topology and shape of the terrain. Several techniques
exist to render meshes of up to several hundred million poly-
gons at interactive rates. Cignoni et al. [CGG∗03] and Lario
et al. [LPT03] present methods for rendering terrain with tri-
angulated irregular networks (TINs). Although only demon-
strated for heightmap datasets in these works, TINs can also
represent overhangs and other complex terrain features. For
LOD rendering the geometry is often stored in a tree data
structure where each node contains a part of the geometry
at a certain level of detail [CGG∗04, SM05, BGB∗05]. The
tree is constructed by recursively simplifying and merging
the geometry of nodes. For rendering, a front tracking ap-
proach is used to select the appropriate nodes for the cur-
rent view. Cignoni et al. [GMC∗06] extend these methods
by introducing a compression scheme for the large geometry

Version of the authors

Scholz, Bender and Dachsbacher / Real-Time Isosurface Extraction with View-Dependent Level of Detail and Applications

chunks. Gobbetti and Marton [GM05] propose to comple-
ment the polygonal rendering by switching to a precomputed
voxel representation of the geometry if the screen space foot-
print of a node becomes smaller than a few pixels. Hu et
al. [HSH09] extend the idea of progressive meshes [Hop96]
with a view-dependent refinement scheme which, however,
requires a significant amount of GPU resources for hierarchy
management.

Despite their ability to render large and complex terrains,
massive model visualization techniques require an explicit
representation of the mesh which consumes a large amount
of memory. More importantly, all of the previously men-
tioned methods rely on an expensive preprocessing step to
build the required data structures. This makes these methods
inapplicable for online generated procedural content.

Volumetric Terrain In recent years other representations
(than polygonal meshes) for rendering the terrain surface
gained more attention. Peytavie et al. [PGGM09] present a
modeling framework which uses a compact stack-based rep-
resentation, somewhat similar to a run-length compression.
They demonstrate several modeling tools for their terrain
representation, but do not present a level of detail algorithm.
Loeffler et al. [LMS11] introduce a real-time rendering tech-
nique for stack-based terrains. They transform this repre-
sentation into an octree data structure for rendering. Their
method requires a stitching process for regions where cells
of different resolution meet. Stitching has to be performed
whenever the neighborhood of a cell changes. The need for
frequent recomputation of cell geometries prevents efficient
caching of the extracted isosurface and stresses computa-
tional resources. In our algorithm, cells are treated indepen-
dently and no stitching is required, which avoids these prob-
lems. Note that stack-based terrain representations can also
be used with our LOD algorithm.

Obviously, there are methods spanning more than one
category in our classification of prior work. Gobbetti and
Marton [GM05], for example, propose hybrid polygon-
volumetric representations. In particular, voxel-based rep-
resentations have been studied intensely in recent years, as
modern GPUs provide increasing memory and are very effi-
cient with ray marching [Len10, Cra12].

3. Level Of Detail Algorithm

The main goal of our methods is to render isosurfaces from
volumetric scalar functions. These are approximated by a tri-
angle mesh for efficient rendering on graphics hardware.

To be able to explore large and complex isosurfaces in-
teractively, a level of detail (LOD) algorithm is necessary to
reduce rendering and storage cost. LOD algorithms are usu-
ally based on a hierarchical decomposition of the domain
space. Previous approaches which do not rely on precom-
puted mesh representations use either a very fine-grained

Figure 2: Left: The concept of our LOD algorithm in 2D:
Thick black lines show the longest edge bisection (LEB) hi-
erarchy. The lattices used for surface extraction are depicted
in gray. Note that the lattices match at cell borders so that
no stitching is required. Inside the green cell a part of the
surface is shown in blue. Right: A longest edge bisection
tetrahedra hierarchy in 3D.

tetrahedral subdivision, or employ an octree partitioning and
generate cubical cells with varying size. In each cube a reg-
ular lattice of fixed resolution is placed which is then used to
extract a triangular approximation of the isosurface. A prob-
lem with this approach is that cracks in the extracted surface
can occur where cells of different resolution meet. These
cracks must be fixed by a subsequent stitching process which
increases the system complexity and degrades performance.
Fine-grained methods on the other hand generate only a few
triangles per cell which leads to very large hierarchies. These
tend to consume a significant amount of computational and
storage resources. Our method avoids these issues by using
a coarse grained conforming hexahedral subdivision where
each cell contains a regular lattice of fixed resolution. By
definition neighboring cells in such a subdivision always
coincide so that the regular lattices align perfectly at cell
boundaries. Therefore, the triangle mesh extracted from the
lattices exhibits no cracks in its triangulation (see Figure 2).

To allow an interactive navigation or fly-through of the
isosurface, the hexahedral mesh has to adapt quickly to
new viewer positions. We meet this requirement in two
steps: First, a diamond hierarchy [WDF08] is used to effi-
ciently build an adaptive conforming tetrahedral partitioning

1 2 3 4

Figure 3: A tetrahedral cell (1) in the LEB hierarchy is split
into four hexahedra (2). Each of the hexahedra (3) is regu-
larly subdivided into a fixed resolution lattice (4) of hexa-
hedral elements (blue). These are used to extract the surface
using the marching cubes algorithm.

Version of the authors

Scholz, Bender and Dachsbacher / Real-Time Isosurface Extraction with View-Dependent Level of Detail and Applications

(a) (b)

Figure 4: Surface approximation in cubical cells (a) and sim-
plex cells (b) in 2D. Cell edges are depicted in blue, the
scalar function is shown as a black-white gradient and sam-
pled values are shown in red. The edge intersection points,
retrieved by linear root finding, are drawn in green. Note
how right angled artifacts can arise on simplex grids when
the scalar function is strongly nonlinear.

(a) (b)

Figure 5: Geometric error on the stag beetle dataset with uni-
form level of detail. Blue denotes low error with respect to
ground truth, red denotes large errors. (a) Our method us-
ing hexahedral elements. (b) The method of Gregorski et
al. [GDL∗02] using the tetrahedral elements of the diamond
hierarchy directly for surface extraction. Both models use a
comparable number of triangles and vertices. Note the strong
interpolation artifacts in (b) caused by nonlinearities in the
scalar function.

of space. Second, each tetrahedron is split into four hexa-
hedra (see Figure 3) before the triangle surface is extracted
with a modified marching cubes (MC) algorithm. The sub-
division of tetrahedral cells into hexahedra and the surface
extraction with the MC algorithm is motivated as follows:
MC is known to create better isosurface approximations with
less artifacts compared to simplex-based methods [CMS06].
These artifacts occur in highly nonlinear regions of the scalar
functions as can be seen in Figures 4 and 5. MC generated
meshes also have a lower number of triangles and better
mesh topology with a more evenly distributed vertex valence
(see Figure 6). Note that these properties persist even though
we use deformed hexahedral cells instead of cubic cells.

For the surface extraction step we propose a novel sam-
pling strategy which maintains the independence of cells and

(a) (b)

Figure 6: (a) The mesh structure of a flat region generated by
our method. (b) Isosurface extracted directly from the tetra-
hedra of the diamond hierarchy [GDL∗02].

avoids aliasing. It is based on a frequency space decompo-
sition of the scalar function and employs a special interpo-
lation scheme which controls an adaptive low-pass filter to
suppress aliasing artifacts.

In the following, we detail the three major parts of our
method. In Section 3.1 we describe the level of detail hi-
erarchy. Section 3.2 deals with the extraction of the isosur-
face inside a single cell of the hierarchy. Finally, Section 3.3
presents the sampling strategy that supresses aliasing while
maintaining cell independency. Figure 7 shows an overview
of the individual stages of the algorithm. In our implemen-
tation, all three components are executed on the CPU. Our
results indicate that our method fully utilizes the GPU and
thus makes a balanced use of computational resources.

3.1. Level of Detail Hierarchy

The level of detail hierarchy is a data structure responsi-
ble for adapting the resolution of the triangle mesh to the
current viewing conditions. Our LOD algorithm uses three-
dimensional diamond hierarchies [WF11] which are based
on the longest edge bisection (LEB) of tetrahedra. We start
with a cubic domain that is initially split into six tetrahe-
dra, which are then subdivided according to the LEB scheme
as needed. An interesting property is that tetrahedra created
by the LEB scheme can be divided into three congruence
classes. Recursively splitting a tetrahedron three times yields
smaller tetrahedra that have exactly the same shape and qual-
ity as the initial one. Therefore, element quality does not de-
grade during subdivision and it is guaranteed that only well-
shaped tetrahedra are created. This is crucial for obtaining
triangle meshes of good quality.

The hierarchy is stored as a binary tree where each node
represents a single tetrahedron. Tetrahedra that share a com-
mon longest edge form a diamond and must be split simulta-
neously to maintain a conforming tetrahedralization. We use
the encoding scheme by Weiss and De Floriani [WDF08]

Version of the authors

Scholz, Bender and Dachsbacher / Real-Time Isosurface Extraction with View-Dependent Level of Detail and Applications

Figure 7: Algorithm overview: Blue frames denote steps that operate in Cartesian world coordinates (WC), while steps with
purple frames operate in barycentric coordinates. When the hierarchy is refined, new cells are passed to the surface extraction
step. Its corner positions are used to transform sample and vertex positions from barycentric coordinates into world space.

to access diamonds and check for dependencies efficiently.
For a fast hierarchy traversal, diamonds are indexed in a
hashmap by their central vertex position. The leaf nodes of
the binary tree form the active front and define the current
conforming tetrahedral mesh. The active front is refined and
coarsened in real-time to adapt the mesh resolution to the
viewer position. Whenever a node of the active front is split,
the surface extraction procedure is invoked for both of its
children. This process is subject of the next subsection.

As stated above, our algorithm supports arbitrary refine-
ment criteria. Our prototype implementation uses a simple
distance-based method which works well for most applica-
tions. For each node the distance l of its bounding sphere
to the viewer is computed. The target refinement depth dt is

(a) (b)

Figure 8: (a) The volume mesh contains all four lattices with
4× 4× 4 hexahedral elements each. Its vertex positions are
stored in four-dimensional barycentric coordinates. (b) We
use a three-dimensional Hilbert curve to reorder hexahedral
elements for improved locality inside the hexahedra of the
volume mesh.

then defined as:

dt = loga(l). (1)

A node is split whenever its target depth dt is larger than its
current depth dh inside the LEB hierarchy. The parameter a
controls the relationship between detail level and distance,
and should be chosen according to the field of view of the
camera. We also add a small hysteresis of at least one hier-
archy level to control the collapsing of nodes.

3.2. Surface Extraction

When a cell in the level of detail hierarchy is created, the sur-
face inside this new cell has to be extracted from the scalar
function. Since each cell is part of a conforming tetrahe-
dral mesh, no stitching and adaption to its neighbors is re-
quired. Furthermore, cells are independent from each other
and the triangulation of the enclosed surface does not have
to be changed once it has been created. This property is one
of the main advantages over previous methods and has the
following benefits:

• The triangle mesh of a cell does not have to be adapted to
its neighboring cells. No computation time is required for
stitching, which makes the system very efficient.

• A cell’s triangle mesh can be cached for later reuse.
• Since the geometry of a cell remains static, updates of

GPU rendering buffers are required less frequently than
in previous methods.

The surface extraction is a performance critical operation
usually done at run-time. Our goal is to extract an isosurface
inside a single tetrahedral cell in form of an indexed face
set which can directly be used for rendering. For this task
we extend the original MC algorithm to operate on arbitrary
hexahedral volume meshes instead of regularly subdivided
cubic domains. In our work, the volume mesh has the shape

Version of the authors

Scholz, Bender and Dachsbacher / Real-Time Isosurface Extraction with View-Dependent Level of Detail and Applications

of a tetrahedron containing four hexahedral lattices (see Fig-
ure 8a). Since all cells of the LOD hierarchy are subdivided
in the same way, we can reuse a single volume mesh for all
cells. This requires a representation that is independent from
the actual shape, position and rotation of a cell. We therefore
store the volume mesh in four-dimensional barycentric coor-
dinates and transform it to world coordinates during surface
extraction when the cell geometry is available. The volume
mesh is precomputed at startup in three steps: First a tetra-
hedron is split into four hexahedra Hi. Each of them is fur-
ther subdivided into a regular lattice of smaller hexahedral
elements. The elements of all four hexahedra Hi are then
unified into a single volume mesh representation (see Fig-
ure 8a), which is stored as lists of vertices, edges and hex-
ahedral elements E j (see Figure 3). To increase the locality
of subsequent elements E j, we reorder the elements of each
hexahedron Hi based on a three-dimensional Hilbert curve
(see Figure 8b).

Later, the MC algorithm uses the same element order to
extract the isosurface. This results in a more spatially coher-
ent triangle mesh layout which improves vertex cache uti-
lization during rendering.

The modified MC algorithm can be described in three
steps: First, all vertex positions of the volume mesh are trans-
formed to world space to evaluate the scalar function. Sec-
ond, each edge of the volume mesh is inspected. If a sign
change in the previously sampled values across an edge is
detected, a new triangle vertex is added to the indexed face
set data structure. The index of this new vertex is stored in
the respective edge of the volume mesh. Its position is com-
puted by linear root finding as in the original MC algorithm.
Third, every cell of the volume mesh is traversed and the tri-
angulation of the isosurface is fetched from the MC lookup
table. The final vertex indices of each triangle are resolved
using the index values which were previously stored in the
volume mesh edges. The indices of each new triangle are
then added to the indexed face set. In the last step, the tri-
angle mesh is transformed from barycentric coordinates into
worldspace using the corner positions of its associated tetra-
hedral cell.

As the MC algorithm tends to produce skinny triangles,
we apply Laplacian smoothing as a post processing step.
Optionally, we perform multiple choice quadric error mesh
simplification [WK02] to reduce the total number of trian-
gles while preserving a good approximation of the original
geometry. Both algorithms are implemented to work directly
on indexed face sets.

Vertex normal vectors of the final mesh are computed
from the gradient of the scalar function by a central dif-
ferences approximation along the world coordinate system
axis. This process requires six additional samples per surface
vertex but yields consistent normal vectors at cell bound-
aries without breaking the independence of cells. For scalar
functions which are very expensive to evaluate the normal

vectors can also be computed using only four samples by
choosing a different numerical differentiation technique.

3.3. Sampling

The shape of an isosurface is defined by its scalar function
which needs to be sampled at discrete positions in order to
extract a triangle mesh. Our LOD algorithm does not impose
any restrictions on this function. Nevertheless, discrete sam-
pling often leads to aliasing artifacts which degrade visual
quality and make LOD transitions more noticeable. To miti-
gate this problem we apply a spatially-varying low-pass filter
before sampling is performed. A naive implementation as a
discrete filter is very general, but would require prohibitively
many evaluations of the scalar function during run-time.

To accelerate filtering, we express scalar functions θ as a
sum of terms di : R3→ R that depend on the position p and
have a small extend in frequency space. Such a representa-
tion can be found for many procedural volumetric models
and obtained for discrete volume data. For example, discrete
volume data can be converted into a Laplace pyramid, where
each pyramid level provides one term di. High frequencies
are removed by weighting each di according to its dominant
frequency fi and the filter radius r:

θ(p,r) =
n

∑
i=0

di(p)w(fi,r). (2)

The weighting function w is defined as the frequency trans-
formation of a Gauss filter kernel:

w(fi,r) = e− f 2
i r2

. (3)

To guarantee the consistency of sampled values across cell
borders the filter radius r must be derived only from informa-
tion that is available to all cells adjacent to a certain sample
location. Therefore, we base its computation on the length
of the cells’ edges. For a sample located on an edge, r is
computed by dividing the edge length by the grid size of the
volume mesh. For samples that are not located on an edge
we interpolate the sample radii s∈R6 of the six edges of the
cell as follows:

r(x) = s ·w(x) (4)

with x ∈ R4 being the barycentric coordinates of the sample
location and

w(x) = 1

∑
6
i=1 wi(x)

w, w(x) =

x1x2
x1x3
x1x4
x2x3
x2x4
x3x4

 . (5)

Note that the weights w can be precomputed for each ver-
tex of the volume mesh. For samples located at cell corners,
the filter radius is undefined as adjacent cells share only the

Version of the authors

Scholz, Bender and Dachsbacher / Real-Time Isosurface Extraction with View-Dependent Level of Detail and Applications

(a) (b)

Figure 9: (a) Color coded radius of the adaptive low-pass fil-
ter kernel which is used to suppress aliasing. The filter radius
function is continuous across the entire domain (except for
cell corners) so that coherent filtering results across cell bor-
ders are achieved. (b) Shows the sizes of the triangles for the
extracted mesh for comparison.

information about the respective corner position. This is re-
flected by the singularities of the interpolant at cell corners.
For these samples we set the filter radius to the same value as
for samples of the most detailed LOD level. This yields cor-
rect results close to the observer and produces small errors
for lower detail levels that are hardly noticeable in practice.
Figure 9 shows the color coded filter radius on the surface of
the extracted mesh and its correlation to the triangle size.

4. Rendering

In this section we explain how to efficiently render the ge-
ometry generated in the surface extraction phase. When the
viewer explores the isosurface, the active front is constantly
modified (cf. Section 3.1). The number of triangles and
vertices generated during a refinement operation may vary
strongly depending on the surface area of the isosurface in-
side the cells. This is challenging as GPU resource allocation
during run-time is typically slow and drawing a large number
of small triangle meshes is inefficient on graphics hardware.

To overcome these problems we introduce an additional
front into the LEB hierarchy denoted as the GPU buffer front
(see Figure 10). An entry of the GPU-buffer front contains
the geometry of several active front nodes to create larger
chunks of fixed sized data. If the size of this geometry ex-
ceeds the capacity of an GPU-buffer front entry, it is split
into two equal sized entries and the front moves downwards.
When the geometry of two sibling GPU-buffer entries fits
into a single buffer, the two entries are merged together and
the GPU-buffer front moves upwards. This approach has two
advantages: First, rendering is more efficient because the tri-
angle batch size is increased while the graphics API draw
call count is decreased. Second, the vertex and index buffers

a

b

d

h i j k

e

r s

l m

f

c

g

n o

qp

Figure 10: Visualization of the active front (green) and the
GPU-buffer front (blue). Hierarchy nodes are represented as
circles. The gray line depicts the active front after node f is
split.

are all of the same size and can therefore be reused easily;
this avoids costly GPU resource allocation at run-time.

During rendering, all entries of the GPU-buffer front are
traversed and their associated geometry is drawn. The sur-
face extraction process and the previously mentioned merg-
ing of triangle meshes is performed in a separate background
thread which allows the main rendering loop to operate at
high frame rates.

Many massive model visualization techniques use ge-
omorphing to make LOD transitions less visible: They
smoothly move the vertices of a high resolution mesh onto
the surface of its low resolution counterpart before replacing
it completely. This requires a correspondence between sur-
faces of different detail levels. Since we use a top down ap-
proach without preprocessing, the topology of the extracted
surface may change during a LOD transition. In general a
direct correspondence between surfaces of different detail
levels can therefore not be found so that geomorphing can-
not be implemented with our system. However, image space
blending as discussed by Giegl and Wimmer [GW07] pro-
vides a viable alternative that is commonly used in industry
and has shown to work well in practice.

5. Results

In this section we present the results of our method and its
application to terrain rendering and indirect volume visu-
alization. We implemented our algorithm in C++ and used
the DirectX 11 API for rendering. All tests were carried out
on a quad core AMD Phenom II 3.2 GHz processor and an
NVIDIA GeForce GTX 580 graphics card. As mentioned
earlier, in our implementation the surface extraction as well
as the hierarchy updates are performed in a background
thread on the CPU to offload the GPU and facilitate con-
sistent and high frame rates.

Version of the authors

Scholz, Bender and Dachsbacher / Real-Time Isosurface Extraction with View-Dependent Level of Detail and Applications

(a) (b) (c)

Figure 11: (a) A scene showing a complex terrain dataset (consisting of approximately 1 giga voxels) generated by the method
of Peytavie et al. [PGGM09] with features that cannot be represented with heightmap-based approaches. (b) A distant view
on another terrain with many caves which was used for our performance tests. (c) A wireframe rendering of a terrain model
generated by our system.

Figure 12: Performance graph for a typical fly-through of the
terrain shown in Figure 11b. The graph shows the triangle
count (blue) and the total frame time (green) over the frame
number. The screen resolution was set to 1920×1080.

5.1. Volumetric Terrain

Figure 11 shows real-time renderings of a complex terrain
with arches and overhangs. The coarse shape is stored in a
discrete density field which is enhanced by small scale pro-
cedural geometry at run-time. This results in detailed shapes
and good control over the overall appearance while main-
taining a small memory footprint. The terrain surface is tex-
tured using triplanar mapping along the coordinate system
axes similar to [PGGM09,LMS11]. We shade the terrain us-
ing the Phong shading model and tangent space normal map-
ping to further enhance detail beyond triangle level. Note
that tangent and binormal vectors do not need to be stored
explicitly because the triplanar mapping approach allows
their reconstruction within the shader. To add additional vari-
ations and break repetitive texture patterns, we further ap-
ply a two-dimensional colormap that is addressed by terrain
height and slope.

Figure 12 shows the relationship between triangle count
and frame time for a typical fly-through with different
speeds. The lattice size of a single hexahedral block of the
volume mesh was set to 16×16×16 which provides a good
balance between adaptivity and performance. We achieve an
average refresh rate above 1500 Hz without any culling algo-

0

50

100

150

200

250

300

350

2

102

202

302

402

502

602

702

1 8 64 512

M
e

m
o

ry
 in

 M
b

K
ilo

 T
ri

an
gl

e
s

Terrain Size Scaling Factor

Triangles

Triangles -
NomLOD
RAM

RAM - No
LOD
GPUmMem

GPUmMem -
NomLOD

2048

Figure 13: The plot shows how the memory consumption of
the LOD system and the triangle count of the terrain mesh
grow with increasing size of the terrain (solid lines). Dashed
lines depict the resource consumption of the same dataset
without LOD.

rithm. Simple view frustum culling could reduce the number
of triangles by a estimated factor of about 3 to 6 depend-
ing on the scene and viewing conditions. Additional occlu-
sion culling could further improve performance especially
in caves and deep valleys. The high rendering speed leaves
enough room to increase the geometric detail as well as for
other GPU intensive tasks (e.g. more elaborate shading or
procedural texturing). This makes our system well-suited for
demanding real-time applications where terrain rendering is
only allowed to consume a small part of the overall frame
time. We attribute the high frame rates mainly to two facts:
First, the good triangle batch sizes which reduces the impact
of API overhead. Second, the GPU is only responsible for
rendering and does not need to perform stitching operations
at cell interfaces as required in previous methods. The mesh
generated by our algorithm also exhibits good triangle qual-
ity as can be seen in Figure 11c.

Figure 13 demonstrates the scalability of our LOD
method. For testing we increased the size of the domain cube
while preserving a constant mesh resolution at the location
of the observer. Since the resource consumption can vary
widely across different terrain shapes, we have also shown
measurements without LOD (dashed lines) for comparison.

Version of the authors

Scholz, Bender and Dachsbacher / Real-Time Isosurface Extraction with View-Dependent Level of Detail and Applications

Figure 14: The Bonsai dataset rendering using our LOD algorithm with different isovalues. The isovalue has been changed
during run-time, an update requires approximately 1 second. Note that the update runs in a background thread on the CPU.

Note that the x-axis has a logarithmic scale while the y-
axis has a linear scale. As can be seen, our LOD algorithm
achieves a memory and rendering complexity of O(logn)
with n being the edge length of the domain cube. The com-
putational cost for the surface extraction heavily depends on
the movement speed of the viewer but scales equally well
with increasing terrain sizes. As indicated by the dashed
lines, bottom-up techniques that require the generation of a
full resolution mesh during preprocessing would consume
massive amounts of memory and computation time, making
them impractical for vast terrain models.

5.2. Indirect Volume Visualization

The interactive visualization of volume data poses different
requirements to the rendering system than the display of ter-
rain models. The viewer needs to move freely and quickly
through the entire scene instead of traversing the dataset
slowly near the isosurface. There are usually no other time
consuming rendering tasks and frame rates of approximately
30 Hz are often sufficient. The desired distribution of geo-
metric detail is also different to terrain visualization appli-
cations, where a distance driven LOD system yields good
results. Instead the definition of one or more areas of interest
(AOI) is often used to control refinement.

Our LOD algorithm is flexible enough to fulfill the above
requirements and can thus be used to explore and to analyze
huge volumetric datasets interactively. As the surface extrac-
tion is performed incrementally in a background thread, the
rendering loop always stays responsive even when fast view-
point changes or sudden AOI modifications induce large
amounts of refinement operations. In such a scenario the re-
finement down to the requested detail level is distributed and
carried out over several frames.

One advantage of our algorithm, compared to bottom-up
methods, is that it can be combined with run-time updates of
the isosurface as required by applications where the isovalue
needs to be changed. To update the entire mesh at once we
recompute the isosurface in each cell of the active front but
keep the current refinement state of the diamond hierarchy.
This feature is demonstrated in Figure 14 where a CT dataset

Figure 15: A Julia set fractal rendered with our approach.
The entire geometry was procedurally generated during run-
time. The closeup on the top-left shows the amount of detail
at the refinement point.

is rendered with different isovalues. In our current imple-
mentation the updates of the whole surface cannot be per-
formed fast enough to display animated isosurfaces interac-
tively as a typical update takes about a second. In principle,
the algorithm can be accelerated by moving the surface ex-
traction phase to the GPU [DZTS07], where we expect it to
reach interactive speeds. In that case, however, the additional
workload could interfere with rendering, leading to less sta-
ble frame rates (depending on the application this might of
course be acceptable). Since the surface is computed on de-
mand, we are also able to visualize procedurally generated
content without the need to construct the entire geometry at a
high resolution. In Figure 15 we demonstrate this for a Julia
set fractal.

The average timings for the different parts of the surface
extraction step are given in Table 1. As can be seen, the sam-
pling of the scalar function is the most expensive step. This
can vary strongly depending on the volumetric models. The
time required for all other steps mostly depends on the sur-
face area inside the cell.

The effect of the triangle order optimization on render-
ing speed is shown in Figure 16. The overall performance
gain is moderate and might be dominated by rasterization

Version of the authors

Scholz, Bender and Dachsbacher / Real-Time Isosurface Extraction with View-Dependent Level of Detail and Applications

Algorithm Stage Abs. Time Rel. Time
scalar function sampling 1.510 ms 50.2%
marching cubes 0.102 ms 3.3%
mesh simplification 0.868 ms 28.9%
mesh smoothing 0.015 ms 0.4%
normal computation 0.507 ms 16.8%
total 3.002 ms -

Table 1: Average timings for different steps of the surface
extraction for a single cell containing four lattices with 16×
16×16 hexahedral elements each.

Figure 16: Performance improvement of the triangle order
optimization for various datasets.

and shading costs in most applications. However, the order
optimization of hexahedral elements inside the volumetric
mesh comes without any additional run-time overhead and
is easy to implement.

Our algorithm can be seen as a combination of purely
tetrahedra-based surface extraction algorithms and the
marching cubes algorithm. It is therefore interesting how
the proposed method compares to these other techniques in
terms of surface approximation capabilities. For each algo-
rithm we measured the geometric error for different mesh
resolutions by uniformly sampling the surface with a fixed
number of samples and computing the RMS of Hausdorff
distances from each sample to a high resolution ground-truth
mesh. The results for the stag beetle dataset are shown in
Figure 17. In this test our method outperforms tetrahedra-
based approaches and is comparable to MC despite the cell
distortion inherent to our subdivision scheme.

Discussion Although terrain visualization was the initial
focus of our view-dependent level of detail algorithm, it
is able to render large arbitrary isosurfaces at high frame
rates. It is computationally efficient and can handle pro-
cedurally generated content as well as isovalue changes at
run-time. Direct volume rendering methods can also ren-
der (multiple) isosurfaces, but also support the rendering of
semi-transparent regions. However, the evaluation (march-
ing along rays, transfer functions, etc.) can be very expen-
sive and acceleration data structures become necessary. As
these data structures are usually built prior to rendering, dy-
namic and online generated datasets are typically hard to vi-
sualize with such methods. The high evaluation cost of ray

Figure 17: The geometric error (stag beetle dataset) as
a function of triangle count for different surface extrac-
tion methods. For comparison, a uniform detail level was
chosen. Red: the tetrahedra-based method by Gregorski et
al. [GDL∗02]. Green: marching cubes algorithm. Blue: our
method.

casting becomes even more apparent as display resolution
increases. As our method is based on rasterization it allows
to trade speed for quality more easily and can render com-
plex isosurfaces at low cost. Visibility queries which are
required for shadowing techniques can also be efficiently
realized through rasterization, whereas direct volume ren-
dering methods have to resort to expensive secondary rays.
However, ray marching enables global illumination effects
more easily (e.g. [JSYR12, WKSD13]). Note that rasteriza-
tion methods also allow the decoupling of the shading fre-
quency from the pixel resolution, e.g. by performing shad-
ing computation per vertex, or using more elaborate ap-
proaches [LD12]. Rendering of triangle meshes can also
benefit from hardware anti-aliasing, while ray casting-based
methods might require prefiltering techniques to avoid alias-
ing without excessive supersampling [YLM06].

Our approach also has some limitations. Due to the lack
of a globally unique surface parametrization, only procedu-
ral or object-space (e.g. [LD07]) texturing methods can be
applied. In particular for terrain rendering applications, e.g.
games or simulators, often carefully authored, unique global
textures are preferred for best quality and realism. Such (out-
of-core) texturing algorithms would require adaptation to
our terrain rendering method. We also cannot encode geo-
metric information of higher detail levels in normal maps
because we have no information about the correspondence
of surfaces from different detail levels.

Lastly, the transitions in our LOD algorithm might be vis-
ible. Similar to previous works we do not provide geomorph-
ing due to possible topological changes between detail lev-
els. Using alpha blending for the transition between detail
levels constitutes one possible solution [GW07].

Since we generate the geometry on-the-fly, the scalar
function has to be sampled at run-time. This may lead to de-
layed LOD updates if the scalar function is very complex and
its evaluation is time consuming. Nevertheless, the rendered
mesh is always consistent but the LOD hierarchy might not

Version of the authors

Scholz, Bender and Dachsbacher / Real-Time Isosurface Extraction with View-Dependent Level of Detail and Applications

update rapidly enough to accommodate fast viewer move-
ments. Evaluating the scalar function in parallel can mit-
igate this problem. Lastly, as our approach is independent
from the actual implementation of the surface extraction al-
gorithm, we can easily combine it with other isosurface tri-
angulation methods operating on regular cubical grids. For
example, it can be combined with fast GPU-based marching
cubes [DZTS07, SDC09] to accelerate LOD updates.

6. Conclusion and Future Work

We presented a view-dependent level of detail algorithm for
real-time rendering of large, detailed isosurfaces and demon-
strated its application to scientific datasets, volumetric ter-
rain, and procedural generated isosurfaces. Unlike previous
methods like massive model visualization techniques, our
algorithm does not require any preprocessing. At the same
time it can be used in performance critical scenarios where
ray casting algorithms are still to slow. Our method also al-
lows to update even large isosurfaces during run-time within
a few seconds, which is useful for interactive inspection of
volumetric datasets. Moreover, we introduced a sampling
scheme that reduces aliasing artifacts and produces consis-
tent results across cell borders. Finally, it was shown that
our approach handles nonlinear scalar functions better than
tetrahedra-based methods and performs equally well as the
marching cubes algorithm which does not support view-
dependent level of detail.

Our algorithm can be improved by porting the surface ex-
traction stage to the GPU. This is expected to allow updates
of the entire isosurface at interactive rates which is espe-
cially interesting for data visualization applications that need
to render animated time varying volumetric datasets.

Acknowledgments The work of Manuel Scholz and Jan
Bender was supported by the ’Excellence Initiative’ of the
German Federal and State Governments and the Graduate
School CE at TU Darmstadt. Special thanks go to Pey-
tavie Adrien and Eric Galin for providing us complex terrain
datasets.

References
[Áfr12] ÁFRA A. T.: Interactive ray tracing of large models using

voxel hierarchies. Computer Graphics Forum 31, 1 (2012), 75–
88. 3

[AGD10] AMMANN L., GÉNEVAUX O., DISCHLER J.-M.: Hy-
brid rendering of dynamic heightfields using ray-casting and
mesh rasterization. In Proc. Graphics Interface (2010), pp. 161–
168. 3

[BGB∗05] BORGEAT L., GODIN G., BLAIS F., MASSICOTTE
P., LAHANIER C.: GoLD: interactive display of huge colored
and textured models. ACM Transactions on Graphics 24, 3
(2005), 869–877. 3

[BGP09] BOESCH J., GOSWAMI P., PAJAROLA R.: RASTeR:
Simple and efficient terrain rendering on the GPU. In Proc. Eu-
rographics - Areas Papers (2009), pp. 35–42. 3

[CGG∗03] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: BDAM: Batched dy-
namic adaptive meshes for high performance terrain visualiza-
tion. Computer Graphics Forum 22, 3 (2003), 505–514. 3

[CGG∗04] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: Adaptive tetrapuzzles: ef-
ficient out-of-core construction and visualization of gigantic mul-
tiresolution polygonal models. ACM Transactions on Graphics
23, 3 (2004), 796–803. 3

[CMPS96] CIGNONI P., MONTANI C., PUPPO E., SCOPIGNO
R.: Optimal isosurface extraction from irregular volume data.
In Proc. Symposium on Volume Visualization (1996), pp. 31–38.
2

[CMS06] CARR H., MOLLER T., SNOEYINK J.: Artifacts caused
by simplicial subdivision. IEEE Transaction on Visualization and
Computer Graphics 12, 2 (2006), 231–242. 5

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN
E.: Gigavoxels: Ray-guided streaming for efficient and detailed
voxel rendering. In Proc. ACM SIGGRAPH Symposium on Inter-
active 3D Graphics and Games (2009). 3

[Cra12] CRASSIN C.: Dynamic sparse voxel octrees for next-gen
real-time rendering, 2012. ACM SIGGRAPH Course “Beyond
Programmable Shading”. 4

[Dac06] DACHSBACHER C.: Interactive Terrain Rendering – To-
wards Realism with Procedural Models and Graphics Hardware.
PhD thesis, University of Erlangen-Nuremberg, 2006. 3

[DKW09] DICK C., KRÜGER J., WESTERMANN R.: GPU ray-
casting for scalable terrain rendering. In Proc. Eurographics -
Areas Papers (2009), pp. 43–50. 3

[DKW10] DICK C., KRUEGER J., WESTERMANN R.: GPU-
aware hybrid terrain rendering. In Proc. IADIS Computer
Graphics, Visualization, Computer Vision and Image Processing
(2010), pp. 3–10. 3

[DWS∗97] DUCHAINEAU M., WOLINSKY M., SIGETI D. E.,
MILLER M. C., ALDRICH C., MINEEV-WEINSTEIN M. B.:
ROAMing terrain: real-time optimally adapting meshes. In Proc.
IEEE Visualization (1997), pp. 81–88. 3

[DZTS07] DYKEN C., ZIEGLER G., THEOBALT C., SEIDEL H.-
P.: GPU marching cubes on shader model 3.0 and 4.0. Re-
search Report MPI-I-2007-4-006, Max-Planck-Institut für Infor-
matik, August 2007. 10, 12

[GDL∗02] GREGORSKI B., DUCHAINEAU M., LINDSTROM P.,
PASCUCCI V., JOY K. I.: Interactive view-dependent rendering
of large isosurfaces. In Proc. IEEE Visualization (2002), pp. 475–
484. 3, 5, 11

[Ger02] GERSTNER T.: Multiresolution extraction and rendering
of transparent isosurfaces. Computers & Graphics 26, 2 (2002),
219–228. 2

[GM05] GOBBETTI E., MARTON F.: Far voxels: a multireso-
lution framework for interactive rendering of huge complex 3d
models on commodity graphics platforms. ACM Transactions on
Graphics 24, 3 (2005), 878–885. 3, 4

[GMC∗06] GOBBETTI E., MARTON F., CIGNONI P.,
DI BENEDETTO M., GANOVELLI F.: C-BDAM - com-
pressed batched dynamic adaptive meshes for terrain rendering.
Computer Graphics Forum 25, 3 (2006). 3

[GMG08] GOBBETTI E., MARTON F., GUITIÁN J. A. I.: A
single-pass GPU ray casting framework for interactive out-of-
core rendering of massive volumetric datasets. Visual Computer
24, 7 (2008), 797–806. 3

[GR99] GERSTNER T., RUMPF M.: Multiresolutional parallel

Version of the authors

Scholz, Bender and Dachsbacher / Real-Time Isosurface Extraction with View-Dependent Level of Detail and Applications

isosurface extraction based on tetrahedral bisection. In Proc.
Symposium Volume Visualization (1999), pp. 267–278. 2

[GW07] GIEGL M., WIMMER M.: Unpopping: Solving the
image-space blend problem for smooth discrete lod transitions.
Computer Graphics Forum 26, 1 (2007), 46–49. 8, 11

[Hop96] HOPPE H.: Progressive Meshes. Proc. SIGGRAPH
(1996), 99–108. 4

[HSH09] HU L., SANDER P. V., HOPPE H.: Parallel view-
dependent refinement of progressive meshes. In Proc. ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games
(2009), pp. 169–176. 4

[JL12] JUDNICH J., LING N.: Symmetric cluster set level of
detail for real-time terrain rendering. In Multimedia and Expo
(ICME) (2012), pp. 320–324. 3

[JLSW02] JU T., LOSASSO F., SCHAEFER S., WARREN J.: Dual
contouring of Hermite data. ACM Transactions on Graphics 21,
3 (2002), 339–346. 2

[JSYR12] JÖNSSON D., SUNDÉN E., YNNERMAN A., ROPIN-
SKI T.: Interactive volume rendering with volumetric illumina-
tion. In Eurographics STAR program (2012). 11

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A
high resolution 3d surface construction algorithm. In Proc. SIG-
GRAPH (1987), pp. 163–169. 1, 2

[LD07] LEFEBVRE S., DACHSBACHER C.: Tiletrees. In Proc.
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games (2007), pp. 25–31. 11

[LD12] LIKTOR G., DACHSBACHER C.: Decoupled deferred
shading for hardware rasterization. In Proc. ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (2012),
pp. 143–150. 11

[Len10] LENGYEL E. S.: Voxel-based Terrain for Real-time Vir-
tual Simulations. PhD thesis, University of California at Davis,
Davis, CA, USA, 2010. 4

[LH04] LOSASSO F., HOPPE H.: Geometry clipmaps: terrain ren-
dering using nested regular grids. ACM Transactions on Graph-
ics 23, 3 (2004), 769–776. 3

[LKES09] LIVNY Y., KOGAN Z., EL-SANA J.: Seamless
patches for GPU-based terrain rendering. The Visual Computer
25, 3 (2009), 197–208. 3

[LKR∗96] LINDSTROM P., KOLLER D., RIBARSKY W.,
HODGES L. F., FAUST N., TURNER G. A.: Real-time, continu-
ous level of detail rendering of height fields. In Proc. SIGGRAPH
(1996), pp. 109–118. 3

[LMS11] LOEFFLER F., MUELLER A., SCHUMANN H.: Real-
time rendering of stack-based terrains. In Proc. Vision, Modelling
and Visualization (2011), pp. 161–168. 4, 9

[LPT03] LARIO R., PAJAROLA R., TIRADO F.: Hyperblock-
quadtin: Hyper-block quadtree based triangulated irregular net-
works. In Proc. IASTED Visualization, Imaging and Image Pro-
cessing (2003), pp. 733–738. 3

[NY06] NEWMAN T. S., YI H.: A survey of the marching cubes
algorithm. Computers & Graphics (2006), 854–879. 3

[Pas04] PASCUCCI V.: Isosurface computation made simple:
hardware acceleration, adaptive refinement and tetrahedral strip-
ping. In Proc. Joint Eurographics-IEEE TVCG Symposium on
Visualization (2004), pp. 293–300. 3

[PG07] PAJAROLA R., GOBBETTI E.: Survey of semi-regular
multiresolution models for interactive terrain rendering. Visual
Computer 23, 8 (2007), 583–605. 3

[PGGM09] PEYTAVIE A., GALIN E., GROSJEAN J., MÉRILLOU
S.: Arches: a framework for modeling complex terrains. Com-
puter Graphics Forum 28, 2 (2009), 457–467. 1, 2, 4, 9

[PT90] PAYNE B. A., TOGA A. W.: Surface mapping brain func-
tion on 3d models. IEEE Computer Graphics & Applications 10,
5 (1990), 33–41. 2

[RCBW12] REICHL F., CHAJDAS M. G., BÜRGER K., WEST-
ERMANN R.: Hybrid sample-based surface rendering. In Proc.
Vision, Modelling and Visualization (2012), pp. 47–54. 3

[RMD11] REINER T., MÜCKL G., DACHSBACHER C.: Inter-
active modeling of implicit surfaces using a direct visualization
approach with signed distance functions. Computers & Graphics
35 (2011), 596–603. 1

[SDC09] SCHMITZ L. A., DIETRICH C. A., COMBA J. L. D.:
Efficient and high quality contouring of isosurfaces on uniform
grids. In Computer Graphics and Image Processing (SIBGRAPI)
(2009), pp. 64–71. 12

[SM05] SANDER P. V., MITCHELL J. L.: Progressive buffers:
View-dependent geometry and texture for LOD rendering. In
Proc. Symposium on Geometry Processing (2005), pp. 129–138.
3

[ST90] SHIRLEY P., TUCHMAN A.: A polygonal approximation
to direct scalar volume rendering. In Computer Graphics (1990),
pp. 63–70. 2

[Str09] STRUGAR F.: Continuous distance-dependent level of de-
tail for rendering heightmaps. Journal of Graphics, GPU, and
Game Tools 14, 4 (2009), 57–74. 3

[Vir14] Virtual Terrain Project, 2014. URL: http://www.
vterrain.org. 3

[WCM12] WEBER G. H., CHILDS H., MEREDITH J. S.: Effi-
cient parallel extraction of crack-free isosurfaces from adaptive
mesh refinement (AMR) data. In Proc. Symposium on Large
Data Analysis and Visualization (2012), pp. 31–38. 2

[WDF08] WEISS K., DE FLORIANI L.: Multiresolution interval
volume meshes. In Proc. Symposium on Volume and Point-Based
Graphics (2008), pp. 65–72. 4, 5

[WF11] WEISS K., FLORIANI L. D.: Simplex and diamond hier-
archies: models and applications. Computer Graphics Forum 30,
8 (2011), 2127–2155. 5

[WK02] WU J., KOBBELT L.: Fast mesh decimation by multiple-
choice techniques. In Proc. Vision, Modelling and Visualization
(2002), pp. 241–248. 7

[WKE99] WESTERMANN R., KOBBELT L., ERTL T.: Real-time
exploration of regular volume data by adaptive reconstruction of
iso-surfaces. The Visual Computer 15 (1999), 100–111. 2

[WKL∗01] WEBER G. H., KREYLOS O., LIGOCKI T. J., SHALF
J. M., HAGEN H., HAMANN B.: Extraction of crack-free isosur-
faces from adaptive mesh refinement data. In Data Visualization
(2001), Springer Verlag, pp. 25–34. 2

[WKSD13] WEBER C., KAPLANYAN A., STAMMINGER M.,
DACHSBACHER C.: Interactive direct volume rendering with
many-light methods and transmittance caching. In Proc. of Vi-
sion, Modeling and Visualization (2013), pp. 195–202. 11

[YLM06] YOON S.-E., LAUTERBACH C., MANOCHA D.: R-
LODs: fast LOD-based ray tracing of massive models. The Visual
Computer 22, 9 (2006), 772–784. 3, 11

[ZQHK04] ZHANG N., QU H., HONG W., KAUFMAN A. E.:
Shic: A view-dependent rendering framework for isosurfaces. In
Volume Visualization and Graphics (2004), IEEE Computer So-
ciety, pp. 63–70. 3

Version of the authors

http://www.vterrain.org
http://www.vterrain.org

