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Abstract

We introduce a novel fast and robust simulation method for deformable solids that supports complex physical effects like
lateral contraction, anisotropy or elastoplasticity. Our method uses a continuum-based formulation to compute strain
and bending energies for two- and three-dimensional bodies. In contrast to previous work, we do not determine forces
to reduce these potential energies, instead we use a position-based approach. This combination of a continuum-based
formulation with a position-based method enables us to keep the simulation algorithm stable, fast and controllable
while providing the ability to simulate complex physical phenomena lacking in former position-based approaches. We
demonstrate how to simulate cloth and volumetric bodies with lateral contraction, bending, plasticity as well as anisotropy
and proof robustness even in case of degenerate or inverted elements. Due to the continuous material model of our method
further physical phenomena like fracture or viscoelasticity can be easily implemented using already existing approaches.
Furthermore, a combination with other geometrically motivated methods is possible.
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1. Introduction

The physically-based simulation of deformable solids is
a topic of active research in the field of computer graphics
for more than two decades. In general, simulation methods
should reflect the behavior of real materials accurately to
achieve realistic results. For this reason continuum me-
chanical approaches in combination with finite element
methods (FEM) are widely used. These methods rely on
either implicit time integration schemes or very small time
steps to provide a robust simulation. Besides the accu-
rate material behavior, many real-time applications focus
on robustness and interactivity. Therefore, geometrically
motivated approaches were developed to generate stable
simulations while keeping computation times low. These
methods result in a physically plausible behavior of the
solid, but are not able to model complex material prop-
erties. Due to the robustness of the methods, they are
often used to improve traditional approaches, e.g. strain-
limiting methods for cloth simulations.

In this paper we present a novel fast and robust method
for the simulation of two- and three-dimensional solids
that supports complex physical phenomena. Our approach
combines continuum mechanical material models with a
position-based energy reduction. Its position-based na-
ture allows to perform a stable simulation using an explicit
time integration scheme. Our method also strongly bene-
fits from the continuous model since in contrast to previous
position-based approaches it can handle complex physical
effects like isotropic and anisotropic elastic behavior as well
as the effects of lateral contraction. Moreover, we show
how the problem of element inversion can be handled by

only a small modification of the algorithm and provide a
formulation to easily embed elastoplastic effects into the
simulation. Finally, we demonstrate that our method is
able to simulate thousands of degrees of freedom at in-
teractive rates which makes it well-suited for applications
like computer games, special effects in movies and virtual
reality.

2. Related Work

In the last two decades the simulation of deformable
solids has been a topic of active research. Nealen et al. [1]
presented a general survey of simulation methods. The
first physically-based approaches to simulate deformable
objects used continuum mechanical formulations, where
the governing equations were discretized and solved using
numerical integration. Terzopolous et al. [2] used a fi-
nite difference scheme to discretize their model based on a
non-linear strain measure. Later, O’Brien et al. presented
a finite element method for spatial discretization to model
brittle [3] and ductile [4] fracture, where explicit time in-
tegration schemes were used. However, explicit schemes
suffer from stability issues regarding stiff differential equa-
tions which forces the usage of very small time steps re-
sulting in high computational costs. James and Pai [5] dis-
cretized the equations using a boundary element method
and solved the system in a quasi-static context avoiding
the usage of a time integration scheme. Unfortunately, dy-
namic effects are completely neglected making the model
unsuitable for scenes with spatially unconstrained, freely
moving objects. Since explicit integration methods used in
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Figure 1: Complex simulations performed with our novel approach. Left: Simulation of 100 Stanford Armadillos with 371700 tetrahedra.
Right: Heavy sphere pushing down an orthotropic cloth model that is thrown over four statues. Realistic wrinkles evolve due to the bending
resistance.

early works suffer from instabilities, implicit time integra-
tion schemes became popular. These schemes are compu-
tationally more expensive than explicit ones as large, gen-
erally non-linear systems of equations have to be solved.
However, they allow to use larger time step sizes. Re-
garding the finite element method with linear Lagrangian
shape functions, the underlying strain measure has to be
linearized to keep the systems linear. However, a linearized
strain leads to artifacts when deformable bodies are ex-
posed to rotational motion. Etzmuß et al. [6] introduced
a corotational method, where the linearized strain is mea-
sured in a local, non-rotated reference frame, obtained by
computing a polar decomposition of the deformation gra-
dient. Due to derivatives of the rotational parts this still
yields a non-linear system of equations, but nevertheless
they found the simulation to be sufficient by neglecting
non-linear terms in force derivatives and performing only
a single step of Newton’s method. To efficiently solve the
linear system of equations multigrid solvers have been em-
ployed by Georgii et al. [7] as well as Dick et al. [8], where
a hierarchy of discretizations is used to improve the rate
of convergence for either short- and long-wavelength com-
ponents. At the same time GPU-based solvers [8, 9] and
adaptive meshes [10] were investigated to simulate com-
plex models in real-time. Another approach to speed up
simulation time was made by Hecht et al. [11]. They solved
the linear equation system using a sparse Cholesky factor-
ization which is incrementally updated during the simula-
tion yielding a very efficient computation of the solution.
Furthermore, the corotated approach was generalized to
a discontinuous Galerkin finite element method by Kauf-
mann et al. [12] to overcome the restrictions of conform-
ing bases. This easily allows the usage of convex as well
as non-convex polyhedral elements with simple polynomial
shape functions. As previously mentioned the corotational
approach ignores higher order derivatives in the stiffness
matrix which finally leads to instabilities with large de-

formations. Therefore, McAdams et al. [13] solved the
instabilities by proposing a new integration rule for hex-
ahedral elements. Further, Georgii et al. [7] presented a
new method to extract the rigid body motion using an en-
ergy minimization resulting in a more stable corotational
formulation. When considering the higher order terms,
the instabilities are minimized but at the cost of solving
non-linear systems [14].

Similar to existing continuum-mechanical approaches
we use a spatial finite element discretization. A vast ma-
jority of simulation methods employ a corotational ap-
proach. In contrast to that our method easily allows to
use arbitrary non-linear material models that do not rely
on a polar decomposition. Moreover, our approach is based
on a position-based energy reduction step which allows a
stable simulation with an explicit integration scheme.

In the last years position-based methods became pop-
ular since they are fast, robust and controllable while no
implicit time integration is required. A general survey of
position-based methods is presented by Bender et al. [15].
The geometrically motivated, meshless concept of shape
matching was introduced by Müller et al. [16] to simu-
late deformable objects. Traditional forces are avoided in
favor of position displacements to solve a geometric con-
straint. The goal positions are determined by minimizing
the distance between the reference shape and the deformed
shape of a body. This minimization process requires the
computation of translational vectors for both shapes and
of a rotation matrix by a polar decomposition. To enhance
the efficiency of the method Rivers et al. [17] proposed a
fast summation method on regular lattices. Later, Diziol
et al. [18] generalized the fast summation approach for
irregular structures and introduced a method to enforce
incompressibility. Bender et al. [19] introduced a multi-
resolution approach to enhance the convergence. Further,
Müller et al. [20] added an orientation to each particle to
increase the robustness of shape matching. Another ge-
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ometrically motivated technique is the position-based dy-
namics approach introduced by Müller et al. [21]. The au-
thors demonstrated how to simulate cloth models by iter-
atively solving geometric constraints. Later, the position-
based method was extended in order to simulate fluids [22],
rigid bodies [23] and elastic rods [24]. Stam [25] also used
constraints to simulate the deformation of a solid body,
where the main difference to the approach of Müller et al.
is that the solver of Stam is velocity-based.

The approach presented in this work integrates seam-
lessly into the position-based framework of Müller et al.,
but uses a material model derived from continuum me-
chanics to enforce physical phenomena that previous for-
mulations are lacking and is even able to resolve degenerate
or inverted shapes.

The simulation of cloth is closely related to the simula-
tion of two-dimensional solids except of additional out-of-
plane forces that prevent the object from excessive bend-
ing. For an overview we refer to the survey of Magnenat-
Thalmann and Volino [26]. Early approaches were based
on mass-spring systems, e.g. [27]. However, the behavior
is difficult to control since the spring stiffnesses are gen-
erally unknown for specific materials. Later, also finite
element methods solving partial differential equations de-
rived from continuum mechanics were applied to model
cloth [6, 28]. Specific material behavior can then be en-
forced easily since the model provides established param-
eter sets used in classical mechanics. Müller et al. [21, 29]
presented a position-based method for robust interactive
simulations. An additional bending constraint model for
this position-based approach was introduced by Kelager
et al. [30]. Since pieces of cloth only accommodate small
amounts of stretching, strain limiting methods were devel-
oped. Thomaszewski et al. [31] limit the maximal strain of
generally biphasic, anisotropic materials based on a con-
tinuum mechanical deformation measure. Later, Wang et
al. [32] proposed an isotropic strain limiting where the un-
derlying deformation gradient is directly modified by using
a singular value decomposition.

In our approach we combine the advantages of both the
continuum mechanical and the position-based approaches
to maintain complex physical phenomena while keeping
the simulation easy to implement, fast, robust and con-
trollable.

3. Position-Based Energy Reduction

In our work we simulate the elasticity of the bodies by
reducing potential energy functions E(x) that correspond
to their deformation. This energy reduction is performed
using a position-based approach [21]. The concept of this
approach is introduced in the following while the required
energy functions are presented in Section 4.

3.1. Overview

We use particle meshes to represent deformable bodies
in our simulation. Each particle has a mass m, a position

Algorithm 1 Simulation step

1: vn+1 ← vn + ∆tM−1fn
ext

2: xn+1 ← xn + ∆tvn+1

3: for iter := 1 to maxIterations do
4: for each energy constraint C(x) do
5: compute a Lagrange multiplier λ (Equation (3))
6: determine position changes ∆x (Equation (2))
7: xn+1 ← xn+1 + ∆x
8: end for
9: end for

10: vn+1 ← 1
∆t

(
xn+1 − xn

)
11: perform continuous collision detection and response
12: damp velocities

x and a velocity v. Mass lumping is used to concentrate
the mass of the model at the vertices of the mesh which
yields a diagonal mass matrix M.

Position-based simulation methods typically work in
three steps [15]. First, a time integration step is performed
for a particle model in order to obtain new locations of the
particles. These locations are used as predicted positions
which are modified in the second step in order to fulfill
given position constraints. The definition of bilateral con-
straints yields a system of equations which is generally
non-linear. Solving this system exactly would result in a
completely stiff body. Therefore, Müller et al. [21] propose
to use an iterative solver and to perform only a few iter-
ations which yields an elastic behavior and allows a high
performance. In the final step the corrected positions are
used to update the velocities of the particles.

Algorithm 1 outlines a simulation step with our
position-based energy reduction method. In the lines (1)
and (2) the current velocities vn and positions xn are in-
tegrated using a symplectic Euler scheme, where ∆t is the
time step size and fn

ext are external forces. Note that the
symplectic Euler method differs only slightly from the ex-
plicit Euler scheme and has the same computational effort
but better properties concerning stability and energy con-
servation [33]. In the time integration step only external
forces are considered which corresponds to an integration
of unconstrained particles. The resulting positions xn+1

are modified by the iterative energy reduction process in
lines (3)-(9) to simulate the elastic behavior of our bod-
ies. This corresponds to a static solver which corrects the
positions in order to meet given constraints. The modi-
fied positions are used to update the velocities in line (10).
Finally, collision handling is performed and the velocities
are damped. In our work we use the collision handling
proposed by Bridson et al. [34].

3.2. Position-Based Solver

After computing the predicted positions in line (2) of
Algorithm 1, these positions are modified to fulfill a set
of bilateral position constraints C(x) = 0. The goal of the
position-based solver is to find a position corrections ∆x
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so that C(x + ∆x) = 0. In general the resulting system of
equations is non-linear. It can be solved using the Newton-
Raphson method which iteratively solves a linearized sys-
tem of equations. However, since this is computation-
ally expensive, we use a modified version of the Newton-
Raphson solver. Each constraint is linearized and solved
independently while the solver iterates multiple times over
all constraints in a Gauss-Seidel fashion. For a single con-
straint the position correction ∆x is computed by solving
the linearized equation

C(x + ∆x) ≈ C(x) + ∇xCT (x)∆x = 0. (1)

The direction of the position correction is restricted to
solve this underdetermined equation. By performing the
position correction only in the direction of ∇xC(x) the lin-
ear and angular momenta are conserved which corresponds
to the principle of virtual work [35]. Considering also the
individual masses of the particles, the position change of
a particle i is determined by

∆xi = wiλ∇xiC(x), (2)

where λ is a Lagrange multiplier and wi = 1/mi is the
inverse particle mass. Substituting this position change in
Equation (1) yields

λ = −
C(x)∑

j w j|∇x jC(x)|2
. (3)

Since the constraints are linearized independently one
after another, each constraint function C(x) and its cor-
responding gradient ∇xC(x) already consider the positions
changes of previous constraints. This yields a good con-
vergence as shown in Section 6. In contrast the Newton-
Raphson method evaluates all values at the beginning of
an iteration step and solves the linearized system with-
out adapting them. For this method a model with n con-
straints requires to solve a n × n system of linear equa-
tions in each iteration step while the modified Newton-
Raphson method proposed above only solves n indepen-
dent linear equations per step. Therefore, the modified
version is significantly faster than the original Newton-
Raphson method while the convergence of the latter one
is only slightly better which is shown in Section 6.

A simple example of a position constraint is the dis-
tance constraint C(x1, x2) = |x1 − x2| − d0, where d0 is the
rest distance between the constrained particles. This con-
straint was used by Müller et al. [21] to simulate cloth
models. The position corrections for this constraint are
determined by Equations (2) and (3):

∆x1 = −
w1

w1 + w2
(|x1 − x2| − d0)

x1 − x2

|x1 − x2|

∆x2 = +
w1

w1 + w2
(|x1 − x2| − d0)

x1 − x2

|x1 − x2|
.

In contrast to previous works which use such geomet-
ric constraints to simulate deformable models, we propose

to use energy constraints. In the next section we intro-
duce energy functions E(x) which are based on continuum
mechanics. In order to simulate deformable solids with
the position-based approach we define an energy constraint
C(x) = E(x) = 0 for each energy function. The advantage
of using energy functions instead of geometric constraints
is that thanks to the continuum-based formulation we use,
physical phenomena like lateral contraction, anisotropy or
elastoplasticity can be simulated since the characteristic
deformation behavior of these effects is encoded in the en-
ergy functions and their gradients.

4. Deformable Solids

In this section we show how soft bodies and cloth mod-
els are simulated with the position-based energy reduction
approach. In order to model elastic behavior we define a
strain energy function Es on the considered domain Ω de-
rived from continuum mechanics and reduce the implied
energy of the body using the method explained in Sec-
tion 3. Regarding cloth simulation we use an additional
bending energy Eb as the development of folds and wrin-
kles is essential for realistic results.

4.1. Elastic Energy

The deformation of a body is described by a continuous
displacement field u [36]. This displacement field is used
to define the deformation function

φ(X) = X + u = x

which maps a point X in material space to its deformed
location x in world space. The deformation gradient is
defined by the Jacobian of the deformation mapping

F =
∂φ(X)
∂X

.

This gradient is required to determine the non-linear Green
strain tensor

ε =
1
2

(
FT F − I

)
,

where I denotes the identity matrix.
Our simulation method supports different constitu-

tive material models. We demonstrate this using the
Saint Venant-Kirchhoff model and the Neo-Hookean model
which are introduced in the following.

Saint Venant-Kirchhoff Model. The relation between
stress and strain is modeled using Hooke’s generalized law

S = Cε, (4)

where C is the elasticity tensor of fourth order modeling
the elastic behavior of the material. Due to symmetries
C inherits 21 independent entries for volumetric bodies.
For orthotropic materials the number reduces to nine en-
tries for three-dimensional continua. For isotropic mate-
rials only two independent entries in C remain, which are
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often expressed by the engineering constants Young’s mod-
ulus k and Poisson ratio ν.

For isotropic materials the stress-strain relation in
Equation (4) is called Saint Venant-Kirchhoff model. The
scalar strain energy density field is then defined by

Ψs =
1
2
ε : S =

1
2
ε : Cε

using the inner product A : B = tr
[
AT B

]
, where tr(·) is the

trace of a matrix. Then the resulting energy stored in the
solid is

Es =

∫
Ω

ΨsdX. (5)

To reduce this energy the method presented in Section 3
makes use of the world space gradient which can also be
interpreted as an inner force field acting from inside the
body

∇xEs =

∫
Ω

∂Ψs

∂x
dX =

∫
Ω

∂Ψs

∂F
∂F
∂x

dX =

∫
Ω

P(F)
∂F
∂x

dX, (6)

where
P(F) = FCε (7)

is the first Piola-Kirchhoff stress tensor.

Neo-Hookean Model. Another isotropic constitutive model
is the Neo-Hookean model which is defined by the isotropic
invariants:

I1 = tr(FT F), I3 = det(FT F).

For this model the strain energy density field is

Ψs =
µ

2
(
I1 − log(I3) − 3

)
+
λ

8
log2(I3),

where µ and λ are the Lamé coefficients:

µ =
k

2(1 + ν)
, λ =

kν
(1 + ν)(1 − 2ν)

.

The first Piola-Kirchhoff stress tensor is then defined as

P(F) = µF − µF−T +
λ log(I3)

2
F−T . (8)

4.2. Soft Bodies

Discretization. In order to perform a numerical simulation
of a deformable body, we discretize the body using tetra-
hedral elements with linear Lagrangian shape functions as
described by Sifakis and Barbic [37]. The deformation gra-
dient for such an element is

F = DsD−1
m , (9)

where Ds is the deformed shape matrix and Dm the con-
stant reference shape matrix defined by

Ds =
(
x1 − x4 x2 − x4 x3 − x4

)
Dm =

(
X1 − X4 X2 − X4 X3 − X4

)
.
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Figure 2: (a,c) The relationship between the first component of the
diagonalized first Piola-Kirchhoff stress tensor P̂x,x and the corre-
sponding component of the deformation gradient F̂x,x for the Saint
Venant-Kirchhoff model (StVK) and the Neo-Hookean model, re-
spectively. (b,d) The relationship is modified to handle degenerate
and inverted elements robustly.

Since the deformation gradient has only support on the
tetrahedral domain Ω∆ ⊆ Ω and since F is constant with
respect to material space coordinates X, the strain energy
stored in a single element is according to Equation (5)

Es =

∫
Ω∆

Ψs(F)dX = VΨs(F),

where V is the undeformed volume of the element. This
gives us the energy function required for the position-based
energy reduction approach. Furthermore, we need to de-
termine the corresponding strain energy gradient ∂Es/∂xi

for each vertex i of an element. These gradients are ac-
cording to Equation (6)[

∂Es

∂x1

∂Es

∂x2

∂Es

∂x3

]
= VP(F)D−T

m ,
∂Es

∂x4
= −

3∑
i=1

∂Es

∂xi
.

Inversion Handling. When simulating large deformations,
the inversion of tetrahedral elements cannot be avoided.
Common constitutive models are not designed to handle
such configurations. To restore inverted elements robustly
we use the approach of Irving et al. [38]. Inverted ele-
ments are detected by checking the sign of det F. For such
an element a singular value decomposition of F = UF̂VT is
computed, where U and V are rotation matrices. The ma-
trix U contains a reflection for inverted tetrahedra which
is removed by negating the smallest element of F̂ and its
corresponding column in U. The diagonalized first Piola-
Kirchhoff stress tensor P̂ = P(F̂) is determined by Equa-
tion (7) or (8) depending on the constitutive model.

When using a Saint Venant-Kirchhoff material, a com-
pressed elastic body reacts with a restorative force which
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reaches a maximum at a compression of approximately
58% (see Figure 2(a)). As suggested by Gao et al. [39],
we clamp the stress at its maximum value to handle de-
generate and inverted elements robustly. This means that
we modify P̂ according to Figure 2(b). Finally, we obtain
the modified stress tensor by P = UP̂VT . The handling
of degenerate and inverted elements for other constitutive
models can be performed analogously as shown in Fig-
ures 2(c) and 2(d) for the Neo-Hookean model.

Plastic Deformation. In our work we simulate plastic de-
formations by a simple and efficient method which was
inspired by the work of Müller and Gross [40]. We addi-
tively decompose the total strain ε into an elastic and a
plastic component:

ε = εelastic + εplastic.

To update the plastic component, we use the deviation of
the elastic strain which is determined by

ε′ = εelastic −
tr(εelastic)

3
I.

As proposed by O’Brien et al. [4], we employ von Mises’s
yield criterion

γyield < ‖ε
′‖

to determine when plastic flow begins, where ‖ · ‖ is the
Frobenius norm and γyield a user-defined material param-
eter. If this criterion is satisfied, plastic deformation will
occur and the plastic strain absorbs a portion of ε′. In this
case we update the plastic component of the strain tensor
according to:

εplastic :=

εplastic + ∆tγcreepε′ if γyield < ‖ε
′‖ < γmax

γmax
εplastic

‖εplastic‖
if ‖ε′‖ ≥ γmax,

where γcreep is the plastic flow rate and γmax determines
the maximum plastic strain.

As an alternative to the additive strain decomposition
a multiplicative decomposition of the deformation gradient
could also be used as proposed in [38]. In contrast to the
additive model additional constraints such as incompress-
ibility can be enforced easily regarding traditional finite
element simulations. On the other hand our additive de-
composition is more efficient in terms of computational
effort since the plasticity update in combination with the
multiplicative model of Irving et al. [38] relies on a singular
value decomposition.

4.3. Cloth

Discretization. We discretize a cloth model using a trian-
gle mesh with linear Lagrangian shape functions. For each
triangle we project its deformed configuration and its ref-
erence configuration on the plane of the triangle to obtain
2D coordinates. Analogously to Equation (9), the defor-
mation gradient F ∈ R2×2 of a triangle is determined by

x0

x1

x2 x3e0

e2 e3

e1 e4

Figure 3: The stencil of an interior edge e0 which is used to determine
the bending energy.

its deformed shape matrix and its reference shape matrix.
The strain energy of a triangular element is

Es = AΨ(F),

where A is the area of the undeformed triangle. The strain
energy gradients of the three vertices are determined by[

∂Es

∂x1

∂Es

∂x2

]
= AP(F)D−T

m ,
∂Es

∂x3
= −

2∑
i=1

∂Es

∂xi
.

Anisotropy. Woven fabrics have a weft and a warp di-
rection which leads to an orthotropic behavior which is
a special case of anisotropy. We model this behavior by
using an orthotropic material with two orthogonal sym-
metry axes. The corresponding elasticity tensor is defined
by two Young’s moduli kweft and kwarp, a shear modulus
kshear and the Poisson ratios νweft and νwarp:

C =


kweft

1−νweftνwarp

kweftνwarp

1−νweftνwarp
0

kwarpνweft

1−νweftνwarp

kwarp

1−νweftνwarp
0

0 0 kshear

 .
Note that other anisotropic materials can be simulated as
well by using a corresponding elasticity tensor.

Bending. We use the discrete isometric bending model
of Bergou et al. [41] to simulate cloth with folds and
wrinkles. For an interior edge ei, we define a stencil
s consisting of the two triangles adjacent to ei, where
xs = (x0, x1, x2, x3)T contains the four vertices of the sten-
cil and es = [x0x1, x1x2, x2x0, x0x3, x3x1] is a list of the five
stencil edges starting with the common edge (see Figure 3).
The local Hessian bending energy of a stencil is obtained
as

Qs =
3

A0 + A1
KT K,

where A0 and A1 are the areas of the adjacent triangles
and K is the vector

K = (c01 + c04, c02 + c03, −c01 − c02, −c03 − c04),

where c jk = cot∠e j, ek. The bending energy of the stencil
is defined as

Eb(xs) =
1
2

∑
i, j

Qs
i, j xT

i x j.
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Finally, the local bending energy gradients are determined
by

∂Eb

∂xi
=

∑
j

Qs
i, jx j.

5. Visualization

Since the surface resolution of a tetrahedral model is of-
ten too low for fine details, a common visualization method
for soft bodies is to embed a high resolution rendering ge-
ometry in the tetrahedral mesh. However, this method is
limited since the rendering mesh must be fully contained
within the volume mesh and since it cannot handle cloth
models with details above the surface mesh. In our work
we use the approach of Kobbelt et al. [42] to attach ren-
dering geometries to our simulation models. In a precom-
putation step each detail vertex is assigned to a surface
triangle of the simulation model. To obtain barycentric
coordinates, the vertex is projected onto its correspond-
ing triangle using its interpolated normal. Finally, the
distance to the surface point is stored. The deformed po-
sition of a detail vertex can be determined by interpolating
the normal at the barycentric coordinates and moving the
surface vertex at these coordinates along the normal by
the stored distance.

6. Results

The simulations shown in this section were performed
on two Intel X5650 processors with 2.66 GHz and six
cores per processor. Our method was implemented using
OpenMP to take advantage of the multi-core processor ar-
chitecture. In all simulations we performed five iterations
to reduce the strain energy and used a fixed time step size
of ∆t = 5 ms. If not otherwise stated, the Saint Venant-
Kirchhoff material is used. The volumetric models were vi-
sualized using the technique described in Section 5. Please
see our accompanying video for the resulting animations.

Performance. Table 1 summarizes the number of vertices
and elements as well as the timings of the simulations
shown in Figure 1 and Figure 9. Note that the compu-
tation times do not include collision handling since this is
not the focus of our paper. In the most complex simulation
100 Armadillos were falling through a funnel. To simulate
elastic behavior of all Armadillos our approach required
152.41 ms per time step on average while the computation
for a single Armadillo took 1.51 ms per step. The run-time
scales linearly since a fixed number of iterations is used.

In our simulation we use a modified version of a
Newton-Raphson solver to determine the position correc-
tions for the energy reduction (see Section 3.2). To com-
pare its convergence with the original Newton-Raphson
solver we measured the total elastic energy over all tetra-
hedral elements in one simulation step of the dragon scene
(see Figure 9). Figure 4 shows the results for different
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Figure 4: Convergence of the position-based energy reduction in one
simulation step of the dragon scene (see Figure 9). This figure shows
a comparison of the Newton-Raphson solver and its modified version
used in our position-based approach.
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Figure 5: Total strain in percent of a beam stretched by a constant
force of 100 N. Left: We varied the number of iterations while using
a constant Young’s modulus of k = 1000. Right: We used a fixed
number of five iterations while varying the Young’s modulus.

numbers of iterations. After the time integration per-
formed in the first two lines of Algorithm 1 this energy
is nearly 900. In the first five iterations both methods
converge very fast. After that the energy decreases more
slowly. In our simulations five iterations were enough to
get realistic results. The figure shows that the Newton-
Raphson solver converges slightly better than the modi-
fied version. However, in each iteration it has to solve
a full linear system while the modified version only per-
forms a single Gauss-Seidel iteration, where only the di-
agonal elements of the matrix are considered. Therefore,
the modified version is significantly faster and the better
convergence of the Newton-Raphson solver does not pay
off. The convergence can also be improved considerably
using a hierarchical solver as demonstrated by Müller [29].
This is especially advantageous when simulating almost
stiff models.

In the next experiment we analyze the relationship be-
tween the total strain and the number of iterations as
well as the stiffness parameter. For this experiment we
stretched a simple beam model by fixing the top of the
beam and applying a constant force of 100 N. We mea-
sured the total strain when the beam reaches its rest state
while varying the number of iterations (see Figure 5, left)
and the Young’s modulus (see Figure 5, right). The results
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Model # vertices # elements elasticity bending total

Armadillos 118000 371700 152.41 ms - 152.41 ms
Cloth 40401 80000 4.11 ms 2.62 ms 6.73 ms
Dragon 2603 7278 2.33 ms - 2.33 ms

Table 1: Complexity and timings of the simulations shown in Figure 1 and Figure 9. The time values represent the average computation
times per simulation step required to reduce the elasticity and the bending energies.

Figure 7: Lateral contraction of a stretched quadratic piece of cloth.
Our approach (left) produces nearly the same results as a classical
FEM simulation (right) for the Poisson ratios ν = 0.1, ν = 0.3 and
ν = 0.499.

show that the total strain converges fast in the first five
iterations while the convergence slows down afterwards.
In the second figure we can see the relationship between
the Young’s modulus and the stiffness of the elastic mate-
rial. Since the stiffness of the material generally depends
on the number of iterations when using a position-based
approach [15], our stiffness parameter k has not the same
meaning as the Young’s modulus which is known from me-
chanics. However, it can be used to fine-tune the stiffness
of the model.

Stability. In order to demonstrate the robustness of our
approach, we ran two simulations with the Stanford
Dragon. In the first one we set the y-coordinate of each
vertex to zero while we inverted the whole model by a re-
flection in the second simulation. Our method was able
to recover the model in both cases (see Figure 6) by using
the inversion handling described in Section 4.2.

Complex material behavior. Due to the continuum-based
formulation of our energy constraints, the energy gradi-
ents encode the characteristic deformation behavior of the
simulated materials. Therefore, our approach can simulate
physical phenomena like lateral contraction or anisotropy
in contrast to previous position-based methods. This is
demonstrated in the following.

We stretched a quadratic piece of cloth of size 1 m× 1 m
with different Poisson ratios to compare the lateral con-
traction produced by our approach with a classical finite
element simulation (see Figure 7). Since we employed a fi-
nite element method with an explicit time integration, we
had to use a small time step size of ∆t = 0.01 ms to keep the
simulation stable. Our approach produces nearly the same
results using a time step size of ∆t = 5 ms. At the end of

(a) γyield = 0.01, γcreep = 0.1 and
γmax = 100

(b) γyield = 0.01, γcreep = 1 and
γmax = 100

(c) γyield = 0.2, γcreep = 0.1 and
γmax = 100

(d) γyield = 0.01, γcreep = 0.1 and
γmax = 0.25

Figure 8: Plastic deformations when twisting a beam with different
parameter sets.

Figure 9: Elastoplastic Stanford Dragon is deformed persistently due
to the weight of a large sphere.

the simulation we measured the Hausdorff distance of the
FEM solutions and ours. For all three Poisson ratios the
maximum distance turned out to be smaller than 4 ·10−4 m
while the mean distance was even smaller than 8 · 10−6 m.
This demonstrates that the Poisson ratio is a meaningful
mechanical parameter in terms of our approach.

Figure 8(a) shows the plastic deformation of a beam af-
ter being twisted by a direct manipulation of the vertices
on the right. The usage of a larger creep parameter (see
Figure 8(b)) resulted in a higher plastic strain and almost
all elastic strain was absorbed when releasing the manip-
ulated vertices. When increasing the parameter γyield, the
plastic deformation begins later and less elastic strain is
absorbed (see Figure 8(c)). In Figure 8(d) the maximal
plastic strain was limited leading to a higher elastic strain
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Figure 6: Dragon model recovers after being completely degenerate or inverted.

Figure 10: Horizontal and vertical spring forces of the same magni-
tude are applied to a quadratic piece of cloth. Using two different
Young’s moduli kweft and kwarp for the orthotropic cloth model re-
sults in an anisotropic stretching behavior.

at the end. A more complex example for plastic deforma-
tion is shown in Figure 9.

In order to demonstrate that our method can handle
anisotropic material behavior, we stretched an orthotropic
quadratic piece of cloth by horizontal and vertical spring
forces of the same magnitude (see Figure 10). We used
the orthotropic elasticity tensor defined in Section 4.3 with
different Young’s moduli for the weft and warp direction.
The figure shows the resulting anisotropic behavior of the
cloth model.

Our approach supports different material models. We
implemented the Saint Venant-Kirchhoff model and the
Neo-Hookean model to demonstrate this. Figure 11 shows
a comparison of both materials under compression. In the
simulation a heavy ball is falling down on a deformable
cube. This example demonstrates that the Neo-Hookean
material can better resist a strong compression than the
Saint Venant-Kirchhoff model. The reason for this is that
the restorative force of the Saint Venant-Kirchhoff mate-
rial reaches a maximum at a compression of approximately
58% and then it decreases (see Figure 2(a)). In contrast to
that the restorative force of the Neo-Hookean model is not
limited (see Figure 2(c)) and yields a significantly stronger
reaction in case of an extreme compression.

Figure 11: A soft cube is deformed by a heavy spherical object us-
ing different material models, but the same parameter set. In both
images the point of maximal compression is captured. Left: Neo-
Hookean material, right: Saint Venant-Kirchhoff material.

Comparison with previous position-based methods. We im-
plemented position-based dynamics [21] with a parallelized
Gauss-Seidel solver for a comparison with our method.
The cloth model in Figure 1 was simulated using both
approaches. The elasticity simulation needed 2.87 ms per
step with position-based dynamics and 4.11 ms with our
method. The position-based dynamics approach of Müller
et al. is slightly faster. However, in contrast to our
method this approach cannot handle anisotropic materi-
als and has no parameter to control lateral contraction. In
order to compare with shape matching, we implemented
the parallel fast summation of Diziol et al. [18]. We used
a simple beam model with 5000 vertices and 19845 tetra-
hedra to easily obtain a good path layout for their fast
summation technique. Our elasticity simulation required
2.42 ms per step while shape matching needed 2.76 ms to
achieve nearly the same stiffness. Shape matching per-
formed a bit slower than our method. The reason for this
is the costly polar decomposition that is required for shape
matching. Another advantage of our method compared to
shape matching is that shape matching cannot simulate
effects like anisotropy and lateral contraction.

Comparison with the classical finite element method. In
the following we want to compare the fundamental con-
cepts of our position-based approach and the classical
force-based finite element method to show the differences

9



between both techniques. In classical finite element sim-
ulations the elastic forces are determined by the negative
gradient of the strain energy w.r.t. the vertex positions.
When using an explicit time integration scheme, the re-
sulting elastic forces are accumulated and then the veloc-
ities and positions are integrated. For the explicit inte-
grator introduced in Section 3 and a single element our
position-based approach delivers exactly the same veloc-
ities and positions when using a constant Lagrange mul-
tiplier of λ = −∆t2 and performing only one iteration of
the position-based solver. The proof can be found in Ap-
pendix A. Note that for multiple elements we still get the
same results with the constant Lagrange multiplier when
computing the position corrections in a Jacobi fashion.

If the time step size is too large in a classical finite
element simulation with an explicit integrator, the strain
energy after the time step can be even larger than before
and the system can become unstable. We call this the
overshooting problem. Therefore, typically implicit time
integration schemes are used in classical finite element sim-
ulations. In contrast to that our position-based approach
uses an explicit time integration method. It determines a
Lagrange multiplier per element which minimizes the ele-
ment’s energy approximately instead of using a fixed value
of λ = −∆t2. This means that our approach increases or
decreases the finite element forces to avoid the overshoot-
ing problem and to minimize the strain energy locally. A
global energy reduction is performed by computing the
corresponding position corrections iteratively. Since we
only modify the magnitude of the finite element forces but
not their direction, the characteristic material behavior is
preserved.

By adapting the finite element forces the position-
based approach is able to perform a stable simulation of
deformable solids with an explicit time integration scheme.
This has the advantage that it allows a high performance.
The disadvantage is that the stiffness of the model depends
on the number of iterations and the time step size. Hence,
only visual plausible results can be achieved. However,
due to its stability and its performance the position-based
approach is well-suited for the usage in computer games
and other interactive applications.

7. Conclusion and Future Work

We presented a position-based approach based on a
continuum mechanical formulation to simulate deformable
solids and cloth. Our approach is fast, stable, easy to im-
plement and controllable. In contrast to previous position-
based methods it supports the simulation of complex
physical phenomena like lateral contraction, anisotropy or
elastoplasticity. However, our method also has some limi-
tations. As for all position-based methods only visual plau-
sibility can be achieved and the stiffness does not solely de-
pend on the stiffness parameter (in our case the Young’s
modulus) but also on the number of iterations and the time
step size. Another limitation of position-based approaches

is that they do not converge to a certain solution as the
simulation mesh is refined. Therefore, adaptive time step-
ping and the usage of adaptive meshes are open problems
for future work.

In future we plan to integrate the position-based flu-
ids method of Macklin and Müller [22] in our framework in
order to model materials with viscoelastic behavior. More-
over, a combination of both approaches would allow us to
realize two-way coupling between deformable solids and
fluids in a simple way. Finally, we plan to extend our ap-
proach by integrating a fracture criterion based on a stress
analysis in order to model ductile fracture.
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Appendix A. Comparison of our position-based
approach with the classical FEM

In the following we analyze the relationship between
the classical finite element method and our position-based
approach considering a single element and using only one
iteration step in the position-based solver.

When using the classical FEM, the elastic force for a
particle i is determined by the negative gradient of the
strain energy introduced in Section 4:

fi = −
∂Es

∂xi
.

A time integration step with the explicit integration
scheme introduced in Section 3 yields the following new
velocities and positions for the particle:

vn+1
i,FEM = vn

i + ∆twi(fn
ext + fn

i )

xn+1
i,FEM = xn

i + ∆tvn+1
i = xn

i + ∆tvn
i + ∆t2wi(fn

ext + fn
i ).

In contrast, the position-based approach first performs
a time integration step in order to obtain the predicted
position for particle i:

vn+1
i = vn

i + ∆twifn
ext

xn+1
i = xn

i + ∆tvn+1
i = xn

i + ∆tvn
i + ∆t2wifn

ext.

Then a position correction ∆xi = wiλ∇xiC(x) is determined
which gives us the final positions

xn+1
i,PBD := xn

i + ∆tvn
i + ∆t2wifn

ext − wiλfn
i

since in our case ∇xiC(x) = ∂E
∂xi

= −fi. Finally, the velocities
are updated (see line (10) in Algorithm 1) which yields

vn+1
i,PBD :=

1
∆t

(
xn+1

i,PBD − xn
i

)
= vn

i + ∆twifn
ext −

1
∆t

wiλfn
i .

This shows that for λ = −∆t2 our position-based ap-
proach is equivalent to the classical FEM when considering
one element and performing one iteration of the position-
based solver.
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