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Figure 1: Interactive simulations with our novel GPU-based solver. (From left to right) Simulations of complex ar-
ticulated bodies; volumetric deformation with 10K quadratic finite elements and 47K degrees of freedom; volumetric
deformation with 65K linear finite elements and 38K degrees of freedom and highly-detailed cloth models.

Abstract
We present GPU data structures and algorithms to efficiently solve sparse linear systems which are
typically required in simulations of multibody systems and deformable bodies. Thereby, we introduce
an efficient sparse matrix data structure that can handle arbitrary sparsity patterns and outperforms
current state-of-the-art implementations for sparse matrix vector multiplication. Moreover, an efficient
method to construct global matrices on the GPU is presented where hundreds of thousands of individual
element contributions are assembled in a few milliseconds.
A finite element based method for the simulation of deformable solids as well as an impulse-based
method for rigid bodies are introduced in order to demonstrate the advantages of the novel data struc-
tures and algorithms. These applications share the characteristic that a major computational effort
consists of building and solving systems of linear equations in every time step. Our solving method
results in a speed-up factor of up to 13 in comparison to other GPU methods.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.1]: Hard-
ware Architecture—Graphics processors; Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

Simulating rigid bodies and deformable models is still
a challenging task in computer graphics. Several al-
gorithms have been presented to produce realistic

physically-based animations, e.g. the finite element
method.

In this paper we focus on interactive simulation
where the computation time for a single time step
is limited. By interactivity we mean that we want to
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achieve at least ten simulation steps per second. Real-
istic deformable models often contain stiff components
which lead to stiff differential equations. For example,
even low elastic coefficients in finite element simula-
tions force a limitation of the time step size. Many
approaches use an implicit time integration which is
unconditionally stable in order to solve the stability
problems with explicit integration methods. Articu-
lated rigid bodies are often simulated using a Lagrange
multiplier or an impulse-based method. Hence, most
simulation methods for deformable models and artic-
ulated rigid bodies must solve a huge system of lin-
ear equations where the corresponding system matri-
ces have to be updated in every time step. These lin-
ear systems are typically sparse, symmetric and posi-
tive definite, so a conjugate gradient solver can be em-
ployed. In general, building and solving linear systems
requires a major computational effort in each step.
Therefore, a fast solver is an essential component for
interactive simulations.

Computer graphics processors (GPUs) with their
high computational throughput theoretically offer a
tremendous speed-up by offering the possibility to ex-
ecute special GPU-programs also known as kernels. In
the past years several GPU-based solvers have been
presented in order to accelerate the solution of linear
systems. For example many fluid dynamic applications
in computer graphics can be significantly sped up by
those methods, since there the matrix is constant dur-
ing the simulation. However, for deformable and artic-
ulated bodies the matrix changes in each step. Hence,
the matrix construction must also run fast to make
an efficient simulation possible. Furthermore, it is de-
sirable to be able to control the velocity and position
change of certain elements, e.g. for collision handling.
Existing GPU solvers provide neither an efficient up-
date of the linear system nor a possibility to control
velocities or positions.

In this paper we present a novel GPU-based solver
which allows a fast update of sparse matrix structures
and provides velocity and position control. Further-
more, we introduce a novel data structure that accel-
erates the sparse matrix vector product (SpMV) and
therefore the solution of sparse linear systems signifi-
cantly. In contrast to existing approaches, our goal is
to minimize the number of kernel calls needed, since in
interactive applications the kernel launch overhead can
influence the performance significantly. Due to an opti-
mized preconditioned conjugate gradient (PCG) algo-
rithm the solver outperforms current state-of-the-art
solvers considerably. The presented method permits
real-time simulations of very complex deformable and
articulated bodies. In order to demonstrate the per-
formance gain in practice, we will present simulations
for deformable bodies using linear and quadratic finite

elements, cloth simulations and simulations of articu-
lated bodies. Finally, we make a comparison with cur-
rent state-of-the-art solvers and observe a performance
gain roughly by a factor of 13 at maximum.

Our contributions:

• A novel GPU-based PCG algorithm with position
and velocity control which is designed for the use in
dynamics simulations. It is optimized by minimizing
the number of kernel calls.

• A novel GPU data structure for arbitrary sparsity
patterns that shows beyond state-of-the-art perfor-
mance for matrix vector products.

• An algorithm that efficiently updates sparse matri-
ces on the GPU.

2. Related Work

Early works by Bolz et al. [BFGS03] as well as Krüger
and Westermann [KW03] used graphics hardware to
speed up computations for solving systems of lin-
ear equations. Both used the graphics pipeline with
programmable shaders and textures to represent op-
erations and the data, respectively. With the intro-
duction of NVIDIA’s Compute Unified Device Archi-
tecture [NVI11a] to abstract the underlying graphics
hardware, general purpose programming on graphics
processing units (GPU) has caused an increasing in-
terest. Among a lot of work for dense matrices, a few
methods have been presented to handle sparse ma-
trices. In particular, the library CUSparse [NVI11b]
has been released providing GPU-accelerated BLAS
operations and sparse matrix vector multiplications
(SpMV). The work of Bell et al. [BG08,BG09] presents
different optimized data structures for sparse matri-
ces. There, the performance of well-known formats
like diagonal (DIA), ELLPACK (ELL), compressed
sparse row (CSR) and the coordinate (COO) on GPU
hardware is analyzed. Furthermore, a hybrid format
(HYP) is introduced which combines the COO and
the ELL format for sparse matrices with a varying
number of non-zero entries per row. The open source
library CUSP [BG10] is based on this work and clearly
exceeds the performance of the CUSparse library for
matrices with highly varying row lengths. Another ap-
proach has been presented by Buatois et al. [BCL09]
where the clustering of non-zero entries in the sparse
matrix is identified to permit register blocking and
optimized memory fetches. Baskaran et al. [BB09] fo-
cus on coalesced loading of sparse matrix and data
reuse and report a further acceleration of SpMV op-
erations with matrices in CSR-format. Vazquez et
al. [VOFG10] propose an optimization of the ELL-
format for GPUs called ELLPACK-R by addition-
ally storing the row length. This approach is gener-
alized by the Slided ELLPACK format of Monakov et
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al. [MLA10] grouping rows together. But for both data
structures the SpMV operation needs additional ker-
nel calls for a subsequent reduction. Recently, Ober-
huber et al. [OSV11] introduced the row-grouped CSR
format, a data structure similar to our proposed ap-
proach, but they do not cluster non-zero elements.
In [MCG04] the L-CSR format is introduced in order
to perform an efficient sparse matrix-vector product
for matrices with very short row lengths by using an
unroll-and-jam approach.

Simulating deformable bodies with finite elements
has been pioneered by Terzopoulus et al. [TW88].
They use the Green’s strain tensor that is invari-
ant w.r.t. rigid body transformations. Different ap-
proaches to simplify the governing equations have
been presented. O’Brien et al. [OH99] used finite
elements with explicit time stepping and lumped
mass matrices. Müller et al. [MG04] presented a co-
rotational approach using the linear Cauchy’s strain
tensor with implicit time stepping for unconditional
stability. Georgii et al. [GW08] presented a multigrid
algorithm for co-rotational mesh hierarchies. Finite el-
ements with quadratic basis functions for deforma-
tion simulation have been introduced by Mezger et
al. [MTPS08]. Recently, Weber et al. [WKS∗11] pre-
sented an optimized quadratic finite element simu-
lation with basis functions in Bernstein-Bézier form.
For a stable simulation often an implicit integration
method is used which requires the solution of a linear
system in each step. Therefore, an efficient solver is
essential for real-time simulations.

A GPU-based simulation of elastic bodies has been
presented by Dick et al. [DGW11]. They use a lat-
tice to discretize the simulated geometry which is very
well suited for multigrid algorithms. Lately, Allard et
al. [ACF11] presented a GPU-based approach to sim-
ulate deformable models with tetrahedral elements.
They propose to emulate the sparse matrix vector mul-
tiplication by splitting the computations down to the
individual element contributions. This is a reasonable
approach when the time required to generate the ma-
trices is higher than the performance loss that is in-
duced by every matrix vector multiplication. In [CA09]
a parallel Gauss-Seidel algorithm is presented to solve
a dense linear complementarity problem on multi-core
CPUs or GPUs. This is used for an efficient contact
handling between deformable bodies.

An articulated body is a system of rigid bodies
which are connected by joints. Joint simulation can
be performed by using a reduced (or generalized) co-
ordinate formulation to describe the state of an ar-
ticulated body [Fea07]. The formulation in maximal
coordinates, which uses all coordinates of the body,
is also common in computer graphics. The Lagrange
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Figure 2: (Left) Sample of a sparse matrix. Col-
ored squares represent non-zero entries. The numbers
indicate the order in memory in our data structure
and letters represent the diagonal. (Right) Conceptual
data structure with separated diagonal and off-diagonal
part. Blank squares with numbers represent padded val-
ues. Bin borders are indicated by dashed lines.

multiplier method is a popular example [Bar96]. How-
ever, the method has a drifting problem which must be
solved by an additional stabilization [CP03]. Impulse-
based methods prevent a constraint violation by
adding impulses to the system. These methods avoid
the stabilization problem by using a preview of the
joint state for the computation of the constraint im-
pulses [BS06,WTF06]. To compute the joint forces or
impulses, a system of linear equations must be solved
which is one of the most time-consuming parts in each
simulation step. In this area the parallel sparse linear
solver PARDISO [SG04] is used in different works.

3. BIN-CSR data structure

In this section, we present a new GPU data structure
that performs an efficient matrix-vector product

y← Ax.

Here, the matrix A is sparse, i.e., there are only a few
numbers of non-zero entries. Furthermore, the amount
of non-zero entries per row varies across the matrix.
In the simulation applications presented in this paper
the dimension of the vectors x, y and the matrix A
corresponds to the number of degrees of freedom.

Our data structure, the BIN-CSR format, is highly
optimized for fast sparse matrix-vector products
(SpMV) on GPUs. It uses a combination of a com-
pressed sparse row storage (CSR) and a partition-
ing scheme grouping the matrix entries into bins.
We implemented the data structure and the arith-
metic operations using CUDA [NVI11a]. In general,
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Figure 3: The off-diagonal elements of the matrix in
Fig. 2 can be loaded in one coalesced memory for each
step. One memory request for the thread t j

i (i= 0, . . . ,3)
in a warp j are indicated by dashed lines.

SpMV operations for GPUs are memory bandwidth
bound [BG09]. Therefore, it is very important to pro-
vide a GPU friendly memory access pattern in order
to achieve an optimal throughput and high perfor-
mance. We designed the data structure in such a way
that each thread processes one row, i.e., each thread
computes one value in the vector y for a SpMV oper-
ation. Similar to Oberhuber et al. [OSV11] we store
the values with a specific order, so that the threads
can access the data coalesced. We therefore introduce
the concept of a bin which is a portion of the matrix
that a group of threads accesses concurrently (see
Fig. 2). In order to achieve optimal performance the
width of such a bin should correspond to the number
of threads that run concurrently on a multiprocessor.
On Fermi architectures (compute capability 2.0) this
is the size of a warp (32) or the size of a half warp
(16) on older hardware (compute capability 1.X). In
our examples and figures we use a bin width of four
for the sake of simplicity. In contrast to the approach
of Oberhuber et al. [OSV11], we do not store this bin
width explicitly saving memory bandwidth.

Fig. 2 (right) shows the conceptual layout of our
BIN-CSR data structure. The diagonal is stored sepa-
rately allowing an efficient Jacobi preconditioner. The
matrix is compressed, i.e., only non-zero entries are
stored with their corresponding column indices. These
indices are stored in a separate array but in the same
memory layout. The data structure therefore consists
of four arrays: diagonal, data, offset and colIndices. In
contrast to existing CSR formats, the order of storage
of the non-zero values is adapted, so that entries in
the same compressed column are placed next to each
other. Fig. 3 shows the resulting off-diagonal matrix

entries in memory. Then, loading the matrix entries
in a kernel can be done very efficiently: All threads
in a warp can coalesce their memory request for each
matrix column with only one memory fetch. In order
to construct such a layout, we need all rows in each
bin to have the same length. We therefore determine
the maximum row length per bin:

bin lengthi = max
j∈bini

length(row j).

For each bin i we then allocate (bin lengthi) ∗
(bin width) elements for the data and the column
indices and pad the remaining data to meet the mem-
ory alignment. Furthermore, the offsets for each bin
and for each row are computed and stored to provide
access to the start of the non-zero entries for each
row. The subsequent data can be obtained by incre-
menting the index by bin width elements. As in the
CSR format, the data structure is then represented
by the non-zero matrix data, the row offsets and the
column indices.

A further extension of this data structure is moti-
vated due to the characteristics of our applications.
There, the global matrices exhibit the property that
the non-zero entries only arise in 3× 3 blocks. Then
the number of memory reads for the column indices
can be reduced to further speed-up the operations.
Note that in rigid body simulation this assumption
cannot be used for all kind of constraints. Our exten-
sion, the BIN-BCSR format (BIN - block compressed
sparse row) is conceptually similar to the work of Bua-
tois et al. [BCL09] who also propose to group non-zero
entries in blocks. They determine clusters of 2× 2 or
4× 4 blocks of non-zero entries in a precomputation
step to permit register blocking and maximizing the
memory fetch bandwidth. Then, the processing of 2 or
4 rows, respectively, needs to be merged in one thread.
But this considerably reduces the number of threads
that are launched and may result in a low utilization
of the multiprocessors. In contrast, we use our 3× 3
blocks that only consist of non-zero entries and start
one thread per single row. This keeps the number of
threads high resulting in a higher occupancy. Exploit-
ing the properties of the matrices, we can reduce the
number of column indices that need to be stored and
loaded, as two out of three indices are implicit.

3.1. Sparse Matrix-Vector Multiplication

Using our proposed data structure results in a very
fast SpMV operation y←Ax, since the data of the ma-
trix can be efficiently read from memory. Threads in a
warp can load the non-zero values and the column in-
dices coalesced. In contrast to other approaches (e.g.,
[BCL09, BB09, VOFG10, MLA10]) this coalescing is
achieved without a subsequent reduction step, since
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the data is ordered for one thread per row. Further-
more, as the size of each bin equals a multiple of the
bin width, the offsets for each bin and for each row are
naturally aligned. Since the non-zero patterns of our
matrices are strongly irregular, we use texture mem-
ory to cache the vector x (similar to Bell et al. [BG09]
and Baskaran et al. [BB09]). Writing the results to the
vector y is also coalesced as each thread processes one
row.

Algorithm 1 SpMV operation for row and thread i
1: y[i]← diagonal[i]∗ x[i]
2: index← offset[i];
3: endIndex← offset[i+bin width];
4: while index < endIndex do
5: y[i]← y[i]+data[index]∗ x[colIndices[index]];
6: index← index+bin width

Algorithm 1 shows the SpMV operation for the BIN-
CSR matrix in pseudo code. The major differences
compared to a CSR implementation are in line 1, 5
and 6. First, the result y[i] is initialized by multipli-
cation with the diagonal matrix element and second,
the index is incremented by bin width. This results
in high performance due to the minimal number of
memory fetches. However, the data layout for opti-
mizing coalesced loading leads to idle threads and in-
creased memory consumption when the row lengths
differ heavily in a bin. For the BIN-BCSR matrix data
structure Algorithm 1 needs to be slightly adapted:
The multiplication in the while-loop must be per-
formed three times for each column in a block. Fur-
thermore, the column index must be read only once at
the beginning of the loop and be incremented by one
for the remaining two multiplications.

Our proposed sparse matrix representation can be
interpreted as a combination of the CSR and the ELL-
PACK (ELL) format [BG08, BG09]. The ELL format
pads the data per row to the maximum row length
and is therefore well suited for matrices with a nearly
constant row length. As the efficiency of the ELL for-
mat degrades rapidly when the number of entries per
row varies, Bell et al. [BG09] propose a hybrid (HYB)
format combining ELL and coordinate (COO) data
structure. It stores the matrix entries’ majority in an
ELL structure and exceptional long rows in a COO for-
mat. However, it is complicated to determine a good
criterion that adjusts the size of the ELL portion. Fur-
thermore, the COO format suffers from the fact that
its SpMV operation is based on a computationally
expensive segmented reduction scheme and therefore
multiple kernels are required for a single SpMV oper-
ation.

In the work of Vazquez et al. [VOFG10] an improved

version of the ELL format, the ELLPACK-R format,
is introduced. It uses an additional array to store the
length of each row. Thus, a very fast and efficient
SpMV implementation can be achieved. But, in a sce-
nario with only a few rows that contain large numbers
of non-zero elements there is very high memory over-
head for ELL-based matrix formats (e.g., for matrices
of quadratic finite elements, see Table 2). Monakov et
al. [MLA10] propose a generalization with the Sliced
ELLPACK format by grouping S adjacent rows and
storing only row lengths for these groups. Thus, the
memory consumption is reduced significantly. As in
the approach of Oberhuber et al. [OSV11], our data
structure reorders the data and allows for varying bin
lengths. This provides a good trade-off between mem-
ory and performance benefits. In the worst case, the
memory consumption of our format is equal to ELL-
based formats but in general it is significantly lower.

3.2. Kernel call minimization for PCG solver

When implementing a PCG algorithm one normally
assembles it out of a set of single operations like
SpMV, dot products, and AXPY, where the latter
computes y← αx+y. In the case of a conjugate gradi-
ent algorithm three AXPY operations, two dot prod-
ucts and one SpMV operation are needed in the in-
ner loop [She94]. Using a PCG algorithm there is an
additional matrix vector multiplication with the pre-
conditioner matrix. In our case this is computationally
similar to a AXPY operation since we use a simple Ja-
cobi preconditioner that only requires the multiplica-
tion with the inverted diagonal. Additionally, there are
two filter operations that can be used for constraints
(see Baraff et al. [BW98]). This allows for a position
and velocity control, e.g. to resolve collisions or to con-
strain the movement of nodes. Thus, implementing the
PCG algorithm for CUDA results in up to nine sub-
sequent kernel calls in the inner loop. As invoking of
such kernels naturally generates some overhead, it is
desirable to minimize the number of calls. Particularly
in real-time applications the kernel call overhead can
be in the magnitude of simple kernels as the AXPY
operation. Moreover, the AXPY operation and similar
kernels are heavily memory bandwidth bound. Merg-
ing some operations into a few kernels where possi-
ble, can increase the number of arithmetic operations
per memory operation. Furthermore, it is desirable to
avoid memory transfers between GPU and CPU, as
they trigger a significant overhead.

Algorithm 2 shows the PCG algorithm (cf. [She94,
BCL09]) to solve the linear system

Ax = b (1)

which may result from elastic or articulated body sim-
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Algorithm 2 PCG algorithm

1: i← 0; r← b−Ax; filter(r);
2: d←M−1r; δ← rT d; δ0← δ;
3: while i≤ imax and δ > ε

2
δ0 do

4: δold← δ; q← Ad; filter(q); α← δ

dT q ;

5: x← x+αd; r← r−αq; s←M−1r; δ← rT s;
6: β← δ

δold
; d← r+βd; i← i+1;

ulation (see Equ. 3 or Equ. 6). Here, M is an appropri-
ate preconditioner for A and x is initialized with a first
guess. In our applications the result from the last time
step is used as a warm start for faster convergence. The
filter operation allows for partially constraining values
in the x vector that may be used for velocity correction
(see [BW98] for details). In our merged conjugate gra-
dient (MCG) approach we combine the initialization
operations (in lines 1 and 2) as well as the operations
in each line of the while-loop each into one kernel.
Merging the AXPY and SpMV-operations is simple,
as our SpMV implementation can be executed per row.
However, to incorporate the dot product, we need a
special synchronization mechanism since we need its
result (e.g., α, β and δ) globally in all threads.

Generally, our dot product computation is a reduc-
tion that consists of two phases: in the first kernel
each block computes an intermediate result by par-
tially reducing the associated data in shared memory.
In the second kernel each block loads all the interme-
diate data and again performs a reduction (see Fig. 4).
So, the second reduction is computed redundantly by
each block, but its result is then available in all blocks.
However, for extremely large linear systems the num-
ber of required blocks can get high so that the second
reduction slows down. But in these cases the perfor-
mance gain of merging the kernels for solving the lin-
ear system would be low.

In order to minimize the overall number of kernel
calls, the reduction is combined with the remaining
computations (e.g. AXPY). As there are two dot prod-
ucts and the SpMV operation in the inner loop of each
CG iteration that needs synchronization, the number
of kernel calls can be reduced to three.

3.3. GPU matrix construction and update

An efficient matrix construction is crucial for appli-
cations, where the linear system changes in every it-
eration step. In our applications, the update of every
non-zero entry is computed by summation

Ai j = ∑
k∈Γi j

Ae
k, (2)

Figure 4: Upper part: Simplified example for a re-
duction of a 16 element input vector in blue and its
result in red. Lower part: The reduction is computed
in four different blocks. The first kernel (above dashed
line) partially reduces the data and stores it in global
memory (green). As the final result is needed in all
blocks, the second reduction is done redundantly in the
second kernel (below dashed line).

as a matrix entry is influenced by a few local element
contributions Ae

k. We store the element entries Ae
k lin-

early in memory. In a precomputation step, for every
global entry Ai j the indices k referring to the positions
in the element array are collected in the list of arrays
Γi j. We store all the indices linearly (eIndices) and
use an array (eOffset) for pointing to the start of a
global entry. Algorithm 3 illustrates the assembly of
the global matrix for one thread i that computes the
i-th row. The access for writing the global matrix is
the same as in the SpMV kernel and is therefore co-
alesced. The access pattern for reading the element
matrix entries is irregular, so we use the texture cache
to speed it up.

Algorithm 3 Matrix assembly for row and thread i
1: index← offset[i];
2: endIndex← offset[i+bin width];
3: while index < endIndex do
4: data[index] = 0
5: eStart← eOffset[index];
6: eEnd← eOffset[index+1];
7: for l = eStart→ eEnd−1 do
8: k = [eIndices[l]];
9: data[index]← data[index]+Ae

k;
10: index← index+bin width

In a typical application, where the global matrix
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changes in every iteration, the algorithm works as fol-
lows. First, all element matrix entries are computed
on the GPU. As the updates of these element matri-
ces are independent from each other, a parallelization
is trivial. We use one thread per element matrix entry
Ae

k to recompute the necessary data. Afterwards, the
global matrix is reassembled using Algorithm 3 with
one thread per single row. Finally, the system of lin-
ear equations is set up and solved on the GPU using
Algorithm 2.

4. Simulation applications

In this section we describe two different simulation
applications that greatly benefit from our GPU data
structures. In both applications there is a system of
linear equations that needs to be solved in every sim-
ulation step. The corresponding matrices are huge,
symmetric and positive definite and have varying row
sizes. Furthermore, the entries in the matrices change
in every simulation step, whereas the matrix struc-
tures stay the same.

4.1. Elasticity simulation using FEM

For a realistic simulation of elastic bodies several ap-
proaches have been presented that discretize the par-
tial differential equations of elasticity using the finite
element method. In our application we use finite el-
ements with linear and quadratic basis functions, i.e.
with 4 and 10 degrees of freedom per tetrahedron, re-
spectively. There, a tetrahedral mesh discretization of
the object is used and a co-rotational formulation is
employed [WKS∗11]. Applying the finite element dis-
cretization results in a set of ordinary differential equa-
tions

Mü+Ku = fext.

Here, M and K are the mass and stiffness matri-
ces, respectively. The discretized displacement field
u = x− x0 needs to be computed taking external and
inertial forces fext and Mü, respectively, into account.
Employing an implicit time integration (see Baraff et
al. [BW98]) results in a system of linear equations(

M+∆t2K
)

∆v = ∆t (f+∆tKv) (3)

where the resulting force f is computed by

f = fext+ fel = fext+Ku. (4)

Note that the time integration introduces numerical
viscosity, so we do not consider damping forces explic-
itly. Employing co-rotation requires computing the ro-
tation Re for each element e by a polar decomposition
(see [MG04]) and updating the element stiffness matri-
ces K̄e

= (Re)T K̄eRe in every time step. Therefore, the

linear system of Equ. 3 with the global stiffness matrix
K̄ has to be reconstructed in every step. The system
matrix A = M+∆t2K̄ is sparse, i.e., there are only non-
zero 3× 3-blocks when two degrees of freedom share
a tetrahedron. Using this formulation, we additionally
need to replace the elastic force fel in Equ. 4 with the
co-rotated force fe

rot = K̄ex− (Re)T x0 that needs to be
summed up over all elements e. By solving Equ. 3 we
obtain the velocity changes ∆v that are used to update
the state of the tetrahedral mesh

x = x+∆t(v+∆v).

4.2. Simulation of articulated bodies

Articulated bodies introduce holonomic constraints of
the form C(x, t) = 0 to a system of rigid bodies in or-
der to simulate joints. We want to simulate these con-
straints by using an impulse-based approach similar
to [BS06] and [WTF06]. Therefore, we bring all con-
straints in a general form Jv+ c = 0 by differentiating
the constraint function C w.r.t. time.

Analogous to the Lagrange multiplier method, we
could compute the magnitudes λ of the impulses that
are required to simulate a constraint by solving

JM−1JT
λ =−JM−1pext− c (5)

where the vector pext contains impulses and angular
momenta which correspond to the external forces and
torques in one time step. In this way the impulses
are computed in order to compensate the influence of
external forces and torques. If we use this approach,
we need an additional stabilization method to prevent
the joints from breaking up [CP03].

Instead of this we want to use a prediction of the
constraint state in order to compute the required im-
pulses which solves the stabilization problem [BS06].
The prediction C(x̃, t + ∆t) for a constraint is deter-
mined by solving the unconstrained equations of mo-
tion which gives us a prediction x̃ of the positions.
Now, impulses are required that change the velocities
of the bodies at time t so that the constraint is ful-
filled after a time step of size ∆t. This means that
C(x, t +∆t) = 0 must hold.

To get the required impulses a nonlinear equation
must be solved since the relative motion of the bodies
is generally nonlinear. Weinstein et al. use Newton it-
eration to get the solution of this equation [WTF06].
In contrast to that, we approximate the required veloc-
ity change by assuming a linear motion which results
in ∆v = 1/∆t ·C(x̃, t +∆t). Thanks to this linearization
of the problem we can efficiently compute the impulses
by solving a system of linear equations. We get the re-
quired system

JM−1JT
λ = ∆v (6)

c© 2012 The Author(s)

c© 2012 The Eurographics Association and Blackwell Publishing

Ltd.



D. Weber et al. / Efficient GPU data structures and methods to solve sparse linear systems

by exchanging the right hand side of the system of
linear Equ. 5. Since ∆v is just an approximation, the
resulting impulses will generally not eliminate the vi-
olation exactly. Therefore, we perform the prediction
and impulse computation in an iterative process until
a user-defined accuracy is reached. Note that in most
cases the motion of the joint connectors is almost lin-
ear. Therefore, we required an average of just one or
two iterations to get an accuracy of 10−6 m in different
test simulations with large external forces. For mod-
els with kinematic loops the matrix in equation 6 may
get singular during the simulation. In this case we re-
move joints of the articulated body in order to break
up the problematic loops and add additional impulses
to mimic the effects of the kinematic loop as proposed
in [BETC12].

For the simulation of a velocity constraint of the
form C(v, t) = 0, e.g. to perform a post-stabilization
step [WTF06], the velocity difference ∆v can be deter-
mined directly. Therefore, the system of linear Equ. 6
must be solved just once in a simulation step to ob-
tain an exact solution for the impulses. Note that the
matrix of the system is constant for time t. Hence, it
must be created only once per simulation step to com-
pute the impulses of all holonomic and velocity con-
straints. The required matrix multiplication JM−1JT

is performed on the GPU. Furthermore, the matrix is
typically sparse since a block is not zero if and only if
two joints have a common body.

4.3. Collision handling

The collision handling in our applications is performed
using the method presented by Bridson et al. [BFA02].
Since the treatment of collisions is not the main focus
of our research, we implemented a single core CPU ver-
sion of this method. However, collision detection is a
major bottleneck in the simulation pipeline. Therefore,
different efficient GPU-based continuous collision de-
tection methods were developed in the last years which
also can be integrated in our simulation, e.g. the work
of Lauterbach et al. [LMM10] which is available as
open-source project. Lauterbach et al. use a bounding
volume hierarchy (BVH) of oriented bounding boxes
and perform front tracking in order to improve the
parallelism. Their approach is based on explicit bal-
ancing of work units. There exist also other fast GPU
collision detection methods which can be used in com-
bination with the collision handling of Bridson et al.
The detection of Tang et al. [TMLT11] is based on
BVHs with front tracking. They use different streams
for the data and acceleration structures to parallelize
the collision algorithms. Pabst et al. [PKS10] use a
parallel spatial subdivision approach on the GPU in-
stead of a BVH to perform a fast detection.

Matrix Origin Dim. NNZ

Ship CUSP 140,874 7,813,404
Bridge RB sim. 41,550 448,668

Armadillo Quadratic FE 46,812 3,620,142
Bunny Quadratic FE 226,284 18,109,026

Pensatore Linear FE 38,379 1,590,165
Cloth Cloth sim. 76,800 3,865,140

Table 1: Matrices used for the performance test. All
matrices are quadratic and symmetric. Dimension rep-
resents the number of rows and columns, whereas NNZ
specifies the number of non-zero entries. The cloth
model consists of a rectangular 160×160 patch.

5. Results

In this section, we analyze the efficiency of the pre-
sented data structures and compare the performance
with previous works. Our tests were performed in sin-
gle precision on an Intel Core 2 Quad Q6600 with
2.4 GHz and a GeForce GTX 470 unless stated oth-
erwise. We used CUDA SDK 4.0 [NVI11a] and sev-
eral matrices (see Table 1) that originate from our
applications and from the tests in the work of Bell
et al. [BG09]. The matrix ”Cloth” is obtained from a
cloth simulation with a 160× 160 patch (cf. Choi et
al. [CK02]). Finally, we demonstrate how different ap-
plications greatly benefit from these fast solving rou-
tines and discuss the properties of the proposed meth-
ods.

5.1. Performance Analysis

First, we focus our performance analysis on the SpMV
routine that is the most time consuming part in the
PCG algorithm. We applied similar performance tests
that are described in the work of Bell et al. [BG09]
and use their CUSP library [BG10] with texture mem-
ory cache enabled for comparison. In this library there
are different kinds of matrix formats like the hybrid
(HYB), coordinate (COO), ELLPACK (ELL) and the
(vector) compressed sparse row (CSR) format. We
omitted the diagonal- (DIA) and the scalar-CSR for-
mat as both showed a rather low performance in
the tests. The performance is evaluated in terms of
GFlop/s, which is the number of (single-precision)
floating point operations that are executed per sec-
ond. In the case of a SpMV operation this is twice the
number of non-zero entries as for each entry there is
a multiplication with the corresponding value in the x
vector and an addition to the y vector. For the tests,
we used matrices taken from the simulation applica-
tions and the matrix ”FEM/Ship” from Bell et al. (see
Table 1). Table 2 shows the varying row lengths in
these matrices that are typical for irregular discretiza-
tion schemes.
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Matrix Max. Min. Avg. Overhead

Ship 99 21 52.5 2.4%
Bridge 42 6 7.8 3.6%

Armadillo 312 27 75.3 13.2%
Bunny 552 27 77.0 12.8%

Pensatore 69 15 38.4 10.8%
Cloth 48 18 47.3 0.4%

Table 2: Maximum, minimum and average row
lengths and memory overhead of the test matrices.

Figure 5: Performance evaluation of data structures
available in the CUSP library and our proposed BIN-
CSR and BIN-BCSR data structures on a GeForce
GTX 470. The library failed for tests with the bridge
and the Armadillo model using the ELL format.

The charts in Fig. 5 show the performance of the
CUSP variants and our BIN-CSR and BIN-BCSR data
structures for the test matrices. The measurements
clearly show that our approach results in a signifi-
cantly higher performance than the matrix types avail-
able in CUSP.

In order to evaluate the impact of the novel data
structure and the merged conjugate gradient (MCG)
algorithm, we performed several tests with matrices
originating from simulations with linear finite ele-
ments. Therefore, we used 1000 iterations for each
conjugate gradient run and removed the convergence
criterion to compare the methods. In Fig. 6 the curves
show the speed-up w.r.t the number of non-zero entries
of the matrices. Using our BIN-BCSR data structure
results in a nearly constant speed-up (black curve).
There, a standard conjugate gradient (CG) implemen-
tation with nine kernel calls has been used. Employing
our merged conjugate gradient (MCG) algorithm re-
sults in an additional improvement (blue curve). This
speed-up is independent of the mesh resolution and
the matrix size, since the saved overhead for kernel
launches is constant. So, the curve and the impact of
this optimization decreases with increasing resolution.

Figure 6: Speed-up of the BIN-BCSR data structure
and the merged conjugate gradient (MCG) algorithm
w.r.t the number of non-zero elements in the matrix:
(Red) CUSP-CG algorithm. (Black) BIN-BCSR data
structure with CG algorithm. (Blue) BIN-BCSR data
structure with MCG algorithm.

Model Simulation CPU GPU Speed-

up

Bridge Rigid Body 298 21 14.19
Armadillo Quadr. FE 1009 75 13.45

Pensatore Linear FE 713 33 21.61

Table 3: Average times for one simulation step (in
ms) with the CPU- and GPU implementations, respec-
tively. All CPU simulations run on one core only.

However, this optimization is beneficial for meshes
that are suitable for the interactive applications pre-
sented in this paper.

Next, we evaluate the convergence behavior of the
MCG algorithm and compare the residuals with a
CPU implementation using single and double preci-
sion. We therefore solve one system of linear equations
from the Armadillo scenario (see Table 1). Fig. 7 top
shows the residuals w.r.t the iterations. The conver-
gence behavior of the GPU algorithm shows no sig-
nificant difference compared to CPU single and dou-
ble precision. The bottom diagram shows the residu-
als w.r.t. computation time of the GPU algorithm, of
a multi-core and of a single-core implementation, all
with single precision. For this test we used a GeForce
GTX 580 and an Intel Core i7-2600 with 3.4 GHz.
This graph clearly shows the significant performance
increase using our GPU solver.
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Figure 8: Simulation of bridge with rigid body elements.
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Figure 7: Convergence behavior of the CG algo-
rithm solving a linear system arising from quadratic
finite elements. Top: Convergence behavior for GPU,
CPU single precision and CPU double precision w.r.t.
the number of iterations. Bottom: Convergence behav-
ior w.r.t. computation time with GPU, multi-core and
single-core implementation.

5.2. Examples

In this section we show how different simulations bene-
fit from the proposed algorithms. Figure 1 shows snap-
shots of the simulations. The number of CG-iterations
was fixed to 30. Table 3 shows the timings for different

simulation scenarios where all CPU simulations were
performed on a single core. These timings include the
update of the element matrices, the assembly of the
system matrix, force computation, the setup and so-
lution of the linear system. With our multi-core CPU
implementation we achieved a speed-up factor of ap-
proximately 3 on the four available cores. In all cases,
an interactive simulation on the CPU with the simula-
tion models is not realizable as the time for computing
one simulation step is far too high. However, with our
proposed GPU-based solver, interactive frame rates
are achieved allowing for more degrees of freedom im-
plying higher accuracy. A key factor of the speed-up
is that there is no memory transfer between CPU and
GPU memory during the simulation.

Up to 100K tetrahedral linear finite elements with
30K degrees of freedom can be simulated at interac-
tive rates. For quadratic finite elements with ten nodes
per tetrahedron interactivity can be achieved with up
to 13K tetrahedral elements with 28K degrees of free-
dom. In both cases the assembly of the system matrix
takes only a fraction of the whole simulation step. Ex-
amples are shown in Fig. 1. Fig. 8 shows the real-time
simulation of a complex bridge model which consists of
14K rigid bodies and has a system of linear equations
with the dimension 41K. Interactive cloth simulations
can be performed with more than 26K particles.

5.3. Discussion

Our proposed data structures are designed for fast
SpMV operations. This is achieved by optimal coa-
lesced memory loads without the need for a subse-
quent reduction of any intermediate result. It is very
well suited for huge sparse matrices with varying row
sizes that typically arise in finite element discretiza-
tions or in methods with local dependencies. Table 2
shows the high row variation among the test matri-
ces. The adaption of the row lengths per bin provides
a good trade-off between memory overhead and per-
formance benefits. Our current implementation uses
single precision. In our applications we did not no-
tice any problems w.r.t. convergence or accuracy. For
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a possible extension to double precision the data lay-
out must be revised in order to achieve optimal co-
alescing. The data structure is not suited for dense
matrices, as there is a memory and performance over-
head due to the additional information of offsets and
column indices. The additional memory consumption
for the padding is rather low, as it depends locally
on the row length within a bin (see Table 2). E.g., in
the ELLPACK-R format [VOFG10] the data is padded
depending on the maximum row length of the whole
matrix. This format is more suitable for matrices with
nearly constant row sizes.

There are other approaches optimizing the ac-
cess pattern for coalesced loading on the GPU. The
HYP-format [BG09], the optimizations of Baskaran et
al. [BB09] and the ELLPACK-R format [VOFG10] use
one thread per matrix entry. To compute the final re-
sult a subsequent reduction is needed, which either
requires an additional kernel call or a limit in the row
length for the sparse matrices that can be multiplied
(ELLPACK-R format).

Buatois et al. [BCL09] presented a method where
non-zero entries are clustered in 2×2 and 4×4 blocks.
This clustering enables for the reuse of the values in
the y-vector, but this can also be achieved with texture
memory cache. Furthermore, they use a compressed
row storage format (CRS), a synonym for CSR, that
does not take care of memory alignment. So, they do
not exploit coalesced loading reducing the effective
memory bandwidth, which is crucial for high perfor-
mance.

Allard et al. [ACF11] present a linear finite element
simulation running completely on the GPU. A major
difference to our work is the emulation of SpMV by
computing the individual element contributions sepa-
rately. This emulation is comparable to our GPU ma-
trix construction step which is very difficult to opti-
mize as the memory access patterns are highly irregu-
lar. It is beneficial to perform this operation only once
per simulation step. We also note that for a higher
number of CG-iterations our method is more efficient
since a faster SpMV operation has a higher impact on
the overall performance.

In the simulation of articulated bodies with kine-
matic loops the matrix of the system of linear equa-
tions which has to be solved may get singular and
a special treatment is required. However, the bridge
model (see Fig. 8) contains several closed loops and
the matrix never got singular during the whole simu-
lation.

For the matrix update the dependencies between the
local and the global matrix entries must be determined
in a precomputation step. If a method requires topo-
logical changes of the mesh these dependencies must

be recomputed. In this case our matrix update is not
directly suitable.

6. Conclusions

We have presented novel GPU data structures and
algorithms that significantly accelerate various physi-
cally based simulations. We introduced a data struc-
ture that optimizes the sparse matrix vector products
for matrices with varying row sizes. Furthermore, we
presented a preconditioned conjugate gradient algo-
rithm for GPUs with a minimum number of kernel
calls to utilize memory bandwidth optimally. The re-
sultant speed-up of a factor 13 at maximum allows for
a significantly increased number of degrees of freedom
while maintaining interactivity.

Our goal for the future is to perform a full simu-
lation cycle on the GPU. Therefore, we are currently
working on the integration of the GPU-based collision
detection of Lauterbach et al. [LMM10]. After this in-
tegration, we will also implement the collision response
with friction on the GPU. The goal is to obtain a colli-
sion handling without the need for expensive memory
transfers between the CPU and GPU.
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