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Abstract
We present a new method for simulating almost incompressible deformable objects. A tetrahedral model is used to
represent and restore the volume during the simulation. A new constraint, which computes impulses in the one-ring
of each vertex of the tetrahedral model, is used in order to conserve the initial volume. With different parameters,
the presented method can handle a large variety of different deformation behaviors, ranging from stiff to large
deformations and even plastic deformations. The algorithm is easy to implement and reduces the volume error to
less than 1% in most situations, even when large deformations are applied.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Physically based modeling, Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

The dynamic simulation has become an important topic in
computer graphics literature. In many applications, such as
virtual environments, movie special effects and games, the
demand for simulating multi-body systems, cloth and wa-
ter is growing. Another research area needed for these ap-
plications is the simulation of deformable objects. The ap-
plications do not necessarily require physically correct de-
formable models, but a physically plausible dynamic behav-
ior. The problem is that a volume loss can still be noticeable
when large deformations are applied to the objects. Espe-
cially in the area of medical simulations, the deformable ob-
jects are nearly incompressible. Therefore, the model should
conserve the volume as good as possible. However, the sim-
ulation of incompressible deformable objects is still a chal-
lenging problem until today.

In this paper we present a new method for simulating de-
formable objects, where the volume is almost conserved. In
order to describe the volume we build a tetrahedral mesh
which is deformed by external forces during the simulation.
The edges of the mesh are assigned to distance constraints,
which restore the initial form of the object. Additionally we
introduce a new volume constraint, which restores the vol-
ume in a one-ring of a vertex by applying impulses to the
surrounding particles. While the simulation and contact han-
dling is done with the tetrahedral mesh, a high-resolution tri-
angle mesh can be coupled with the tetrahedral mesh for the

final visualization. The paper presents various scenes where
the new method was applied to, and compares the volume
error of the new approach to a similar existing one. The re-
sults show, that the new approach reduces the error to less
than 1% in most situations, even when large deformations
occur. We also incorporate plastic deformations in our test
scenarios, which are easy to add to the presented method.

2. Related work

Since the presentation of a general physical model for sim-
ulating two- and three-dimensional deformable objects by
Terzopoulos et al. [TPBF87], many approaches besides the
classical FEM simulations [MDM∗02, OBH02] have been
intensively studied. In [MHTG05] an easy approach to sim-
ulate deformable objects is presented, where no connectiv-
ity information between the simulated particles is needed. In
order to minimize the volume error during the simulation,
a quadratic energy is minimized which matches the original
configuration of the object with the deformed one. Irving et
al. [ISF07] present an approach adopted from fluid dynam-
ics simulation, which is able to nearly eliminate the volume
error during the simulation. The key idea is to make the ve-
locity field divergence free in a one-ring of tetrahedrons to
preserve the volume. The interaction between fluids and de-
formable objects has also been studied [RMSG∗08]. Becker
et al. [BIT09] show how the smoothed particle hydrodynam-
ics method can be used to simulate deformable solids, which
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makes coupling between water and deformable objects quite
easy. More control of the deformations can be achieved by
using key frame interpolations as shown in [AOW∗08]. In
[DBB09] a new idea using the impulse-based dynamic sim-
ulation [Ben07] was presented to ensure the conservation of
the volume, but the approach could not handle inverted tetra-
hedrons.

Our new approach is based on the work of Teschner et al.
[THMG04]. They show how triangle and tetrahedral meshes
with up to thousand primitives can be simulated at interac-
tive speed.

3. Deformable objects

In order to simulate deformable solids a volumetric structure
has to be created. Tetrahedral meshes are commonly used
for this purpose. The vertices of the mesh represent parti-
cles with common attributes like mass and velocity, while
the tetrahedrons represent the volume. There exist differ-
ent approaches to built such meshes. In [LS07] a tetrahedral
mesh is built from a signed distance field. The resulting tetra-
hedrons are small on the boundary to adapt the isosurface
and can be bigger in the interior of the volume where accu-
racy is not that crucial. In contrast Spillmann et al. [SWT06]
present an algorihm to build a tetrahedral mesh from an arbi-
trary triangle soup which works for damaged surfaces, too,
where the enclosed volume is not defined. This method was
also used in [DBB09] and works well even when the tetra-
hedral mesh is not perfectly aligned to the original mesh. We
use this method to build our volumetric structure but others
would work, too. Figure 1 shows the resulting tetrahedral
mesh built from the corresponding triangle mesh.

A fast approach to simulate deformable solids was pre-
sented in [THMG04]. They define constraints of the form
C(p0, . . . ,pn−1) to represent the deformations of the object.
The scalar function C is zero, if the object is undeformed and
greater than zero, when deformations occurred. These con-
straints depend on particle positions pi and define the poten-
tial energy

E(p0, . . . ,pn−1) =
1
2

kC2 ,

where k denotes a stiffness coefficient. Forces Fi from these
energy are derived at each particle i by taking the negative
gradient of E:

Fi(p0, . . . ,pn−1) =−
∂E
∂pi

=−kC
∂C
∂pi

.

These forces always point in directions which minimize the
constraint C. The overall force considered at particle i dur-
ing a simulation step is the sum of all forces based on poten-
tial energies that consider this particle. For each edge of the
model we get distance forces derived from

ED(pi,p j) =
1
2

kD(|pi−p j|−D0)
2 ,

Figure 1: The Armadillo (top) converted into a tetrahedral
mesh (bottom).

where kD is the distance stiffness and D0 is the initial dis-
tance between particle positions pi and p j. The correspond-
ing derived forces restore the initial form of the object over
the time. Damping [SGT09] for the distance forces can also
be incorporated and greatly improve the stability of the nu-
merical simulation.

For the tetrahedrons we have a volume preserving energy

EV(pi,p j,pk,pl) =
1
2

kV(vol(pi,p j,pk,pl)−V0)
2 (1)

vol(pi,p j,pk,pl) =
1
6
(pi−pl)((p j−pl)× (pk−pl))

with V0 representing the initial volume and kV the volume
stiffness of the constraint. The resulting force from this en-
ergy for the particle i is orthogonal to the supporting plane
of [p j,pk,pl ] and its length is one third of the area defined
by the triangle p j, pk and pl . Because the constraint uses the
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signed volume of a tetrahedron the forces always point in
directions which restore inverted tetrahedrons. In contrast to
the distance preserving forces, these forces try to restore the
initial volume.

With the above defined constraints the dynamic behav-
ior of the deformable object can be computed by integrat-
ing the particle positions according to Newton’s equation
of motion. The external forces Fext, such as gravity, de-
fine the particle positions pi and velocities vi at time t and
thus, the deformation of the object. Now the resulting forces
F(t) = FD(t)+FV(t) derived from the deformation energies
can be computed. The new particle positions and velocities
are then retrieved by integrating the external forces together
with the deformation forces according to

vi(t +h) = vi(t)+
∫ t+h

t

F(τ)+Fext(τ)

mi
dτ

pi(t +h) = pi(t)+
∫ t+h

t
v(τ)dτ . (2)

While different integration schemes can be used for this pur-
pose, Teschner et al. suggest to use the Verlet algorithm
[Ver67] for a fast and robust integration.

4. A more accurate volume constraint

The presented volume constraint in Section 3 uses the co-
efficient kV to define the stiffness of the volume. Now the
question arises, how to choose kV in order to get an incom-
pressible solid. Using a low value for kV can result in a huge
volume loss when large deformations occur. On the other
hand, choosing a too big value for kV can even blow up our
simulation, because volumes get worse in each simulation
step. Therefore, the optimal way would be to compute kV ex-
plicitly for each constraint during a simulation step, so that
the resulting forces restore the initial volume V0 of a tetrahe-
dron.

Instead of using forces to correct the volume, we can com-
pute impulses, similar to [Ben07, MHHR07], which change
the velocity of our particles. Assuming that the derived
forces Fi

V from Equation 1 are constant over the simulation
step with time step size h the resulting impulses are

Ii(kV) = ∆v =
Fi

V(kV)

m
h =−∂EV(kV)

∂pi

h
m

,

where the coefficient kV defines the magnitude of the im-
pulses.

For one tetrahedron with previewed particle positions
pi,p j,pk and pl at time t + h we want to compute the im-
pulses Ii,I j,Ik and Il which restore our initial volume V0.
The previewed particle positions are integrated using the al-
ready applied forces and impulses according to Equation 2.
Using previewed particle positions is crucial in order to re-
act to deformations from external forces immediately. As the

impulses are constant over time, the corrected particle posi-
tions according to Equation 2 are

pi(t +h) = pi +hIi(kV) .

Thus, after applying the impulses, the new volume

V (kV) = vol(pi,p j,pk,pl) =
3

∑
i=0

αik
i
V

only depends cubically on kV with coefficients αi. There-
fore, the equation V (kV)−V0 = 0 has up to three possible
solutions kV which restore the initial volume of the tetra-
hedron. The optimal root kV is the smallest positive value,
because it changes the particle positions the fewest of all.
Due to the fact, that the four impulses sum to zero for every
kV, the conservation of momentum is guaranteed.

Given a tetrahedral mesh where no tetrahedrons are in-
verted, the resulting mesh after applying the impulses should
have no inverted tetrahedrons either. If there are only in-
verted tetrahedrons at the boundaries, the resulting impulses
can easily repair the inverted tetrahedrons. But if there are
too many of them in the interior, one should use more ad-
vanced algorithms like presented in [ST08] to get an ini-
tial uninverted tetrahedral mesh. While applying the im-
pulses that correct the volume of one tetrahedron, these
impulses can invert a neighbor tetrahedron. These inverted
tetrahedrons could be corrected in the next step, but large
changes of the particle positions can occur, resulting in un-
natural movement. To prevent this situation, we have to
see how the volume of the neighbors will change, before
applying any impulses. Depending on the connectivity of
neighbor n, its volume will change linear, quadratic or cu-
bic, too. So the new neighbor volumes can be computed by
V n(kV) =∑

c
i=0 βiki

V, where 1≤ c≤ 3 denotes the connectiv-
ity. If V n(kV)< ε for one neighbor, kV has to be clamped, so
that V n(kV) ≥ ε for all neighbors n. We tried several values
for ε and got good results with ε =

V n
0
2 . Using this constant

we prevent too large correction impulses when large defor-
mations occur.

The main problem with this correction technique is the
fact, that under large deformations unnatural movements can
still occur. Each particle has three degrees of freedom, but
for n particles we have about 4n tetrahedrons, and thus 4n
constraints. As the system has only 3n degrees of freedom,
locking can occur during large deformations. This problem
was also noticed in [ISF07] and we want to incorporate their
idea to our simulation.

5. Volume constraint in a one-ring

As discussed in the last section, locking can occur during
large deformations. The solution described in [ISF07] sug-
gests to restore the initial volume in the one-ring surrounded
by each particle. The one-ring of particle i is defined by all
particles, which are connected over an edge with particle
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i. Using one constraint per particle results in n constraints,
giving more freedom to the system. Let the initial volume
V p

0 of the one-ring surrounded by the particle p be the sum
of the m initial volumes from the surrounded tetrahedrons.
After applying external forces to the particles a preview of
the particle positions for each constraint is made. The pre-
view of the particle positions is important in order to cor-
rect the wrong volume from the external forces for the next
simulation step immediately. Then the impulses Ii(kV) for
each particle i in the one-ring are computed. These impulses
are the sum of the individual impulses for each tetrahedron
as described in Section 4. Applying these impulses to each
individual tetrahedron j in the one-ring would change the
tetrahedron’s volume by ∑

3
i=0 αi, jki

V. Thus the overall vol-
ume change is ∑

m
j=1 ∑

3
i=0 αi, jki

V = ∑
3
i=0 βiki

V. Therefore, the
root of ∑

3
i=0 βiki

V−V p
0 = 0 restores the volume in the one-

ring of the particle p. Because we are using the impulses as
presented in Section 4, particles surrounded by tetrahedrons
with an unchanged volume stay fixed.

A drawback of restoring the volume in the one-ring is the
fact, that the volume of one tetrahedron might shrink over
time, while its volume is stored in another tetrahedron. To
overcome this problem we can also adjust the individual vol-
umes with the impulses computed in Section 4. To avoid the
locking effects, we only correct with the coefficient γkV. The
experimentally chosen γ = 1

8 gives good results.

Only applying the impulses for the particles in a one-ring
once in a simulation step will not necessarily correct the
whole volume. Surprisingly the volume error stays below
1% in most situations, even when large deformations occur.
See Section 6 for some examples and for volume errors dur-
ing the simulation.

6. Results

In this section the existing approach from Section 3 is com-
pared with our new method based on various examples. Fig-
ure 2 shows the volume error occurred during the simulation
for each scenario. All tetrahedral models got assigned a high
detailed triangle mesh for the visualization. Due to the fact,
that the collision detection is currently based on the tetrahe-
drons, the triangle mesh does not collide with the ground in
all scenarios. We used the parameter kV = 1.4 for the ex-
isting method in all scenarios, while varying the distance
stiffness kD for the different examples to achieve different
effects. The simulation was run with a fixed time step size of
h = 10ms. While the existing method is faster to compute,
it loses more volume under large deformations. On the other
hand the new method is able to hold the volume error below
1% under most situations even when large deformations oc-
cur. Figures 3-7 show the different scenarios for the existing
and new method taken at equal time stamps.

In our first scenario, shown in Figure 3, we took a bar with
4320 tetrahedrons and rotated the front particles resulting
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Figure 2: The measured volume error in % (y-axis) over
time in seconds (x-axis) for both methods in all examples.

in a twirl of the bar. The distance stiffness was set to kD =
0.4, which caused the bar to restore its original form when
releasing the front particles. When the rotation reached its
peak, the existing approach lost nearly 7% of its volume,
while the volume error for the new approach was constantly
below 1%. Due to the better restored volume, the simulation
of the two methods are different when releasing the front
particles. The existing approach took an average of 1.7ms to
compute the forces in one simulation step while our method
needed 40.7ms.

In our second scenario, shown in Figure 4, we dropped
a rigid sphere into the same bar. The distance stiffness was
set to kD = 0.8 to get a stiffer look. When the sphere collided
with the bar, the existing approach lost only up to 3.5% of its
volume, because the higher distance stiffness forbade larger
deformations. Nevertheless our new method was below the
volume error of the existing one. The existing approach took
an average of 1.8ms to compute the forces in one simulation
step while our method needed 40.8ms.

The third example, shown in Figure 5, demonstrates the
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Figure 3: While the visual difference is not that big between
the existing method (left) and our new one (right), the differ-
ent volume losses result in different movements.

effect of a highly deformable cube consisting of 8640 tetra-
hedrons. The distance stiffness was set to kD = 0.2 to allow
large deformations. When the heavy sphere collided with the
cube, the existing approach lost nearly 50% of its volume,
while our method was still able to reduce the error to below
1%. To compute the forces in one simulation step the exist-
ing approach took an average of 3.3ms while ours needed
94.1ms.

The fourth example, shown in Figure 6, presents a de-
formable Armadillo with 6510 tetrahedrons. Despite setting
the distance stiffness to kD = 1.5, the existing approach lost
nearly 12% of its volume, when the feet contacted with the
ground. Therefore, the Aramdillo could not jump up again,

Figure 4: Using a strong distance stiffness can prevent too
much volume loss in the existing method (left). Still the new
method (right) can better reduce the volume loss.

as it did with our new method. The existing approach took
an average of 2.6ms to compute the forces in one simulation
step while our method needed 62.3ms.

Our last example, which is shown in Figure 7, demon-
strates the effect of plastic deformations, as presented in
[THMG04,OBH02]. Because the plastic deformation is only
applied to the distance constraints, we set the distance stiff-
ness to kD = 8.0. Due to the fact, that the springs do not
return to its original form, the volume error of the existing
approach stays at nearly 6%. In this scenario the existing ap-
proach took an average of 3.1ms to compute the forces in
one simulation step while our method needed 21.8ms.

In our method the most computation time is spend for the
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Figure 5: Using a too low distance stiffness can result in
a huge volume loss with the existing method (left), while the
new method (right) prevents this situation.

kV-correction of the neighbor tetrahedrons as described in
Section 4. Due to the fact, that we scale the computed kV
with γ as described in Section 5, the problematic cases do
not occur in all our test scenarios. When skipping the cor-
rection test, all examples run more than 50% faster. With-
out correcting kV for the neighbors the cube example only
needed an average of 31.2ms to compute the forces in one
simulation step.

7. Conclusion and future work

We have presented a new method for simulating deformable
solids, which almost conserve the volume during the simu-
lation. While we cannot guarantee an invariant volume, the

Figure 6: With the existing method (left) the feet are getting
compressed when hitting the ground, while in our method
(right) the Armadillo jumps up again.

volume error stays below 1% in all our scenarios with still a
reasonable computation speed. Especially when high exter-
nal forces are involved, or the distance stiffness is low and
thus cannot restore the original form, the existing approach
loses up to 50% of the volume, which is clearly visible dur-
ing the simulation. Another advantage of the new approach
is the fact, that the user does not need to find a good stiffness
constant for the volume constraint, in order to get a nearly
incompressible deformable object. Due to the fact that the
simulation only needs a low resolution tetrahedron model,
while a high detailed triangle model can be used for the vi-
sualization, we hope to be able to optimize the new approach
to get real-time simulations. We are looking to parallelize the
algorithm and make use of multi-resolution meshes to gain
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Figure 7: Using plastic deformations the existing method
(left) cannot completely restore the original volume, while
the new one (right) makes it possible.

performance. In the future we also want to incorporate a low
resolution triangle model for a more accurate collision de-
tection.
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