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ABSTRACT 

In this paper we present an abstract semantic representation that is suitable for complex buildings. Facades with high-level 
detail are required in several domains, e.g. visualization of architectural settings and archaeological sites as well as computer 
animations. In order to support the user’s modeling task, besides geometrical data structural information like spatial relations 
is required. This supplementary information represents the semantics of the model. Therefore the model description must 
incorporate the geometry and the semantics. Such a description allows a partial automation of the modeling process, e.g. 
adjacent and nested elements are adjusted automatically. An abstract model representation with integrated semantics is 
presented in this paper and it is shown that it facilitates the modeling task significantly. 
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1. INTRODUCTION 

The conceptual design of complex structures is a major topic in computer science. Especially in the field of 
entertainment—large virtual environments, computer animation and computer games—high-performance 
hardware enables complex and high quality scenes. Therefore it is important to support the modeling process 
through powerful software. 

Modeling detailed scenes, e. g. cities and buildings, becomes a more important topic and requires a great deal 
of time. To tackle this problem, we focus on transforming the modeling task to an abstract, high-level process. 
Hence we use typed graphs to obtain a semantic representation of the entire building—including its coarse 
outline and style. For the building outline the graph consists of nodes representing building parts, like side 
wings, oriels and wall projections. Edges in the graph indicate the types of connections between these parts. The 
style nodes and edges present the layout of walls, windows and cornices and so on. All nodes and edges contain 
a minimum of geometric information such as width and height. This solves several problems. With this approach 
we achieve a clear separation of the modeling task in which both, the designer and the computer have their 
distinguished duties. The semantic representation of the building and its style can be exported at any time to a 
geometry engine that parses the information and automatically creates the mesh. Due to the representation in the 
typed graph spatial dependencies can be easily derived. They are used for the automatic adaptation of adjacent 
architectural structures, e.g. for windows that fit into their corresponding walls. For the designer the modeling is 
performed on a semantic level. As a consequence he produces more complex facades in less time. He can try 
different styles on the same building outline and produces higher quality facades and therefore save human 
resources and money. 

2. RELATED WORK 

The procedural modeling of buildings and entire cities is an evolving topic in computer graphics with many 
contributions. In this section we introduce some of the most relevant ones concerning their semantic 
representation. 

Parish et al. (2001) describe cities and buildings using grammars and L-systems. The facades are modeled by 
using procedurally generated textures. Detailed structures such as cornices and arbitrary window frames are not 
supported. The buildings are generated by a set of production rules. There is later on no data structure 
representing the building including different architectonical parts in a semantic manner. 



Wonka et al. (2003) introduce split grammars for creating buildings. A facade is represented as a non-
terminal shape. Such a shape can be split further into smaller non-terminal shapes. In the last step of splitting this 
leads to terminal shapes like windows and wall elements. 

The work from Müller et al. (2006) incorporates the two works mentioned above. Coarse building outlines 
are created through the combination of boxes and cylinders, which are called shapes. These shapes may overlap, 
and therefore occlusion tests have to be performed to determine visible faces. The individual building parts do 
not possess any information regarding their purpose in the building. There is no clear semantic representation of 
an entire building but the application of the production rules. 

Greuter et al. (2003) present an engine that creates large cities at runtime. The basic structure for the city is a 
regular grid, which also acts as the road map. A building is placed at each junction. Via a pseudo random 
number a convex polygon for the building’s first floor is chosen. To obtain different building outlines, the 
polygon is extruded and combined with a new randomly chosen polygon. This process is repeated several times. 
Afterwards the different building sections are textured with predefined tiles. A semantic model of the building 
structure is missing. 

Birch and colleagues (2001) describe techniques for the interactive modeling of buildings and architectural 
structures. Their main idea is to reduce the number of parameters to a manageable size. Details like window 
frames are generated procedurally but have less variety then the ones of Müller. Some semantics are included in 
the interactive modeling process. An explicit semantic model of the entire building including the style is absent. 

The method in this paper shows how to describe different building parts with their purpose in the entire 
building—in a single story and a cross adjacent stories. It also includes definitions for different styles including 
cornices and window frames and so on. 

3. TYPED GRAPHS 

The geometry and the semantics of a building must be described in a common representation structure. A typed 
graph is a well-suited representation structure for this application. Such graph consists of two parts. The first part 
is an abstract type description of a graph (which we refer to as the concept model) that contains class definitions 
for nodes and edges. The class of a node defines its type and its attributes. An edge class also specifies a type 
and attributes. In addition to that the source and target node class of an edge is defined. This means that an edge 
can only connect nodes of a predefined class. The attributes of a node class describe the properties of the objects 
represented by this node type. The properties of a relation between two nodes are described by the attributes of 
an edge class. The formal description is as follows: 

The directed graph consists of a finite set N of nodes, a finite set E of edges, and a finite set A of attributes. 
Every edge e ∈ E connects exactly one source node k ∈ N to one target node l ∈ N. An edge is assigned its 
source and target with the two functions α : E → N and ω : E → N. α (e) represents the source and ω (e) the 
target node. Attributes are assigned to source and target nodes with the function τ : (N ∪ E) → P(A), where P(A) 
is the power set of A. 

The second part is an instance of the previously defined graph type (the world model). In such a graph 
instance each node is an instance of a specific node class. The nodes that can be connected by an instance of an 
edge type are well defined by the corresponding edge class. In each node and edge instance information can be 
stored by setting the values of the attributes. 

4. BUILDING REPRESENTATION 

In this section we describe the method how we applied the typed graphs for entire buildings. This includes the 
representation for the coarse building outline and the style. For both we supply independent graph structures. In 
each case we provide a concept model and a world model. This enables us to separate the style from the building 
outline. We also support a consistency check so that the following conditions hold: 

• Every node and every edge is unique. 
• Every edge represents exactly one link between a source and a target node. 
• Attributes have to be unique only in the scope of its node or edge respectively. 

4.1 Building outline 

In this section we present the nodes and edges that define the coarse building outline. We will only present a 
subset of the nodes and edges due to space limitations. An overview of all nodes and edges is given in Figure 1. 
We start with empty sets for the nodes, edges, and attributes: N, E, A = ∅. From one node definition to another 
we expand the sets with the new nodes and edges respectively. 



• Node definition: cornerstone 
The coarse building outline starts with the cornerstone. Starting at this point a story and next level 
stories will be created. It has the two attributes height and width. 
N ∪ cornerstone, 
A ∪ {height, width}, 
τ (cornerstone) = {height, width} 

• Node definition: floor_plan_module 
This node defines building structure types like side wings, oriels, and wall projections. It has two 
attributes type and width. 
N ∪ floor_plan_module, 
A ∪ {type}, 
τ (floor_plan_module) = {type, width} 

As mentioned above this is only a subset of the nodes. The next definitions describe the relations between the 
nodes. Here we also present only a subset. 

• Edge definition: initial_ floor_plan_module 
With this relation the cornerstone receives its initial floor_plan_module (fpm). It has no attributes. 
E ∪ initial_ floor_plan_module, 
α (initial_ floor_plan_module) = cornerstone, 
ω (initial_ floor_plan_module) = floor_plan_module 

• Edge definition: next_story 
This relation sets for the current cornerstone the cornerstone for the story on the next level. It has no 
attributes. 
E ∪ next_story, 
α (next_story) = cornerstone, 
ω (next_story) = cornerstone 
This relation defines a classical cycle but it will not show up in the world model as we check for 
illegal cycles during the geometry generation. 

• Edge definition: intra_connection 
This powerful relation connects different building parts (floor_plan_modules) on the same level to 
build a floor plan for the current story. Its attributes describe the parameters of the connection 
between two floor_plan_modules. Two floor_plan_modules are connected via their edges. We use 
edge_i for the first and edge_j for the second fpm. The edges are also parameterized that one edge 
resides in an interval on the other edge. Then one fpm is transformed (scaled, translated, and rotated) 
so the two edges match. 
E ∪ intra_connection, 
A ∪ {type, edge_k, edge_i, edge_j, a_edge_i, b_edge_j}, 
τ (intra_connection) = {type, edge_k, edge_i, edge_j, a_edge_i, b_edge_j} 
α (intra_connection) = floor_plan_module, 
ω (intra_connection) = floor_plan_module 

The entire semantic model with all nodes and edges is given in Figure 1. 

4.2 Facade style 

According to the definitions for the nodes and edges of the coarse building outline we present the nodes and 
edges which describe the style. The style includes the subdivision of the walls into sub walls, the partitioning of 
walls, cornice and window descriptions, texture descriptions, and materials. Again we will only present a small 
subset of the definitions. Figure 2 shows the entire graph for the style definition. For visual convenience we 
omitted the attributes. 

• Node definition: style 
This node represents the style for an entire building or coarse structures like floor_plan_modules. 
N ∪ style 
As we see it has no attributes. Its semantics arises when it is connected to the other nodes. 

• Node definition: suvdivison 
This node supports the subdivision of walls in smaller walls, corners, and elements between smaller 
walls. It has the attributes elem, com_subdiv, h_elem, and h_corner. elem defines small elements 
between walls, com_subdiv includes on how to subdivide walls into smaller walls, h_elem and 



h_corner determine if small wall elements and corners are to be subdivided. 
N ∪ suvdivison, 
A ∪ {elem, com_subdiv, h_elem, h_corner}, 
τ (suvdivison) = {elem, com_subdiv, h_elem, h_corner} 

• Node definition: wallpartition 
This node controls the vertical subdivision of walls. Such a partition can contain a cornice or a 
window or a door and so on. It has the attributes v_start and v_stop, which determines the horizontal 
interval for the partition. 
N ∪ wallpartition, 
A ∪ {v_start, v_stop}, 
τ (wallpartition) = {v_start, v_stop} 

• Node definition: windoor 
This node describes the appearance of windows and doors. Each door or window is defined via a 
coarse rectangular hole in a wall. Now every edge can be refined with a line strip to achieve 
arbitrary windows and doors. Each line strip is later assigned to one of four different frame types. At 
last the inner window or door frame including the window pane is defined. All these refinements are 
individual nodes. Their correlation is given in Figure 2. The windoor node’s attributes define its 
position in a wall. 
N ∪ windoor, 
A ∪ {v_start, v_stop, h_start, h_stop, id}, 
τ (wallpartition) = {v_start, v_stop, h_start, h_stop, id} 

• Node definition: cornice 
With this node the data for a cornice is defined. The cornice profile is created via a logo like 
language and is given in a textual form. We will see in the next nodes that the profile of a cornice 
can be used for several purposes. cornice_description includes the textual profile description based 
on lines and arcs. The arcs are approximated by line strips. With the attribute subdivs the granularity 
of the line strip is determined. 
N ∪ cornice, 
A ∪ {cornice_description, subdivs}, 
τ (cornice) = {cornice_description, subdivs} 

• Node definition: windoor_edge_refinement 
This node enables the refinement for one of the four edges of a door or window. The refinement is a 
line strip which is given as a cornice profile. The windoor_edge_refinement node has two attributes 
cornice_description and subdivs. 
N ∪ windoor_edge_refinement, 
A ∪ {cornice_description, subdivs}, 
τ (windoor_edge_refinement) = {cornice_description, subdivs} 

• Node definition: windoor_frame_doublecornice 
This node defines a special frame type for a window or a door. The previous node just refined an 
edge. With this node it receives one of four different frame types. Currently the types simple, 
cornice, double cornice, and bricks are supported. The frame’s dimensions are specified with the 
three attributes depth, width, and projection. 
N ∪ windoor_frame_doublecornice, 
A ∪ {depth, width, projection}, 
τ (windoor_frame_doublecornice) = {depth, width, projection} 

Now as we defined the most necessary nodes the most important relations between the nodes will be defined. 

• Edge definition: has_windoor 
This relation assigns an entire definition for a door or window to a style. It has no attributes. 
E ∪ has_subdivisions, 
α (has_subdivisions) = style, 
ω (has_subdivisions) = windoor 

• Edge definition: has_refinement_left 
With this relation the left edge of a windoor node is refined with a line strip. There are three 
additional relations, which refine the bottom, right, and top edge. It has no attributes. 
E ∪ has_refinement_left, 



α (has_refinement_left) = windoor, 
ω (has_refinement_left) = windoor_edge_refinement 

• Edge definition: has_frame_doublecornice 
Refined edges can be assigned to one of four frame types. In this case the edge receives a double 
cornice. The windows in the bottom and middle stories in Figure 4 have double cornice refinements. 
E ∪ has_frame_doublecornice, 
α (has_frame_doublecornice) = windoor_edge_refinement, 
ω (has_frame_doublecornice) = windoor_frame_doublecornice 

Now we defined the nodes and relations for the coarse building outline’s concept model and for the style’s 
concept model. Instances of both concept models define a particular building outline or style. 
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Figure 1: Graph representing the coarse 

building outline. 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Figure 2: All nodes and relations defining the 

style. 

5. GEOMETRY ENGINE AND RESULTS 

For any building outline any style can be applied. After that a new semantic model (intermediate model) is 
generated which combines the building and the style. At this point the user can still modify the building outline 
or the style for the entire building, which will result in the recreation of the intermediate model. But the user has 
also the possibility to interact on a semantic level with the intermediate model. If he is content with the building 
the geometry engine parses the intermediate model and creates exact fitting geometry and textures. The 
workflow of the modeling process is given in Figure 3. There we have the three different models. For model to 
model the complexity and the expressiveness grows. But as one can easily see, the memory consumption for the 
intermediate model is very low. Compared to the full model (the output) the semantic representation only needs 
a fraction of memory. With our prototype we generated the results in Figure 4 and Figure 5. 

6. CONCLUSION 

We presented a method for the semantic modeling of buildings. Our method is based on typed graphs, which 
contain the semantic representation of the coarse building outline independent of the style. With this approach 
the user can easily change the building and its style on a semantic level. Finally the semantic information is 
given to a geometry engine, which creates the mesh for the building. Due to the graph representation adjacent 
structures are derived easily and adapted automatically. This enables the designer to create more complex 



buildings multiple times faster than with usual modeling tools. The disadvantage of this approach is that it can 
only handle standard build types—organic or curved structures even inclined walls are not possible yet. 
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Figure 4: Classical mansion with cornices and 
ornaments. 

 

Figure 5: Row houses with brickwork pattern. 

 


