
Impulse-based dynamic simulation in linear time

Jan Bender
Institut für Betriebs- und Dialogsysteme

Universität Karlsruhe
http://www.impulse-based.de

jbender@ira.uka.de

ABSTRACT
This paper describes an impulse-based dynamic simulation
method for articulated bodies which has a linear time com-
plexity. Existing linear-time methods are either based on
a reduced-coordinate formulation or on Lagrange multipli-
ers. The impulse-based simulation has advantages over these
well-known methods. Unlike reduced-coordinate methods,
it handles nonholonomic constraints like velocity-dependent
ones and is very easy to implement. In contrast to La-
grange multiplier methods the impulse-based approach has
no drift problem and an additional stabilisation is not neces-
sary. The presented method computes a simulation step in
O(n) time for acyclic multi-body systems containing equal-
ity constraints. Closed kinematic chains can be handled by
dividing the model into different acyclic parts. Each of these
parts is solved independently from each other. The depen-
dencies between the single parts are solved by an iterative
method. In the same way inequality constraints can be inte-
grated in the simulation process in order to handle collisions
and permanent contacts with dynamic and static friction.

Keywords
linear-time dynamics, dynamic simulation, physically-based
animation, rigid bodies, articulated bodies

1. INTRODUCTION
The dynamic simulation of multi-body systems is an impor-
tant topic in computer graphics. The task of a simulation
method is to compute the motion of multiple rigid bodies in
consideration of forces acting on these bodies. In general,
there is a distinction between internal and external forces.
Internal forces act between two bodies and do not affect
the state of motion of the multi-body system. This means
that the sum of all internal forces is zero. External forces
are forces like gravity that influence the motion state of the
system.

Internal forces are needed to satisfy constraints of the multi-

This is a preprint of an article accepted for publication in Computer Anima-
tion and Virtual Worlds – Copyright (c) 2007 John Wiley & Sons, Ltd.

body system. Constraints can be used to model joints, col-
lisions and permanent contacts. They can also be used to
interact with the dynamic model during the simulation. Dy-
namic Models often have a sparse system of constraints. In
many cases the system of constraints is even acyclic, e.g.
the model of a robot usually has no loop. Especially for
acyclic models, there exist linear-time methods for dynamic
simulation. These methods are either based on a reduced-
coordinate formulation or they use Lagrange multipliers.

In this paper, an impulse-based simulation method is pre-
sented that has also a linear time complexity. The impulse-
based approach has several advantages: it can handle holo-
nomic and nonholonomic constraints, unlike the Lagrange
multiplier methods it needs no additional stabilisation, it is
easy to implement and it is very fast. Impulses are com-
puted instead of internal forces in order to satisfy the con-
straints. There exist iterative methods for the computation
of the impulses. It is also possible to describe the depen-
dencies between the constraints in a system of linear equa-
tions (SLE) which leads to a faster computation, especially
if accurate results are demanded. But in the worst case the
time complexity of this SLE method is O(n3). This paper
presents a method to determine the needed impulses in O(n)
time. It is also shown how models with loops, collisions and
contacts are handled. Finally a comparison of the linear-
time method using Lagrange multipliers and the presented
method is performed.

2. PREVIOUS WORK
The simulation of joint constraints is a well-known task.
There exist different approaches to compute the internal
forces that act between the articulated bodies. A very sim-
ple approach is the penalty method [7]. This method adds a
force to a multi-body system, if a constraint is not satisfied.
The magnitude and direction of this force depends on the
constraint violation. The penalty method has the advantage
that it is very easy to implement but it is not suitable for
accurate simulations.

A reduced-coordinate formulation provides a more accurate
simulation. Holonomic constraints reduce the degrees of
freedom of a multi-body system permanently. This property
is used by reduced-coordinate methods. For a multi-body
system a parametrisation is required to reduce the number
of coordinates that describe the system’s state to a mini-
mum. For each degree of freedom one coordinate is needed.
The equations of motion can be expressed via reduced coor-



dinates by using a Lagrangian formulation of the problem.
The algorithms based on this formulation have a time com-
plexity of O(n4). The first linear-time algorithms were based
on a Newton-Euler formulation [8, 9].

The Lagrange multiplier approach has several advantages
compared with the reduced-coordinate formulation [2]. The
use of Lagrange multipliers permits the simulation of
strongly modular systems. A model can be extended during
the simulation without the need of a new parametrisation.
In contrast to the reduced-coordinate formulation nonholo-
nomic constraints can be handled by using Lagrange mul-
tipliers. David Baraff described a linear-time method for
acyclic models that is based on Lagrange multipliers. So
this method has the same time complexity as the reduced-
coordinate method of Featherstone [8]. The disadvantage
of the Lagrange multiplier approach is that it has a drift
problem due to numerical errors. Since position and ve-
locity constraints are defined in terms of accelerations, the
numerical errors that occur during the simulation can not
be corrected by this approach. An additional stabilisation
method is required to solve this problem. The popular sta-
bilisation method of Baumgarte [3] adds extra terms to the
constraints in order to avoid drifting. An alternative solu-
tion is to apply additional forces [15]. In [1], Ascher gives a
survey about other stabilisation techniques.

The impulse-based simulation methods use a different ap-
proach than the Lagrange multiplier methods. Position
and velocity constraints are handled directly without an
acceleration-based formulation [4]. Hence the impulse-based
approach has no drift problem and needs no additional sta-
bilisation. Velocity constraints can easily be simulated using
impulses, since an impulse causes an instantaneous velocity
change. To simulate position constraints a prediction of the
actual joint state is made. Weinstein et al. use this predic-
tion to determine the required impulse by solving a nonlinear
equation [14]. The dependencies between different joints are
solved by an iterative method. Bender et al. use an approx-
imation of the required velocity change in order to linearise
the equation [6]. This has several advantages. The resulting
linear equation for an impulse can be solved very fast. De-
pendencies can be resolved by an iterative method [4] which
converges to the physical correct solution [12]. The iterative
method handles joint constraints, models with loops, colli-
sions and contacts with friction [5]. The iterative process
can even be interrupted at any time to get a preliminary re-
sult. But the disadvantage of this iterative approach is that
if accurate results are demanded, the method needs many
iterations, especially for complex models. Because of this,
another impulse-based method has been developed for the
accurate simulation of complex models [6]. An advantage of
the used linearisation is that the dependencies between the
joints can be described by a system of linear equations. By
solving this SLE the required impulses can be determined si-
multaneously. Thus even complex models can be simulated
in real-time.

3. IMPULSE-BASED DYNAMIC SIMULA-
TION

The state of a rigid body is defined by the position of its
centre of mass, its orientation as well as its linear and angu-
lar velocity. The orientation of a body is described by a unit

quaternion q [13]. For a simulation step, the actual state of
all bodies must be known. The forward simulation of an
unconstrained body with mass m is done by integration of
the four state parameters. It is assumed that the sum of all
external forces Fext is constant during the simulation step.
In this case the linear velocity v and the centre of mass c

can be integrated directly:

v(t0 + h) = v(t0) +
Fext

m
h (1)

c(t0 + h) = c(t0) + v(t0)h +
Fext

2m
h

2 (2)

where h is the time step size. It is also assumed that the
sum of all external torques τ ext is constant during the simu-
lation step. But even if there is no torque acting on a body,
in general its angular velocity is not constant. Because of
this, numerical integration is required to solve the differen-
tial equations of the angular velocity ω and the quaternion
q of a body with inertia tensor J:

ω̇(t) = J
−1(τ ext − (ω(t) × (J · ω(t)))) (3)

q̇(t) =
1

2
ω̃(t) · q(t) (4)

where ω̃(t) is the quaternion [0, ωx, ωy , ωz]. By directly in-
tegrating the translational parameters and numerically in-
tegrating the rotational parameters a simulation step for an
unconstrained rigid body is done.

An unconstrained body has six degrees of freedom. A joint
constraint reduces the degrees of freedom of a multi-body
system permanently. If constraints are defined for the bod-
ies in the system, a simulation method must compute the
corresponding internal forces that prevent the joints from
breaking. The impulse-based simulation method computes
impulses instead of internal forces in order to satisfy given
joint constraints. There exist six basic joint types that can
be combined in order to simulate any existing mechanical
joint [6]. Three of them just eliminate translational degrees
of freedom and the other three just rotational ones. In the
following only these basic joints are regarded.

Each basic joint defines a position constraint and a veloc-
ity constraint for two bodies. The position constraint is the
one that reduces the degrees of freedom whereas the velocity
constraint is only needed to achieve a higher degree of accu-
racy [6]. A velocity constraint is used to guarantee that the
relative velocity of the bodies in direction of the constraint
is zero.

The main idea of the impulse-based simulation method is to
use a prediction of the joint state for the computation of the
impulses that are needed to satisfy the position constraints
[4]. This process of computing impulses for the position
constraints is called position correction. The state of a joint
that eliminates translational degrees of freedom is defined by
two joint points a and b (one in each body). A prediction
of the positions of these points can be computed by solv-
ing equation 2 and numerically integrating the differential
equation

ṙ(t) = ω(t) × r(t)

for their corresponding position vectors ra and rb. The new
position of point a after a simulation step of size h is given



by a(t0+h) = ra(t0+h)+ca(t0+h). In one step the two joint
points diverge by d(t0 + h) = b(t0 + h)− a(t0 + h). Bender
et al. describe in [6] how this distance vector is computed for
a rotational constraint. For a three-dimensional joint con-
straint the distance vector exactly describes the drift error
e of one step that has to be prevented by internal forces or
impulses. In the case of a lower-dimensional constraint, the
vector d is projected onto the space of the constraint by a
projection matrix P in order to get the corresponding drift
vector e = Pd. The computation of the projection matrices
for the basic joints is described in [6]. The problem of com-
puting an impulse that eliminates the occurring drift in one
single step can be described by a nonlinear equation [14].
This equation can be solved by Newton iteration. In con-
trast to that a linearisation is used in this paper. The rela-
tive motion of two articulated bodies is almost linear during
a small time step. Because of this, the required change of
their relative velocity in order to eliminate the drift can be
approximated by

∆v =
1

h
e.

An impulse (or angular momentum, in the case of a rota-
tional constraint) that causes exactly this velocity change
can be computed easily. This impulse must be applied in
opposite directions to the bodies to guarantee the conser-
vation of momentum. Since an approximation was used,
the impulse computation has to be repeated iteratively un-
til the predicted joint state satisfies its corresponding con-
straint within a given tolerance. In general, even for small
tolerance values only a few iterations are required. After
all impulses are determined and applied the new positions
and velocities of the bodies can be computed by solving the
equations 1–4. The last step is to satisfy the velocity con-
straints. This is called velocity correction. Since an impulse
causes an instantaneous velocity change, no prediction is
needed for the computation. The required velocity change
∆v is given by the relative velocity in direction of the con-
straint. The impulses are determined in the same way as for
the position constraints. The described process converges to
the physical correct solution (a proof can be found in [12]).

In the following the determination of the joint impulses will
be described in detail. The required velocity change ∆v

for each joint is already known. The problem is that joints
can have common bodies and so the corresponding impulses
influence each other. These dependencies must be regarded
when computing the impulses. Due to the used linearisation
it is possible to describe all dependencies in a system of
linear equations:

Ax = ∆v, (5)

where x is a vector that contains all impulses and angular
momenta that should be determined. The vector ∆v con-
tains the velocity changes of all joints (either for the position
correction or the velocity correction). The dependencies be-
tween the joints are mapped on the matrix A. This matrix
specifies how the velocities change when the impulses and
angular momenta are applied. The SLE of a multi-body
system with n joints has the dimension

∑n

i=1 dim(i) where
dim(i) is the dimension of the i-th joint constraint. Matrix

A is a block matrix. A block Ai,j ∈ Rdim(i)×dim(j) describes
how the relative velocity of joint i changes, if in joint j an
impulse is applied.

The joints of a multi-body system are divided into two dis-
joint index sets T and R. Let T = {1, . . . , m} be the
index set of all translational joint constraints and R =
{m + 1, . . . , n} be the one of all rotational constraints. The
block Ai,j depends on the types of joint i and j. To differ-
entiate between the four possible cases the following matrix
is introduced for two joints i and j with a common dynamic
body k:

Ni,j,k =







1
mk

I3 − r∗aJ
−1
k r∗b if i, j ∈ T

J−1
k if i, j ∈ R

J−1
k r∗b if i ∈ R ∧ j ∈ T

−r∗aJ
−1
k if i ∈ T ∧ j ∈ R.

In the case of translational constraints, a and b are the
corresponding joint points in body k. If the body k is static,
the matrix Ni,j,k is zero. This matrix describes how the
velocity of joint i changes, if in joint j an impulse or angular
momentum is applied.

With the matrix Ni,j,k a block matrix B for three-
dimensional constraints can be defined. For the computation
of a block Bi,j it must be considered, if the common body is
the first or the second body of the joints. Furthermore, two
joints can have more than one common body. So a single
block is defined as follows:

Bi,j =







Ni,j,ki1
if ki1 = kj1 ∧ ki2 6= kj2

Ni,j,ki2
if ki2 = kj2 ∧ ki1 6= kj1

Ni,j,ki1
+ Ni,j,ki2

if ki1 = kj1 ∧ ki2 = kj2

−Ni,j,ki1
if ki1 = kj2 ∧ ki2 6= kj1

−Ni,j,ki2
if ki2 = kj1 ∧ ki1 6= kj2

−(Ni,j,ki1
+ Ni,j,ki2

) if ki1 = kj2 ∧ ki2 = kj1

0 otherwise

where an index ki1 belongs to the first body of joint i.

The block matrix A for all basic joint constraints must con-
sider lower-dimensional constraints as well. For a lower-
dimensional constraint the corresponding equations must be
projected onto the space of the joint. This can be done by
using the projection matrix P that has already been used for
the computation of the drift vector. A block of the matrix
A has the following general form:

Ai,j = Pi Bi,j Pj .

The impulses and angular momenta of all joints are deter-
mined by solving the described system of linear equations.
But before they can be applied to the bodies they must
be transformed from the corresponding joint space to world
space using the projection matrix:

pworld = P
T

pjoint.

The factorisation of the matrix is the most time-consuming
part of the simulation step. The matrix of the SLE is con-
stant at a time t. For this reason the velocity correction and
the position correction of the following simulation step have
the same matrix. Hence the system of linear equations for
the impulses has to be factorised only once per simulation
step.



4. LINEAR-TIME DYNAMICS
The matrix of the used SLE is often sparse. In the case of
a sparse system special solvers like PARDISO [10, 11] can
be used in order to accelerate the dynamic simulation. But
in the general case for example a LU factorisation of the
matrix has a time complexity of O(n3).

In this section a dynamic simulation method for acyclic mod-
els is presented that has a time complexity of O(n). The
main idea of this method is to bring the SLE in the follow-
ing form:

CM
−1

C
T

x = ∆v, (6)

where M is the mass matrix of all bodies and C is the con-
straint matrix. The mass matrix of a single rigid body k is
defined by the mass and the inertia tensor:

Mk =

(
mk I3 0

0 Jk

)

,

where I3 ∈ R3 is the identity matrix. The matrix M is a
block matrix with the blocks Mk of all bodies on the diag-
onal. The constraint matrix C is also a block matrix. A
block Ci,k is non-zero if and only if the dynamic body k

is connected by joint i. Hence the constraint matrix of the
impulse-based method has exactly the same structure as the
constraint matrix of the Lagrange multiplier method in [2].
David Baraff showed in his paper that a SLE for Lagrange
multipliers in form of equation 6 can be solved in linear time,
if the simulated model has no cycles. In the same way, the
impulse-based method can determine all impulses in linear
time, since the corresponding SLE has the same structure
as the one of Baraff.

The SLE for the impulses is not solved directly. First it is
transformed into the following form:

(
M −CT

−C 0

)

︸ ︷︷ ︸

H

(
y

x

)

=

(
0

−∆v

)

. (7)

In this form the SLE is larger but it has the advantage that
H is always sparse. By a depth-first search on the corre-
sponding joint graph the matrix H is ordered so that the
index of each node is greater than the indices of its chil-
dren. For the factorisation of the matrix a decomposition
H = LDLT is used. Due to the reordered matrix this de-
composition does not introduce new nonzero elements. This
property can be used to factorise the matrix and solve the
SLE in linear time. This is described in detail in [2].

In the following is presented how the decomposition A =
CM−1CT of matrix A is done in order to bring the SLE
in form of equation 6. Since the mass matrix M is already
known, just the constraint matrix C must be determined.
First, only single joints are regarded and the constraint ma-
trix is defined for translational and rotational constraints.
Then it is shown how the dependencies in a multi-body sys-
tem are taken into account.

4.1 Translational constraints
For a single translational joint constraint connecting two
dynamic bodies k1 and k2 with the joint points a and b the

matrix A is defined as follows:

Ka,k :=

{
1

mk

I3 − r∗aJ
−1
k r∗a if k is dynamic

0 otherwise

A = P(Ka,k1
+ Kb,k2

)PT
.

The projection matrix of a three-dimensional constraint is
the identity matrix. In this special case the constraint ma-

trix C̃ must satisfy Ka,k1
+Kb,k2

= C̃M−1 C̃
T
. This is true

for

C̃ =
(
I3 r∗a I3 r∗b

)
.

A lower-dimensional constraint is decomposed in the follow-
ing way:

A = P
(

C̃M
−1

C̃
T
)

P
T

= (PC̃)M−1 (PC̃)T = CM
−1

C
T
.

Hence the constraint matrix for translational joint con-
straints is defined by

C = PC̃. (8)

4.2 Rotational constraints
The definition of the constraint matrix for a rotational con-
straint is analogue. The matrix A of the SLE for a single
rotational joint constraint which connects the dynamic bod-
ies k1 and k2 is:

Lk :=

{

J−1
k if k is dynamic

0 otherwise

A = P(Lk1
+ Lk2

)PT
.

The corresponding three-dimensional constraint matrix is
defined as:

C̃ =
(
0 I3 0 I3

)
.

The matrix for a lower-dimensional rotational constraint is
determined by equation 8.

4.3 A system of constraints
The constraint matrix for a system of constraints must con-
sider the dependencies between different joints with a com-
mon body. For each joint i there exist dim(i) rows in the con-
straint matrix C. The matrix has

∑nk

j=1 dim(kj) columns,

where nk is the number of articulated bodies and dim(kj)
is the number of degrees of freedom of body kj . Matrix C

is a block matrix and consists of blocks Ci,k which have a
dimension of dim(i) × dim(k) 1. A block is not zero if and
only if k is a body of joint i.

A block Ct
i,k for the translational joint constraint i and one

of its bodies k is defined analogously to the constraint matrix
in section ”Translational constraints”:

C
t
i,k =

(
Pi Pi r

∗

a

)
,

where a is the joint point of the corresponding body k and
Pi is the projection matrix of the joint i. The blocks of

1In the case of rigid bodies dim(k) is 6. If particles are
simulated, the dimension is 3 since the mass matrix for a
particle is defined by mkI3 ∈ R3.



rotational joint constraints are defined analogously to the
matrix of section ”Rotational constraints”:

C
r
i,k =

(
0 Pi

)
.

If there exist multiple joints with a common dynamic body,
the corresponding impulses influence each other. These de-
pendencies are described by the off-diagonal blocks of the
matrix A (see section ”Impulse-based dynamic simulation”).
If the constraint matrix C is generated by using the blocks
Ct

i,k and Cr
i,k, the diagonal blocks of the matrices CM−1CT

and A are equal but the off-diagonal blocks can have differ-
ent signs. To obtain the correct signs, the following matrix
blocks are used to generate the constraint matrix C:

Ci,k =







Ct
i,k if i ∈ T ∧ k = ki1

−Ct
i,k if i ∈ T ∧ k = ki2

−Cr
i,k if i ∈ R ∧ k = ki1

Cr
i,k if i ∈ R ∧ k = ki2

0 otherwise

where ki1 and ki2 are the first and second body of joint i

respectively.

Since the decomposition A = CM−1CT is known, the SLE
for the impulses (see equation 5) can be transformed into a
sparse SLE in form of equation 7. This sparse system has
the same structure as the one of the Lagrange multiplier
method described in [2]. Hence it can be factorised and
solved in linear time by reordering the matrix and using a
LDLT decomposition.

5. CLOSED KINEMATIC CHAINS AND
COLLISIONS

The linear-time algorithm can not simulate models with
loops directly. It is necessary to break up loops by re-
moving constraints and to handle the removed constraints
separately. The method can also not handle collisions and
permanent contacts because collisions and contacts define
inequality constraints for the bodies. These constraints can
not be described in a SLE. Hence collisions and contacts
must be resolved independently of the joint constraints.

In the following is described how systems of constraints
can be split up in different parts and be simulated sepa-
rately while regarding the dependencies between the parts.
The constraints of a model with loops and collisions should
be split up in at least three parts: one part for collisions
and contacts and two acyclic parts containing the joint con-
straints. The division in more parts makes sense, if the con-
straints should be handled in parallel, e.g. on a multi-core
system. The collision and contact constraints can be han-
dled with the method described in [5]. If a model contains
cycles, it has to be split up in at least two parts. Cycles
are determined in a preprocessing step before the simula-
tion starts. The connection structure of the model can be
described by an undirected graph. This graph is used to
determine all cycles. Then the model is split up in multiple
acyclic parts of similar size. These parts are simulated with
the linear-time method presented in this paper.

If there exist two joints of different parts with a common
dynamic body, the parts depend on each other. Dependen-

cies are resolved by an iterative method. The impulse-based
method which uses an iterative approach is able to simulate
loops without special treatment. The presented linear-time
method can also benefit from this property. Let us assume
that a model has been divided into multiple acyclic parts
which depend on each other. The constraints of each part
are satisfied by the linear-time method. The dependencies
between the single parts are resolved, if the parts are han-
dled in an iterative loop until all constraints are satisfied
within a given tolerance.

An example for the presented approach for models with
loops is the simulation of cloth. A piece of cloth can be
represented by a grid of particles that are connected by dis-
tance joints. Figure 1 shows such a grid where the particles
are represented by dots and the distance joints by lines. The

Figure 1: Division of a grid in 8 acyclic chains

grid is split up in eight acyclic chains. These chains can be
simulated in parallel with the presented linear-time method.
The dependencies between the chains are resolved by com-
puting impulses for the chains in an iterative loop. In this
way, the cloth in figure 2 which consists of a 21 × 21 grid
can be simulated.

Figure 2: Objects falling onto a piece of cloth

6. RESULTS
In this section the presented linear-time method is com-
pared to well-known impulse-based simulation methods and
to Lagrange multiplier methods. The simulations have been
performed on a PC with a 3.4 GHz Intel Pentium 4 pro-
cessor. All implemented simulation methods use a fourth-
order Runge-Kutta method for numerical integration. A
tree model was simulated for the comparison like the one
shown in figure 3. The shown model consists of 128 rigid



Figure 3: A tree model consisting of 128 rigid bodies

and 127 ball joints

bodies and 127 ball joints which have three-dimensional con-
straints. The width and height of each body in the tree is
4 cm and its length depends on its depth in the tree in the
following way:

l = 1.5(max. depth−actual depth) · 0.1 m.

All bodies have the same density of ρ = 600 kg
m3 . The time

step size used for the dynamic simulation was h = 1
30

s in
order to generate 30 frames per second. At the beginning of
each simulation the top body of the tree was accelerated by
an external torque of 10 Nm.

Tree models of different sizes have been simulated in order
to show the scalability of the methods. The smallest model
had 31 and the largest 255 joints. Figure 4 shows the av-
erage computation times of a single simulation step. Each

Figure 4: Computation time per simulation step

model has been simulated using the iterative method (iter.)
[4], the SLE method (SLE) [6], the linear-time method pre-
sented in this paper (lin.), the standard Lagrange multiplier
approach (Lagrange) and the linear-time method using La-
grange multipliers of David Baraff (Baraff) [2]. The method

of Baumgarte [3] was used to stabilise the Lagrange multi-
plier methods.

The Lagrange multiplier method using the standard ap-
proach was the slowest method. The SLE for the Lagrange
multipliers was solved with a LU factorisation that has a
complexity of O(n3). The algorithm of David Baraff ben-
efits from the tree structure of the model. It determines
the Lagrange multipliers in linear time by using an opti-
mised LDLT decomposition [2]. This method simulated a
tree with 63 joints faster than real-time. For the largest tree
with 255 joints it needed an average computation time of
82.05 ms per simulation step.

The simulation with the iterative method has been per-
formed with three different tolerance values. The number
of required iterations is heavily dependent on these values.
The most accurate simulation used a tolerance of 10−6 m for
the position correction and a value of 10−6 m

s
for the veloc-

ity correction. Using these values the tree with 31 joints was
simulated two times faster than real-time. The simulation of
the largest tree was much slower and needed 494.15 ms per
step. The iterative method using tolerance values of 10−4 m
and 10−4 m

s
was almost three times faster for this model.

For the last simulation with the iterative method the values
10−3 m and 10−3 m

s
were used. All models were simulated

faster than using the method of David Baraff. The tree
with 127 joints could be simulated about 1.6 times faster
than real-time, whereas the largest tree needed a computa-
tion time of 51.47 ms.

If the impulses are computed using a system of linear equa-
tions, all dependencies between the joints in the tree are
regarded. Because of this, the tolerance values have not
much influence on the computation times. To demonstrate
this property, the SLE method has been simulated using two
different tolerance values. Both simulations had nearly the
same computation times as the iterative method with the
largest tolerance value. The computation time of the SLE
method for the tree with 255 joints was 57.72 ms using a tol-
erance of 10−3 (for the position and the velocity correction)
and 59.48 ms using a tolerance value of 10−6 respectively.
The factorisation of the matrix is the most time-consuming
part of this method. The factorisation of a tree with 127
joints took 15.81 ms whereas the determination of the im-
pulses in one iteration required 1.01 ms. Even if high ac-
curacy is demanded, the SLE method needs only very few
iterations. That is the reason why the computation times
are very similar for different tolerance values.

The linear-time method presented in this paper used a toler-
ance value of 10−6 in order to achieve very accurate results.
The simulation of the smallest model with 31 joints took
1.26 ms per simulation step. So it was more than 26 times
faster than real-time. Even the largest tree with 255 joints
has been simulated almost three times faster than real-time.
A simulation step with this model required 13.70 ms. The
dynamic simulation using the presented method was nearly
six times faster than using the Lagrange multiplier method
of David Baraff. The main reason why the impulse-based
method is so much faster is the use of impulses instead of
internal forces. The impulses have to be determined just
once per simulation step. Then the positions and velocities



for the next step are determined by integration. Since the
constraints are satisfied by the applied impulses, no internal
forces have to be considered while integrating. In contrast
to that the Lagrange multiplier method satisfies the con-
straints by internal forces. These forces can be computed
in linear time by solving the corresponding SLE with the
method of David Baraff. For one integration step with the
fourth-order Runge-Kutta method the internal forces have
to be determined four times. This explains the speed-up
when using impulses.

7. CONCLUSION
An impulse-based dynamic simulation method for articu-
lated bodies was presented that has a linear time complexity.
This method can handle all kind of translational and rota-
tional constraints for the positions and velocities of bodies.
The presented method can handle the same models as La-
grange multiplier methods but it has no drift problem and
needs no additional stabilisation. It has been shown that the
new method is almost six times faster than the linear-time
method using Lagrange multipliers when simulating a tree
model. Closed loops, collisions and permanent contacts with
friction can be handled by the integration of the linear-time
method in an iterative process. In the same way it is possi-
ble to split up the model and simulate the different parts in
parallel.

8. REFERENCES
[1] U. M. Ascher, H. Chin, L. R. Petzold, and S. Reich.

Stabilization of constrained mechanical systems with
daes and invariant manifolds. Journal of Mechanics of
Structures and Machines, 23:135–158, 1995.

[2] D. Baraff. Linear-time dynamics using lagrange
multipliers. In SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graphics and
interactive techniques, pages 137–146, New York, NY,
USA, 1996. ACM Press.

[3] J. W. Baumgarte. Stabilization of constraints and
integrals of motion in dynamical systems. Computer
Methods in Applied Mechanics and Engineering,
1:1–16, 1972.

[4] J. Bender, D. Finkenzeller, and A. Schmitt. An
impulse-based dynamic simulation system for VR
applications. In Proceedings of Virtual Concept 2005,
Biarritz, France, 2005. Springer.

[5] J. Bender and A. Schmitt. Constraint-based collision
and contact handling using impulses. In Proceedings of
the 19th international conference on computer
animation and social agents, pages 3–11, Geneva
(Switzerland), July 2006.

[6] J. Bender and A. Schmitt. Fast dynamic simulation of
multi-body systems using impulses. In Virtual Reality
Interactions and Physical Simulations (VRIPhys),
pages 81–90, Madrid (Spain), Nov. 2006.

[7] J. G. de Jalon and E. Bayo. Kinematic and Dynamic
Simulation of Multibody Systems: the Real Time
Challenge. Springer-Verlag, New York, 1994.

[8] R. Featherstone. Robot Dynamics Algorithm. Kluwer
Academic Publishers, Norwell, MA, USA, 1987.
Manufactured By-Kluwer Academic Publishers.

[9] R. Featherstone and D. Orin. Robot dynamics:

Equations and algorithms. International Conference
on Robotics and Automation, pages 826–834, 2000.

[10] O. Schenk and K. Gärtner. On fast factorization
pivoting methods for sparse symmetric indefinite
systems. Technical Report, Department of Computer
Science, University of Basel, 2004.

[11] O. Schenk and K. Gärtner. Solving unsymmetric
sparse systems of linear equations with pardiso. Future
Generation Computer Systems, 20(3):475–487, 2004.

[12] A. Schmitt, J. Bender, and H. Prautzsch. On the
convergence and correctness of impulse-based dynamic
simulation. Internal Report 17, Institut für Betriebs-
und Dialogsysteme, 2005.

[13] K. Shoemake. Animating rotation with quaternion
curves. In SIGGRAPH ’85: Proceedings of the 12th
annual conference on Computer graphics and
interactive techniques, pages 245–254, New York, NY,
USA, 1985. ACM Press.

[14] R. L. Weinstein, J. Teran, and R. Fedkiw. Dynamic
simulation of articulated rigid bodies with contact and
collision. In IEEE Transactions on Visualization and
Computer Graphics, volume 12, pages 365–374, 2006.

[15] A. Witkin and W. Welch. Fast animation and control
of nonrigid structures. In SIGGRAPH ’90:
Proceedings of the 17th annual conference on
Computer graphics and interactive techniques, pages
243–252, New York, NY, USA, 1990. ACM Press.


